1
|
Tang Z, Yang X, Zhang K, Fang K. Modifying Cotton Fabric Properties by Controlling HPMC Viscosity Grade to Limit Ink Spreading and Penetration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18581-18588. [PMID: 39161096 DOI: 10.1021/acs.langmuir.4c01999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
In cotton fabric inkjet printing, the spreading and penetration of the ink seriously damage printing resolution and color strength. In this study, hydroxypropyl methyl cellulose (HPMC) with varying viscosity grades (6, 30, 100, 400, and 4000 mPa·s) were used for fabric pretreatment to reduce the ink spreading and penetration. The results indicated that HPMC with a high viscosity grade enhanced the ability of pretreatment paste to form a continuous HPMC film on the fiber surface. A continuous film could greatly increase the hydrophobicity of the fabric, thereby restricting the spreading and penetration of ink. Meanwhile, ink migration was also limited by the paste connected to the fibers and the swelling of the film, which was more significant at higher HPMC viscosity grades. However, the increase of the HPMC viscosity grade was not conducive to dye fixation. Additionally, HPMC with a viscosity grade of 100 mPa·s was considered a reasonable choice, which could improve printing resolution and color strength in industrial applications. This research provides a new approach for optimizing pretreatment paste to achieve high-quality printed products.
Collapse
Affiliation(s)
- Zhiyuan Tang
- College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
- Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao 266071, China
- State Key Laboratory for Biofibers and Eco-textiles, Qingdao 266071, China
- Shandong Key Laboratory of Textile Materials for Healthcare, Qingdao 266071, China
- Collaborative Innovation Center for Eco-textiles of Shandong Province, Qingdao 266071, China
- University Laboratory for Low Carbon and Functional Textiles of Shandong Province, Qingdao 266071, China
| | - Xueyuan Yang
- College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
- Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao 266071, China
- State Key Laboratory for Biofibers and Eco-textiles, Qingdao 266071, China
- Shandong Key Laboratory of Textile Materials for Healthcare, Qingdao 266071, China
- Collaborative Innovation Center for Eco-textiles of Shandong Province, Qingdao 266071, China
- University Laboratory for Low Carbon and Functional Textiles of Shandong Province, Qingdao 266071, China
| | - Kun Zhang
- College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
- Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao 266071, China
- State Key Laboratory for Biofibers and Eco-textiles, Qingdao 266071, China
- Shandong Key Laboratory of Textile Materials for Healthcare, Qingdao 266071, China
- Collaborative Innovation Center for Eco-textiles of Shandong Province, Qingdao 266071, China
- University Laboratory for Low Carbon and Functional Textiles of Shandong Province, Qingdao 266071, China
| | - Kuanjun Fang
- College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
- Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao 266071, China
- State Key Laboratory for Biofibers and Eco-textiles, Qingdao 266071, China
- Shandong Key Laboratory of Textile Materials for Healthcare, Qingdao 266071, China
- Collaborative Innovation Center for Eco-textiles of Shandong Province, Qingdao 266071, China
- University Laboratory for Low Carbon and Functional Textiles of Shandong Province, Qingdao 266071, China
| |
Collapse
|
2
|
Kang CYX, Foo WC, Lam KH, Chow KT, Lui YS, Goh HP, Salome A, Boit B, Lefevre P, Hiew TN, Gokhale R, Heng PWS. Mannitol-coated hydroxypropyl methylcellulose as an alternative directly compressible controlled release excipient. Int J Pharm 2024; 660:124298. [PMID: 38825172 DOI: 10.1016/j.ijpharm.2024.124298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
One of the most common forms of controlled release technology for oral drug delivery comprises an active ingredient dispersed in a hydrophilic matrix forming polymer such as hydroxypropyl methylcellulose (HPMC), which is tableted via direct compression. However, HPMC may pose problems in direct compression due to its poor flowability. Hence, mannitol syrup was spray-coated over fluidized HPMC particles to produce co-processed HPMC-mannitol at ratios of 20:80, 50:50, and 70:30. Particles of pure HPMC, co-processed HPMC-mannitol, and their respective physical mixtures were evaluated for powder flowability, compression profiles, and controlled release performance. It was found that co-processed HPMC-mannitol consisted of particles with improved flow compared to pure HPMC particles. Sufficiently strong tablets of >2 MPa could be produced at moderate to high compression forces of 150-200 MPa. The dissolution profile could be tuned to obtain desired release profiles by altering HPMC-mannitol ratios. Co-processed HPMC-mannitol offers an interesting addition to the formulator's toolbox in the design of controlled release formulations for direct compression.
Collapse
Affiliation(s)
- Christina Yong Xin Kang
- Roquette Asia Pacific Pte. Ltd., 11 Biopolis Way, Helios, #05-06, 138667, Singapore; GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, 117543, Singapore
| | - Wen Chin Foo
- Roquette Asia Pacific Pte. Ltd., 11 Biopolis Way, Helios, #05-06, 138667, Singapore
| | - Kwan Hang Lam
- Roquette Asia Pacific Pte. Ltd., 11 Biopolis Way, Helios, #05-06, 138667, Singapore
| | - Keat Theng Chow
- Roquette Asia Pacific Pte. Ltd., 11 Biopolis Way, Helios, #05-06, 138667, Singapore
| | - Yuan Siang Lui
- Roquette Asia Pacific Pte. Ltd., 11 Biopolis Way, Helios, #05-06, 138667, Singapore
| | - Hui Ping Goh
- Roquette Asia Pacific Pte. Ltd., 11 Biopolis Way, Helios, #05-06, 138667, Singapore
| | - Antoine Salome
- Roquette Frères, 1 rue de la Haute Loge, Lestrem 62136, France
| | - Baptiste Boit
- Roquette Frères, 1 rue de la Haute Loge, Lestrem 62136, France
| | | | - Tze Ning Hiew
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, 117543, Singapore; Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 180 South Grand Avenue, Iowa City, IA 52242, USA.
| | - Rajeev Gokhale
- Roquette America Inc., 2211 Innovation Drive, Geneva, IL 60134, USA.
| | - Paul Wan Sia Heng
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, 117543, Singapore; Faculty of Pharmacy, Universitas Airlangga, Surabaya, East Java 60115, Indonesia
| |
Collapse
|
3
|
Nassar N, Kasapis S. Fundamental advances in hydrogels for the development of the next generation of smart delivery systems as biopharmaceuticals. Int J Pharm 2023; 633:122634. [PMID: 36690133 DOI: 10.1016/j.ijpharm.2023.122634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Recent advances in developing and applying therapeutic peptides for anticancer, antimicrobial and immunomodulatory remedies have opened a new era in therapeutics. This development has resulted in the engineering of new biologics as part of a concerted effort by the pharmaceutical industry. Many alternative routes of administration and delivery vehicles, targeting better patient compliance and optimal therapeutic bioavailability, have emerged. However, the design of drug delivery systems to protect a range of unstable macromolecules, including peptides and proteins, from high temperatures, acidic environments, and enzymatic degradation remains a priority. Herein, we give chronological insights in the development of controlled-release drug delivery systems that occurred in the last 70 years or so. Subsequently, we summarise the key physicochemical characteristics of hydrogels contributing to the development of protective delivery systems concerning drug-targeted delivery in the chronospatial domain for biopharmaceuticals. Furthermore, we shed some light on promising hydrogels that can be utilised for systemic bioactive administration.
Collapse
Affiliation(s)
- Nazim Nassar
- School of Science, RMIT University, Bundoora West Campus, Melbourne, Vic 3083, Australia.
| | - Stefan Kasapis
- School of Science, RMIT University, Bundoora West Campus, Melbourne, Vic 3083, Australia
| |
Collapse
|
4
|
Narala S, Nyavanandi D, Mandati P, Youssef AAA, Alzahrani A, Kolimi P, Zhang F, Repka M. Preparation and in vitro evaluation of hot-melt extruded pectin-based pellets containing ketoprofen for colon targeting. Int J Pharm X 2022; 5:100156. [PMID: 36636366 PMCID: PMC9830203 DOI: 10.1016/j.ijpx.2022.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
This work developed high drug-load pellets for colon targeting in minimal steps by coupling hot-melt extrusion (HME) with a die-surface cutting pelletizer, offering a potential continuous pellet manufacturing process. Ketoprofen (KTP) was selected as a model drug for this study due to its thermal stability and severe upper gastrointestinal side effects. Low and high methoxyl grade pectins were the enzyme-triggered release matrix, and hydroxypropyl methylcellulose (HME 4 M/HME 100LV) was used as a premature release-retarding agent. The powder X-ray diffraction technique and the differential scanning calorimetry results revealed that KTP exists in the solid-solution state within the polymeric matrix after the HME step. The scanning electron micrographs of the fabricated pellets showed a smooth surface without any cracks. The lead formulation showed the lowest premature drug release (∼13%) with an extended KTP release profile over a 24 h period in the presence and absence of the release-triggering enzyme. The lead formulation was stable for 3 months at accelerated stability conditions (40 °C/75 ± 5% RH) concerning drug content, in vitro release, and thermal characteristics. In summary, coupling HME and pelletization processes could be a promising technology for developing colon-targeted drug delivery systems.
Collapse
Affiliation(s)
- Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Dinesh Nyavanandi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Preethi Mandati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Ahmed Adel Ali Youssef
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA,Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Abdullah Alzahrani
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Praveen Kolimi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Feng Zhang
- College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Michael Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA,Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA,Corresponding author at: Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
5
|
Park C, Lee JH, Jin G, Ngo HV, Park JB, Tran TTD, Tran PHL, Lee BJ. Release kinetics of hydroxypropyl methylcellulose governing drug release and hydrodynamic changes of matrix tablet. Curr Drug Deliv 2021; 19:520-533. [PMID: 34420504 DOI: 10.2174/1567201818666210820101549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hydrophilic hydroxypropyl methylcellulose (HPMC) matrix tablets are the standard role model of the oral controlled-release formulation. Nevertheless, the HPMC kinetics for the mechanistic understanding of drug release and hydrodynamic behaviors are rarely investigated. This study aims to investigate the release behaviors of both HPMC and paracetamol (model drug) from the hydrophilic matrix tablet. METHODS Two different viscosity grades of HPMC were used (Low viscosity: 6 cps, High viscosity: 4,000 cps). Three different ratios of drug/HPMC (H:38.08%, M:22.85%, and L:15.23% (w/w) of HPMC amounts in total weight) matrix tablets were prepared by wet granulation technique. The release profiles of the drug and HPMC in a matrix tablet were quantitatively analyzed by HPLC and 1H-nuclear magnetic resonance (NMR) spectroscopy. The hydrodynamic changes of HPMC were determined by the gravimetric behaviors such as swelling and erosion rates, gel layer thickness, front movement data,and distributive near-infrared (NIR) chemical imaging of HPMC in a matrix tablet during the dissolution process. RESULTS High viscosity HPMC tablets showed slower release of HPMC than the release rate of drug, suggesting that drug release preceded polymer release.Different hydration phenomenon was qualitatively identified and corresponded to the release profiles. The release behaviors of HPMC and drug in the tablet could be distinguished with the significant difference with fitted dissolution kinetics model (Low viscosity HPMC 6cps; Korsmeyer-Peppas model, High viscosity HPMC 4000cps; Hopfenberg model, Paracetamol; Weibull model) according to the weight of ingredients and types of HPMC. CONCLUSION The determination of HPMC polymer release correlating with drug release, hydrodynamic behavior, and NIR chemical imaging of HPMC can provide new insights into the drug release-modulating mechanism in the hydrophilic matrix system.
Collapse
Affiliation(s)
- Chulhun Park
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton T6G 2E1, Alberta. Canada
| | - Jong Hoon Lee
- College of Pharmacy, Ajou University, Suwon 16499. South Korea
| | - Gang Jin
- College of Pharmacy, Ajou University, Suwon 16499. South Korea
| | - Hai Van Ngo
- College of Pharmacy, Ajou University, Suwon 16499. South Korea
| | - Jun-Bom Park
- College of Pharmacy, Sahmyook University, Seoul 01795. South Korea
| | - Thao T D Tran
- Faculty of Pharmacy, Duy Tan University, Danang 550000. Vietnam
| | - Phuong H L Tran
- Deakin University, Geelong Australia, School of Medicine. Australia
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499. South Korea
| |
Collapse
|
6
|
Yu JY, Roh SH, Park HJ. Characterization of ferulic acid encapsulation complexes with maltodextrin and hydroxypropyl methylcellulose. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Vrbanac H, Trontelj J, Kalčič Š, Legen I. Mechanistic study of model drug release from HPMC matrices in fed gastric media. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Le TN, Her J, Sim T, Jung CE, Kang JK, Oh KT. Preparation of Gastro-retentive Tablets Employing Controlled Superporous Networks for Improved Drug Bioavailability. AAPS PharmSciTech 2020; 21:320. [PMID: 33180220 DOI: 10.1208/s12249-020-01851-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022] Open
Abstract
The development of an oral formulation that ensures increased bioavailability of drugs is a great challenge for pharmaceutical scientists. Among many oral formulation systems, a drug delivery system employing superporous networks was developed to provide a prolonged gastro-retention time as well as improved bioavailability of drugs with a narrow absorption window in the gastrointestinal tract. Superporous networks (SPNs) were prepared from chitosan by crosslinking with glyoxal and poly(vinyl alcohol) (PVA). The SPNs showed less porosity and decreased water uptake with an increase in the crosslinking density and content of PVA. Gastro-retentive tablets (GRTs) were formulated using hydroxypropyl methylcellulose (HPMC, a hydrophilic polymer) and the prepared SPNs. Ascorbic acid (AA), which is mainly absorbed in the proximal part of the small intestine, was selected as a model drug. The formulated GRTs exhibited no floating lag time and stayed afloat until the end of the dissolution test. The in vitro drug release from the GRTs decreased with a decrease in the water uptake of the SPNs. The profile of drug release from the GRTs corresponded to the first-order and Higuchi drug-release models. Overall, floating tablets composed of the SPNs and HPMC have potential as a favorable platform to ensure sustained release and improved bioavailability of drugs that are absorbed in the proximal part of the small intestine.
Collapse
|
9
|
Mašková E, Kubová K, Raimi-Abraham BT, Vllasaliu D, Vohlídalová E, Turánek J, Mašek J. Hypromellose - A traditional pharmaceutical excipient with modern applications in oral and oromucosal drug delivery. J Control Release 2020; 324:695-727. [PMID: 32479845 DOI: 10.1016/j.jconrel.2020.05.045] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
Hydroxypropylmethylcellulose (HPMC), also known as Hypromellose, is a traditional pharmaceutical excipient widely exploited in oral sustained drug release matrix systems. The choice of numerous viscosity grades and molecular weights available from different manufacturers provides a great variability in its physical-chemical properties and is a basis for its broad successful application in pharmaceutical research, development, and manufacturing. The excellent mucoadhesive properties of HPMC predetermine its use in oromucosal delivery systems including mucoadhesive tablets and films. HPMC also possesses desirable properties for formulating amorphous solid dispersions increasing the oral bioavailability of poorly soluble drugs. Printability and electrospinnability of HPMC are promising features for its application in 3D printed drug products and nanofiber-based drug delivery systems. Nanoparticle-based formulations are extensively explored as antigen and protein carriers for the formulation of oral vaccines, and oral delivery of biologicals including insulin, respectively. HPMC, being a traditional pharmaceutical excipient, has an irreplaceable role in the development of new pharmaceutical technologies, and new drug products leading to continuous manufacturing processes, and personalized medicine. This review firstly provides information on the physical-chemical properties of HPMC and a comprehensive overview of its application in traditional oral drug formulations. Secondly, this review focuses on the application of HPMC in modern pharmaceutical technologies including spray drying, hot-melt extrusion, 3D printing, nanoprecipitation and electrospinning leading to the formulation of printlets, nanoparticle-, microparticle-, and nanofiber-based delivery systems for oral and oromucosal application. Hypromellose is an excellent excipient for formulation of classical dosage forms and advanced drug delivery systems. New methods of hypromellose processing include spray draying, hot-melt extrusion, 3D printing, and electrospinning.
Collapse
Affiliation(s)
- Eliška Mašková
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Hudcova 70, Brno 621 00, Czech Republic
| | - Kateřina Kubová
- Faculty of Pharmacy, Masaryk University, Brno 625 00, Czech Republic
| | - Bahijja T Raimi-Abraham
- School of Cancer and Pharmaceutical Sciences, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Driton Vllasaliu
- School of Cancer and Pharmaceutical Sciences, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Eva Vohlídalová
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Hudcova 70, Brno 621 00, Czech Republic
| | - Jaroslav Turánek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Hudcova 70, Brno 621 00, Czech Republic.
| | - Josef Mašek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Hudcova 70, Brno 621 00, Czech Republic.
| |
Collapse
|
10
|
Simulated migrating motor complex and its impact on the release properties of hydrophilic matrix systems. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
The influence of different mechanical stress on the release properties of HPMC matrix tablets in sucrose-NaCl media. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Berardi A, Bisharat L, Cespi M, Basheti IA, Bonacucina G, Pavoni L, AlKhatib HS. Controlled release properties of zein powder filled into hard gelatin capsules. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2017.07.093] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|