1
|
Florczak A, Deptuch T, Kucharczyk K, Dams-Kozlowska H. Systemic and Local Silk-Based Drug Delivery Systems for Cancer Therapy. Cancers (Basel) 2021; 13:5389. [PMID: 34771557 PMCID: PMC8582423 DOI: 10.3390/cancers13215389] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/26/2022] Open
Abstract
For years, surgery, radiotherapy, and chemotherapy have been the gold standards to treat cancer, although continuing research has sought a more effective approach. While advances can be seen in the development of anticancer drugs, the tools that can improve their delivery remain a challenge. As anticancer drugs can affect the entire body, the control of their distribution is desirable to prevent systemic toxicity. The application of a suitable drug delivery platform may resolve this problem. Among other materials, silks offer many advantageous properties, including biodegradability, biocompatibility, and the possibility of obtaining a variety of morphological structures. These characteristics allow the exploration of silk for biomedical applications and as a platform for drug delivery. We have reviewed silk structures that can be used for local and systemic drug delivery for use in cancer therapy. After a short description of the most studied silks, we discuss the advantages of using silk for drug delivery. The tables summarize the descriptions of silk structures for the local and systemic transport of anticancer drugs. The most popular techniques for silk particle preparation are presented. Further prospects for using silk as a drug carrier are considered. The application of various silk biomaterials can improve cancer treatment by the controllable delivery of chemotherapeutics, immunotherapeutics, photosensitizers, hormones, nucleotherapeutics, targeted therapeutics (e.g., kinase inhibitors), and inorganic nanoparticles, among others.
Collapse
Affiliation(s)
- Anna Florczak
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (T.D.); (K.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Tomasz Deptuch
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (T.D.); (K.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Kamil Kucharczyk
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (T.D.); (K.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Hanna Dams-Kozlowska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (T.D.); (K.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
2
|
Bonferoni MC, Caramella C, Catenacci L, Conti B, Dorati R, Ferrari F, Genta I, Modena T, Perteghella S, Rossi S, Sandri G, Sorrenti M, Torre ML, Tripodo G. Biomaterials for Soft Tissue Repair and Regeneration: A Focus on Italian Research in the Field. Pharmaceutics 2021; 13:pharmaceutics13091341. [PMID: 34575417 PMCID: PMC8471088 DOI: 10.3390/pharmaceutics13091341] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/22/2022] Open
Abstract
Tissue repair and regeneration is an interdisciplinary field focusing on developing bioactive substitutes aimed at restoring pristine functions of damaged, diseased tissues. Biomaterials, intended as those materials compatible with living tissues after in vivo administration, play a pivotal role in this area and they have been successfully studied and developed for several years. Namely, the researches focus on improving bio-inert biomaterials that well integrate in living tissues with no or minimal tissue response, or bioactive materials that influence biological response, stimulating new tissue re-growth. This review aims to gather and introduce, in the context of Italian scientific community, cutting-edge advancements in biomaterial science applied to tissue repair and regeneration. After introducing tissue repair and regeneration, the review focuses on biodegradable and biocompatible biomaterials such as collagen, polysaccharides, silk proteins, polyesters and their derivatives, characterized by the most promising outputs in biomedical science. Attention is pointed out also to those biomaterials exerting peculiar activities, e.g., antibacterial. The regulatory frame applied to pre-clinical and early clinical studies is also outlined by distinguishing between Advanced Therapy Medicinal Products and Medical Devices.
Collapse
Affiliation(s)
| | | | | | - Bice Conti
- Correspondence: (M.C.B.); (B.C.); (F.F.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Bari E, Di Silvestre D, Mastracci L, Grillo F, Grisoli P, Marrubini G, Nardini M, Mastrogiacomo M, Sorlini M, Rossi R, Torre ML, Mauri P, Sesana G, Perteghella S. GMP-compliant sponge-like dressing containing MSC lyo-secretome: Proteomic network of healing in a murine wound model. Eur J Pharm Biopharm 2020; 155:37-48. [PMID: 32784044 DOI: 10.1016/j.ejpb.2020.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/19/2020] [Accepted: 08/05/2020] [Indexed: 12/22/2022]
Abstract
Chronic wounds account for 3% of total healthcare expenditure of developed countries; thus, innovative therapies, including Mesenchymal Stem Cells (MSCs) end their exosomes are increasingly considered, even if the activity depends on the whole secretome, made of both soluble proteins and extracellular vesicles. In this work, we prove for the first time the in vivo activity of the whole secretome formulated in a sponge-like alginate wound dressing to obtain the controlled release of bioactive substances. The product has been prepared in a public GMP-compliant facility by a scalable process; based on the murine model, treated wounds healed faster than controls without complications or infections. The treatment induced a higher acute inflammatory process in a short time and sustained the proliferative phase by accelerating fibroblast migration, granulation tissue formation, neovascularization and collagen deposition. The efficacy was substantially supported by the agreement between histological and proteomic findings. In addition to functional modules related to proteolysis, complement and coagulation cascades, protein folding and ECM remodeling, in treated skin, emerged the role of specific wound healing related proteins, including Tenascin (Tnc), Decorin (Dcn) and Epidermal growth factor receptor (EGFR). Of note, Decorin and Tenascin were also components of secretome, and network analysis suggests a potential role in regulating EGFR. Although further experiments will be necessary to characterize better the molecular keys induced by treatment, overall, our results confirm the whole secretome efficacy as novel "cell-free therapy". Also, sponge-like topical dressing containing the whole secretome, GMP- compliant and "ready-off-the-shelf", may represent a relevant point to facilitate its translation into the clinic.
Collapse
Affiliation(s)
- Elia Bari
- University of Pavia, Department of Drug Sciences, Pavia, Italy
| | - Dario Di Silvestre
- Institute for Biomedical Technologies, F.lli Cervi 93, Segrate, Milan, Italy
| | - Luca Mastracci
- University of Genoa, Department of Surgical Science and Integrated Diagnostics, Genoa, Italy; University of Genoa, Department of Experimental Medicine, Genoa, Italy
| | - Federica Grillo
- University of Genoa, Department of Surgical Science and Integrated Diagnostics, Genoa, Italy; University of Genoa, Department of Experimental Medicine, Genoa, Italy
| | - Pietro Grisoli
- University of Pavia, Department of Drug Sciences, Pavia, Italy
| | | | - Marta Nardini
- University of Genoa, Department of Internal Medicine, Genoa, Italy
| | | | - Marzio Sorlini
- PharmaExceed S.r.l., Pavia, Italy; University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Rossana Rossi
- Institute for Biomedical Technologies, F.lli Cervi 93, Segrate, Milan, Italy
| | - Maria Luisa Torre
- University of Pavia, Department of Drug Sciences, Pavia, Italy; PharmaExceed S.r.l., Pavia, Italy.
| | - Pierluigi Mauri
- Institute for Biomedical Technologies, F.lli Cervi 93, Segrate, Milan, Italy
| | - Giovanni Sesana
- Tissue Bank and Tissue Therapy Unit, Emergency and Acceptance Department, ASST Niguarda Hospital, Piazza Ospedale Maggiore 3, Milan, Italy
| | - Sara Perteghella
- University of Pavia, Department of Drug Sciences, Pavia, Italy; PharmaExceed S.r.l., Pavia, Italy
| |
Collapse
|
4
|
Bari E, Perteghella S, Faragò S, Torre ML. Association of silk sericin and platelet lysate: Premises for the formulation of wound healing active medications. Int J Biol Macromol 2018; 119:37-47. [DOI: 10.1016/j.ijbiomac.2018.07.142] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 12/11/2022]
|
5
|
Crivelli B, Perteghella S, Bari E, Sorrenti M, Tripodo G, Chlapanidas T, Torre ML. Silk nanoparticles: from inert supports to bioactive natural carriers for drug delivery. SOFT MATTER 2018; 14:546-557. [PMID: 29327746 DOI: 10.1039/c7sm01631j] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Silk proteins have been studied and employed for the production of drug delivery (nano)systems. They show excellent biocompatibility, controllable biodegradability and non-immunogenicity and, if needed, their properties can be modulated by blending with other polymers. Silk fibroin (SF), which forms the inner core of silk, is a (bio)material officially recognized by the Food and Drug Administration for human applications. Conversely, the potential of silk sericin (SS), which forms the external shell of silk, could still be considered under evaluation. At the best of our knowledge, nanoparticles based on silk sericin "alone" cannot be produced, due to its physicochemical instability influenced by extreme pH, high water solubility and temperature; for these reasons, it almost always needs to be combined with other polymers for the development of drug delivery systems. In this review, we focused on silk proteins as bioactive natural carriers, since they show not only optimal features as inert excipients, but also remarkable intrinsic biological activities. SF has anti-inflammatory properties, while SS presents antioxidant, anti-tyrosine, anti-aging, anti-elastase and anti-bacterial features. Here, we give an overview on SF or SS silk-based nanosystems, with particular attention on the production techniques.
Collapse
Affiliation(s)
- Barbara Crivelli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy.
| | | | | | | | | | | | | |
Collapse
|
6
|
Perteghella S, Vigani B, Mastracci L, Grillo F, Antonioli B, Galuzzi M, Tosca MC, Crivelli B, Preda S, Tripodo G, Marazzi M, Chlapanidas T, Torre ML. Stromal Vascular Fraction Loaded Silk Fibroin Mats Effectively Support the Survival of Diabetic Mice after Pancreatic Islet Transplantation. Macromol Biosci 2017; 17:1700131. [PMID: 28691373 DOI: 10.1002/mabi.201700131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/31/2017] [Indexed: 09/19/2023]
Abstract
The aim of this study is to assess whether stromal vascular fraction (SVF)-soaked silk fibroin nonwoven mats (silk-SVF) can preserve the functionality of encapsulated pancreatic endocrine cells (alginate-PECs) after transplantation in the subcutaneous tissue of diabetic mice. Silk scaffolds are selected to create an effective 3D microenvironment for SVF delivery in the subcutaneous tissue before diabetes induction: silk-SVF is subcutaneously implanted in the dorsal area of five healthy animals; after 15 d, mice are treated with streptozotocin to induce diabetes and then alginate-PECs are implanted on the silk-SVF. All animals appear in good health, increasing weight during time, and among them, one presents euglycemia until the end of experiments. On the contrary, when PECs are simultaneously implanted with SVF after diabetes induction, mice are euthanized due to suffering. This work clearly demonstrates that silk-SVF creates a functional niche in subcutaneous tissue and preserves endocrine cell survival and engraftment.
Collapse
Affiliation(s)
- Sara Perteghella
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Luca Mastracci
- Section of Histopathology, Department of Surgical Sciences and Integrated Diagnostics (DISC), IRCCS San Martino IST Hospital, University of Genoa, Largo R. Benzi 8, 16121, Genoa, Italy
| | - Federica Grillo
- Section of Histopathology, Department of Surgical Sciences and Integrated Diagnostics (DISC), IRCCS San Martino IST Hospital, University of Genoa, Largo R. Benzi 8, 16121, Genoa, Italy
| | - Barbara Antonioli
- Struttura Semplice Tissue Therapy, ASST Grande Ospedale Metropolitano, Piazza Ospedale Maggiore 3, 20162, Milan, Italy
| | - Marta Galuzzi
- Struttura Semplice Tissue Therapy, ASST Grande Ospedale Metropolitano, Piazza Ospedale Maggiore 3, 20162, Milan, Italy
| | - Marta Cecilia Tosca
- Struttura Semplice Tissue Therapy, ASST Grande Ospedale Metropolitano, Piazza Ospedale Maggiore 3, 20162, Milan, Italy
| | - Barbara Crivelli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Stefania Preda
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Giuseppe Tripodo
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Mario Marazzi
- Struttura Semplice Tissue Therapy, ASST Grande Ospedale Metropolitano, Piazza Ospedale Maggiore 3, 20162, Milan, Italy
| | - Theodora Chlapanidas
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Maria Luisa Torre
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| |
Collapse
|
7
|
Fabrication of Innovative Silk/Alginate Microcarriers for Mesenchymal Stem Cell Delivery and Tissue Regeneration. Int J Mol Sci 2017; 18:ijms18091829. [PMID: 28832547 PMCID: PMC5618478 DOI: 10.3390/ijms18091829] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to exploit silk fibroin’s properties to develop innovative composite microcarriers for mesenchymal stem cell (MSCs) adhesion and proliferation. Alginate microcarriers were prepared, added to silk fibroin solution, and then treated with ethanol to induce silk conformational transition. Microcarriers were characterized for size distribution, coating stability and homogeneity. Finally, in vitro cytocompatibility and suitability as delivery systems for MSCs were investigated. Results indicated that our manufacturing process is consistent and reproducible: silk/alginate microcarriers were stable, with spherical geometry, about 400 μm in average diameter, and fibroin homogeneously coated the surface. MSCs were able to adhere rapidly onto the microcarrier surface and to cover the surface of the microcarrier within three days of culture; moreover, on this innovative 3D culture system, stem cells preserved their metabolic activity and their multi-lineage differentiation potential. In conclusion, silk/alginate microcarriers represent a suitable support for MSCs culture and expansion. Since it is able to preserve MSCs multipotency, the developed 3D system can be intended for cell delivery, for advanced therapy and regenerative medicine applications.
Collapse
|
8
|
In Vitro Effectiveness of Microspheres Based on Silk Sericin and Chlorella vulgaris or Arthrospira platensis for Wound Healing Applications. MATERIALS 2017; 10:ma10090983. [PMID: 28832540 PMCID: PMC5615638 DOI: 10.3390/ma10090983] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/10/2017] [Accepted: 08/21/2017] [Indexed: 01/03/2023]
Abstract
Some natural compounds have recently been widely employed in wound healing applications due to their biological properties. One such compound is sericin, which is produced by Bombix mori, while active polyphenols, polysaccharides and proteins are synthetized by Chlorella vulgaris and Arthrospira platensis microalgae. Our hypothesis was that sericin, as an optimal bioactive polymeric carrier for microencapsulation process, could also improve the regenerative effect of the microalgae. A solvent-free extraction method and spray drying technique were combined to obtain five formulations, based on algal extracts (C. vulgaris and A. platensis, Chl and Art, respectively) or silk sericin (Ser) or their mixtures (Chl-Ser and Art-Ser). The spray drying was a suitable method to produce microspheres with similar dimensions, characterized by collapsed morphology with a rough surface. Art and Art-Ser showed higher antioxidant properties than other formulations. All microspheres resulted in cytocompatibility on fibroblasts until 1.25 mg/mL and promoted cell migration and the complete wound closure; this positive effect was further highlighted after treatment with Art and Art-Ser. To our surprize the combination of sericin to Art did not improve the microalgae extract efficacy, at least in our experimental conditions.
Collapse
|
9
|
Crivelli B, Chlapanidas T, Perteghella S, Lucarelli E, Pascucci L, Brini AT, Ferrero I, Marazzi M, Pessina A, Torre ML. Mesenchymal stem/stromal cell extracellular vesicles: From active principle to next generation drug delivery system. J Control Release 2017; 262:104-117. [PMID: 28736264 DOI: 10.1016/j.jconrel.2017.07.023] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/12/2017] [Accepted: 07/15/2017] [Indexed: 02/06/2023]
Abstract
It has been demonstrated that the biological effector of mesenchymal stem/stromal cells (MSCs) is their secretome, which is composed of a heterogeneous pool of bioactive molecules, partially enclosed in extracellular vesicles (EVs). Therefore, the MSC secretome (including EVs) has been recently proposed as possible alternative to MSC therapy. The secretome can be considered as a protein-based biotechnological product, it is probably safer compared with living/cycling cells, it presents virtually lower tumorigenic risk, and it can be handled, stored and sterilized as an Active Pharmaceutical/Principle Ingredient (API). EVs retain some structural and technological analogies with synthetic drug delivery systems (DDS), even if their potential clinical application is also limited by the absence of reproducible/scalable isolation methods and Good Manufacturing Practice (GMP)-compliant procedures. Notably, EVs secreted by MSCs preserve some of their parental cell features such as homing, immunomodulatory and regenerative potential. This review focuses on MSCs and their EVs as APIs, as well as DDS, considering their ability to reach inflamed and damaged tissues and to prolong the release of encapsulated drugs. Special attention is devoted to the illustration of innovative therapeutic approaches in which nanomedicine is successfully combined with stem cell therapy, thus creating a novel class of "next generation drug delivery systems."
Collapse
Affiliation(s)
- Barbara Crivelli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Theodora Chlapanidas
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Sara Perteghella
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Enrico Lucarelli
- Osteoarticular Regeneration Laboratory, 3rd Orthopaedic and Traumatologic Clinic, Rizzoli Orthopedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Luisa Pascucci
- Veterinary Medicine Department, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
| | - Anna Teresa Brini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal 36, 20100 Milan, Italy; I.R.C.C.S. Galeazzi Orthopedic Institute, Via Riccardo Galeazzi 4, 20161 Milan, Italy.
| | - Ivana Ferrero
- Paediatric Onco-Haematology, Stem Cell Transplantation and Cellular Therapy Division, City of Science and Health of Turin, Regina Margherita Children's Hospital, Piazza Polonia 94, 10126 Turin, Italy; Department of Public Health and Paediatrics, University of Turin, Piazza Polonia 94, 10126 Turin, Italy.
| | - Mario Marazzi
- Tissue Therapy Unit, ASST Niguarda Hospital, Piazza Ospedale Maggiore 3, 20162 Milan, Italy.
| | - Augusto Pessina
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal 36, 20100 Milan, Italy.
| | - Maria Luisa Torre
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | | |
Collapse
|
10
|
Perteghella S, Crivelli B, Catenacci L, Sorrenti M, Bruni G, Necchi V, Vigani B, Sorlini M, Torre ML, Chlapanidas T. Stem cell-extracellular vesicles as drug delivery systems: New frontiers for silk/curcumin nanoparticles. Int J Pharm 2017; 520:86-97. [PMID: 28163224 DOI: 10.1016/j.ijpharm.2017.02.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/26/2017] [Accepted: 02/01/2017] [Indexed: 01/30/2023]
Abstract
The aim of this work was to develop a novel carrier-in-carrier system based on stem cell-extracellular vesicles loaded of silk/curcumin nanoparticles by endogenous technique. Silk nanoparticles were produced by desolvation method and curcumin has been selected as drug model because of its limited water solubility and poor bioavailability. Nanoparticles were stable, with spherical geometry, 100nm in average diameter and the drug content reached about 30%. Cellular uptake studies, performed on mesenchymal stem cells (MSCs), showed the accumulation of nanoparticles in the cytosol around the nuclear membrane, without cytotoxic effects. Finally, MSCs were able to release extracellular vesicles entrapping silk/curcumin nanoparticles. This combined biological-technological approach represents a novel class of nanosystems, combining beneficial effects of both regenerative cell therapies and pharmaceutical nanomedicine, avoiding the use of viable replicating stem cells.
Collapse
Affiliation(s)
- Sara Perteghella
- University of Pavia, Department of Drug Sciences, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Barbara Crivelli
- University of Pavia, Department of Drug Sciences, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Laura Catenacci
- University of Pavia, Department of Drug Sciences, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Milena Sorrenti
- University of Pavia, Department of Drug Sciences, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Giovanna Bruni
- University of Pavia, Department of Chemistry, Viale Taramelli 16, 27100 Pavia, Italy.
| | - Vittorio Necchi
- University of Pavia, Department of Molecular Medicine, Via Forlanini 6, 27100 Pavia, Italy; University of Pavia, Centro Grandi Strumenti, Via Bassi 21, 27100 Pavia, Italy.
| | - Barbara Vigani
- University of Pavia, Department of Drug Sciences, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Marzio Sorlini
- SUPSI, University of Applied Sciences and Arts of Southern Switzerland, Innovative Technologies Department, Via Pobiette 11, 6928 Manno, Switzerland.
| | - Maria Luisa Torre
- University of Pavia, Department of Drug Sciences, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Theodora Chlapanidas
- University of Pavia, Department of Drug Sciences, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|