1
|
Bajwa DS, Holt G, Stark N, Bajwa SG, Chanda S, Quadir M. Nano Boron Oxide and Zinc Oxide Doped Lignin Containing Cellulose Nanocrystals Improve the Thermal, Mechanical and Flammability Properties of High-Density Poly(ethylene). Polymers (Basel) 2023; 16:36. [PMID: 38201701 PMCID: PMC10780719 DOI: 10.3390/polym16010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
The widely used high-density polyethylene (HDPE) polymer has inadequate mechanical and thermal properties for structural applications. To overcome this challenge, nano zinc oxide (ZnO) and nano boron oxide (B2O3) doped lignin-containing cellulose nanocrystals (L-CNC) were blended in the polymer matrix. The working hypothesis is that lignin will prevent CNC aggregation, and metal oxides will reduce the flammability of polymers by modifying their degradation pathways. This research prepared and incorporated safe, effective, and eco-friendly hybrid systems of nano ZnO/L-CNC and nano B2O3/L-CNC into the HDPE matrix to improve their physio-mechanical and fire-retardant properties. The composites were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis, thermo-gravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, horizontal burning test, and microcalorimetry test. The results demonstrated a substantial increase in mechanical properties and a reduction in flammability. The scanning electron microscope (SEM) images showed some agglomeration and irregular distribution of the inorganic oxides.
Collapse
Affiliation(s)
- Dilpreet S. Bajwa
- Mechanical and Industrial Engineering Department, Montana State University, Bozeman, MT 59717, USA;
| | - Greg Holt
- Cotton Production and Processing Research Unit, United States Department of Agriculture, Agricultural Research Service, Lubbock, TX 79403, USA;
| | - Nicole Stark
- Forest Biopolymer Science and Engineering, United States Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI 53726, USA;
| | - Sreekala G. Bajwa
- College of Agriculture, Montana State University, Bozeman, MT 59717, USA;
| | - Saptaparni Chanda
- Mechanical and Industrial Engineering Department, Montana State University, Bozeman, MT 59717, USA;
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University; Fargo, ND 58108, USA;
| |
Collapse
|
2
|
Li Z, Zhu G, Lin N. Dispersibility Characterization of Cellulose Nanocrystals in Polymeric-Based Composites. Biomacromolecules 2022; 23:4439-4468. [PMID: 36195577 DOI: 10.1021/acs.biomac.2c00987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cellulose nanocrystals (CNCs) are hydrophilic nanoparticles extracted from biomass with properties and functions different from cellulose and are being developed for property-oriented applications such as high stiffness, abundant active groups, and biocompatibility. It has broad application prospects in the field of composite materials, while the dispersibility of the CNC in polymers is the key to its application performance. Many reviews have discussed in-depth the modification strategies to improve the dispersibility of the CNC and summarized all characterization for the CNC, but there are no reviews on the in-depth exploration of dispersion characterization. This review is a comprehensive summary of the characterization of CNC dispersion in the matrix in terms of direct observation, indirect evaluation, and quantified evaluation, summarizing how and why different characterization tools reveal dispersibility. In addition, "decision tree" flowcharts are presented to provide the reader with a reference for selecting the appropriate characterization method for a specific composite.
Collapse
Affiliation(s)
- Zikang Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Luoshi Road #122, Wuhan430070, P. R. China
| | - Ge Zhu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Luoshi Road #122, Wuhan430070, P. R. China
| | - Ning Lin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Luoshi Road #122, Wuhan430070, P. R. China
| |
Collapse
|
3
|
da Silva LCE, Gonçalves MC, de Oliveira MG. Nitric oxide-releasing supramolecular cellulose nanocrystals/silsesquioxane foams. Macromol Rapid Commun 2022; 43:e2100930. [PMID: 35267220 DOI: 10.1002/marc.202100930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/13/2022] [Indexed: 11/09/2022]
Abstract
Cellulose nanocrystals (CNC)-based foams are promising tissue engineering materials that may facilitate implant-tissue integration and allow localized and controlled drug delivery. Herein, hybrid CNC-based foams, which are ultralightweight (30 to 100 mg cm-3 ), highly porous (> 95%), ominiphilic and superabsorbent (1500 to 3000 wt% of water and/or toluene uptake) are obtained by the in-situ condensation of poly(ethylene glycol) ditriethoxysilyl (TES-PEG-TES) into a three-dimensional network, where silsesquioxane nanoparticles (SS-NP) are the cross-linking nodes, and CNC are entangled and forming ionic interactions, resulting in a supramolecular structure. In a new approach, using 3-mercaptopropyltrimethoxysilane, sulfhydryl groups are inserted on the SS-NP periphery and S-nitrosated to enable the functionalization of SS-NP with S-nitrosothiol groups, which are capable of releasing nitric oxide (NO), in a process triggered by the hydration of the foams and modulated by the supramolecular structure of the foams. CNC-SS-PEG foams exhibit elevated thermal and structural stability, compressive strength compatible with various soft human tissues, and NO release rates (1 - 18 pmol mg-1 min-1 ) within the range of the beneficial NO actions. Thus, the CNC-SS-PEG foams herein described represent a new platform of supramolecular hybrid materials for localized delivery of NO, with potential uses in tissue engineering and other biomedical applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Laura C E da Silva
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. box 6154, Campinas, SP, 13083-970, Brazil
| | - Maria C Gonçalves
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. box 6154, Campinas, SP, 13083-970, Brazil
| | - Marcelo G de Oliveira
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. box 6154, Campinas, SP, 13083-970, Brazil
| |
Collapse
|
4
|
Palechor-Trochez JJ, Ramírez-Gonzales G, Villada-Castillo HS, Solanilla-Duque JF. A review of trends in the development of bionanocomposites from lignocellulosic and polyacids biomolecules as packing material making alternative: A bibliometric analysis. Int J Biol Macromol 2021; 192:832-868. [PMID: 34634331 DOI: 10.1016/j.ijbiomac.2021.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/15/2021] [Accepted: 10/01/2021] [Indexed: 11/25/2022]
Abstract
Contamination caused by the accumulation of petrochemical-based plastics has reached worrying magnitudes and led to the development of biopolymers as an option to mitigate the problem. This work thus presents a bibliometric analysis of all that concerns the development of such bionanocomposite materials, using ScientoPy and SciMAT software to establish associations between the number of published documents, countries, institutions and most relevant topics. The bionanocomposites topic was found to throw up the biggest number of documents associated (2008) with the different types of raw materials and methods used to obtain nanoparticles and their combination with biopolymeric materials, the result known as a "bionancomposite*". Analysis of the documents related to the application for development of packaging materials from biological molecules, carbohydrate polymers, compounds, conjugates, gels, glucans, hydrogels, membranes, mucilage (source unspecified), mucoadhesives, paper, polymers, polysaccharide, saccharides etc, is also presented, emphasizing mechanical, thermal and barrier properties, which, due to the inclusion of nanoparticles mainly from natural sources of cellulose, show increases of up to 30%. The inclusion of nanoparticles, especially those derived from cellulose sources, generally seeks to increase the properties of bionanocomposite materials. Regarding an increase in mechanical properties, specifically tensile strength, inclusions at percentages not exceeding 10 wt% can register increases that exceed 30% were reported.
Collapse
|
5
|
Cindradewi AW, Bandi R, Park CW, Park JS, Lee EA, Kim JK, Kwon GJ, Han SY, Lee SH. Preparation and Characterization of Cellulose Acetate Film Reinforced with Cellulose Nanofibril. Polymers (Basel) 2021; 13:polym13172990. [PMID: 34503030 PMCID: PMC8434040 DOI: 10.3390/polym13172990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, cellulose acetate (CA)/cellulose nanofibril (CNF) film was prepared via solvent casting. CNF was used as reinforcement to increase tensile properties of CA film. CNF ratio was varied into 3, 5, and 10 phr (parts per hundred rubbers). Triacetin (TA) and triethyl citrate (TC) were used as two different eco-friendly plasticizers. Two different types of solvent, which are acetone and N-methyl-2-pyrrolidone (NMP), were also used. CA/CNF film was prepared by mixing CA and CNF in acetone or NMP with 10% concentration and stirred for 24 h. Then, the solution was cast in a polytetrafluoroethylene (PTFE) dish followed by solvent evaporation for 12 h at room temperature for acetone and 24 h at 80 °C in an oven dryer for NMP. The effect of solvent type, plasticizers type, and CNF amount on film properties was studied. Good dispersion in NMP was evident from the morphological study of fractured surface and visible light transmittance. The results showed that CNF has a better dispersion in NMP which leads to a significant increase in tensile strength and elastic modulus up to 38% and 65%, respectively, compared with those of neat CA. CNF addition up to 5 phr loading increased the mechanical properties of the film composites.
Collapse
Affiliation(s)
- Azelia Wulan Cindradewi
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Korea; (A.W.C.); (J.-S.P.); (E.-A.L.); (J.-K.K.)
| | - Rajkumar Bandi
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (R.B.); (C.-W.P.); (G.-J.K.); (S.-Y.H.)
| | - Chan-Woo Park
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (R.B.); (C.-W.P.); (G.-J.K.); (S.-Y.H.)
| | - Ji-Soo Park
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Korea; (A.W.C.); (J.-S.P.); (E.-A.L.); (J.-K.K.)
- National Institute of Forest Science, Seoul 02455, Korea
| | - Eun-Ah Lee
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Korea; (A.W.C.); (J.-S.P.); (E.-A.L.); (J.-K.K.)
| | - Jeong-Ki Kim
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Korea; (A.W.C.); (J.-S.P.); (E.-A.L.); (J.-K.K.)
| | - Gu-Joong Kwon
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (R.B.); (C.-W.P.); (G.-J.K.); (S.-Y.H.)
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Song-Yi Han
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (R.B.); (C.-W.P.); (G.-J.K.); (S.-Y.H.)
| | - Seung-Hwan Lee
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Korea; (A.W.C.); (J.-S.P.); (E.-A.L.); (J.-K.K.)
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (R.B.); (C.-W.P.); (G.-J.K.); (S.-Y.H.)
- Correspondence: ; Tel.: +82-33-250-8323
| |
Collapse
|
6
|
Santos MI, da Silva LCE, Bomediano MP, Catori DM, Gonçalves MC, de Oliveira MG. 3D printed nitric oxide-releasing poly(acrylic acid)/F127/cellulose nanocrystal hydrogels. SOFT MATTER 2021; 17:6352-6361. [PMID: 34086028 DOI: 10.1039/d1sm00163a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrogels have been used as matrices for the topical delivery of nitric oxide (NO) for achieving vasodilation, wound healing and analgesic actions. More recently, supramolecular hydrogels comprised of poly(acrylic acid) (PAA) and micellar Pluronic F127 (F127), prepared by thermal reaction, emerged as a suitable matrix for the incorporation of hydrophilic NO donors, such as S-nitrosoglutathione (GSNO). Herein, we describe an innovative method for the three-dimensional (3D) printing of cellulose nanocrystal (CNC)-containing and semi-interpenetrating PAA/F127 hydrogels by PAA photopolymerization via digital light processing (DLP), in the absence of organic solvents. Scanning electron microscopy showed that, differently from typical porous PAA-based hydrogels, the 3D printed PAA/F127/CNC hydrogels have dense morphology. By using transmission electron microscopy we confirmed for the first time the presence of F127 micelles in the printable resin, and their preservation after the photopolymerization process. The F127 micelles conferred compressive recoverability to the 3D printed PAA/F127/CNC hydrogels, widening their potential applications as soft biomaterials. PAA/F127/CNC hydrogels charged with GSNO are shown to release NO spontaneously upon hydration at initial rates that depend on the GSNO charge and are higher in the presence of CNC. As local NO release may exert cell proliferation action, 3D printed PAA/F127/CNC/GSNO hydrogels may serve as a versatile soft biomaterial for local NO delivery in regenerative medicine and other biomedical applications.
Collapse
Affiliation(s)
- Murilo I Santos
- Institute of Chemistry, University of Campinas, UNICAMP, 13083-970 Campinas, Brazil.
| | - Laura C E da Silva
- Institute of Chemistry, University of Campinas, UNICAMP, 13083-970 Campinas, Brazil.
| | - Mateus P Bomediano
- Institute of Chemistry, University of Campinas, UNICAMP, 13083-970 Campinas, Brazil.
| | - Daniele M Catori
- Institute of Chemistry, University of Campinas, UNICAMP, 13083-970 Campinas, Brazil.
| | - Maria C Gonçalves
- Institute of Chemistry, University of Campinas, UNICAMP, 13083-970 Campinas, Brazil.
| | - Marcelo G de Oliveira
- Institute of Chemistry, University of Campinas, UNICAMP, 13083-970 Campinas, Brazil.
| |
Collapse
|
7
|
Ou Z, Zhou Q, Rao X, Yang H, Huo C, Du X. Cellulose Isolated From Waste Rubber Wood and Its Application in PLA Based Composite Films. Front Bioeng Biotechnol 2021; 9:666399. [PMID: 33869162 PMCID: PMC8044414 DOI: 10.3389/fbioe.2021.666399] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
Waste rubber wood (RW) is the castoff of rubber plantation with abundant reservation but without high-value utilization. In this study, cellulose with high purity has been efficiently isolated from waste RW and further processed into cellulose nanocrystals. By means of acetylation, more hydrophobic cellulose-based products, namely acetylated rubber wood cellulose (Ac-RWC) and acetylated rubber wood cellulose nanocrystals (Ac-RW-CNC) had been attempted as reinforcing fillers for fabricating two series of PLA-based composite films via spin coating instead of currently prevailing melt compounding technique. To ensure a uniformed dispersion of fillers in PLA matrix, the addition of reinforcing filler should be equal to or less than 5% based on the film dry weight. Compared with pure PLA film, the Ac-RWC reinforced PLA composite films are more thermally stable, while the Ac-RW-CNC reinforced PLA composite films on the other hand exhibit more enhanced performance in mechanical properties and the degree of crystallinity. The highest tensile strength (55.0 MPa) and Young's modulus (3.9 GPa) were achieved for 5%Ac-RW-CNC/PLA composite film.
Collapse
Affiliation(s)
- Zhiqiang Ou
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory of Fine Chemicals, Hainan University, Haikou, China
| | - Qi Zhou
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory of Fine Chemicals, Hainan University, Haikou, China
| | - Xin Rao
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory of Fine Chemicals, Hainan University, Haikou, China
| | - Haifeng Yang
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory of Fine Chemicals, Hainan University, Haikou, China
| | - Chunqing Huo
- School of Materials Science and Engineering, Hainan University, Haikou, China
| | - Xueyu Du
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory of Fine Chemicals, Hainan University, Haikou, China
| |
Collapse
|
8
|
Leite LSF, Bilatto S, Paschoalin RT, Soares AC, Moreira FKV, Oliveira ON, Mattoso LHC, Bras J. Eco-friendly gelatin films with rosin-grafted cellulose nanocrystals for antimicrobial packaging. Int J Biol Macromol 2020; 165:2974-2983. [PMID: 33122067 DOI: 10.1016/j.ijbiomac.2020.10.189] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
We report on gelatin films incorporating rosin-grafted cellulose nanocrystals (r-CNCs), which fulfill the most relevant requirements for antimicrobial packaging applications. Transparent gelatin/r-CNCs bionanocomposite films (0.5-6 wt% r-CNCs) were obtained by solution casting and displayed high UV-barrier properties, which were superior to the most used plastic packaging films. The gelatin/r-CNCs films exhibited a moderate water vapor permeability (0.09 g mm/m2 h kPa), and high tensile strength (40 MPa) and Young's modulus (1.9 GPa). The r-CNCs were more efficient in improving the optical, water vapor barrier and tensile properties of gelatin films than conventional CNCs. Grafting of rosin on CNCs resulted in an antimicrobial nanocellulose that inhibited the growth of Staphylococcus aureus and Escherichia coli. The antibacterial properties of r-CNCs were sustained in the gelatin films, as demonstrated by agar diffusion tests and proof-of-principle experiments involving cheese storage. Overall, the incorporation of r-CNCs as active fillers in gelatin films is a suitable approach for producing novel eco-friendly, antimicrobial packaging materials.
Collapse
Affiliation(s)
- Liliane S F Leite
- Federal University of São Carlos, Graduate Program in Materials Science and Engineering (PPGCEM), 13565-905 São Carlos, Brazil; National Nanotechnology Laboratory for Agribusiness, Embrapa Instrumentação, XV de Novembro street, 1452, 13560-979 São Carlos, Brazil; University Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38400 Grenoble, France.
| | - Stanley Bilatto
- National Nanotechnology Laboratory for Agribusiness, Embrapa Instrumentação, XV de Novembro street, 1452, 13560-979 São Carlos, Brazil.
| | - Rafaella T Paschoalin
- University of São Paulo, São Carlos Institute of Physics, 13560-970 São Carlos, Brazil.
| | - Andrey C Soares
- National Nanotechnology Laboratory for Agribusiness, Embrapa Instrumentação, XV de Novembro street, 1452, 13560-979 São Carlos, Brazil.
| | - Francys K V Moreira
- Department of Materials Engineering, Federal University of São Carlos, Rod. Washington Luis, km 235, São Carlos, SP 13565-905, Brazil.
| | - Osvaldo N Oliveira
- University of São Paulo, São Carlos Institute of Physics, 13560-970 São Carlos, Brazil.
| | - Luiz H C Mattoso
- Federal University of São Carlos, Graduate Program in Materials Science and Engineering (PPGCEM), 13565-905 São Carlos, Brazil; National Nanotechnology Laboratory for Agribusiness, Embrapa Instrumentação, XV de Novembro street, 1452, 13560-979 São Carlos, Brazil.
| | - Julien Bras
- University Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38400 Grenoble, France; Nestle Research Center, 1000 Lausanne, Switzerland.
| |
Collapse
|
9
|
Leszczyńska A, Radzik P, Szefer E, Mičušík M, Omastová M, Pielichowski K. Surface Modification of Cellulose Nanocrystals with Succinic Anhydride. Polymers (Basel) 2019; 11:E866. [PMID: 31086019 PMCID: PMC6572273 DOI: 10.3390/polym11050866] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 11/16/2022] Open
Abstract
The surface modification of cellulose nanocrystals (CNC) is a key intermediate step in the development of new functionalities and the tailoring of nanomaterial properties for specific applications. In the area of polymeric nanocomposites, apart from good interfacial adhesion, the high thermal stability of cellulose nanomaterial is vitally required for the stable processing and improvement of material properties. In this respect, the heterogeneous esterification of CNC with succinic anhydride was investigated in this work in order to obtain CNC with optimised surface and thermal properties. The influence of reaction parameters, such as time, temperature, and molar ratio of reagents, on the structure, morphology and thermal properties, were systematically studied over a wide range of values by DLS, FTIR, XPS, WAXD, SEM and TGA methods. It was found that the degree of surface substitution of CNC increased with the molar ratio of succinic anhydride to cellulose hydroxyl groups (SA:OH), as well as the reaction time, whilst the temperature of reaction showed a moderate effect on the degree of esterification in the range of 70-110 °C. The studies on the thermal stability of modified nanoparticles indicated that there is a critical extent of surface esterification below which only a slight decrease of the initial temperature of degradation was observed in pyrolytic and oxidative atmospheres. A significant reduction of CNC thermal stability was observed only for the longest reaction time (240 min) and the highest molar ratio of SA:OH. This illustrates the possibility of manufacturing thermally stable, succinylated, CNC by controlling the reaction conditions and the degree of esterification.
Collapse
Affiliation(s)
- Agnieszka Leszczyńska
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland.
| | - Paulina Radzik
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland.
| | - Ewa Szefer
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland.
| | - Matej Mičušík
- Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava 45, Slovakia.
| | - Mária Omastová
- Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava 45, Slovakia.
| | - Krzysztof Pielichowski
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland.
| |
Collapse
|
10
|
Hassan M, Berglund L, Abou-Zeid R, Hassan E, Abou-Elseoud W, Oksman K. Nanocomposite Film Based on Cellulose Acetate and Lignin-Rich Rice Straw Nanofibers. MATERIALS 2019; 12:ma12040595. [PMID: 30781531 PMCID: PMC6416558 DOI: 10.3390/ma12040595] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/04/2019] [Accepted: 02/09/2019] [Indexed: 11/17/2022]
Abstract
Nanofibers isolated from unbleached neutral sulfite rice straw pulp were used to prepare transparent films without the need to modify the isolated rice straw nanofibers (RSNF). RSNF with loading from 1.25 to 10 wt.% were mixed with cellulose acetate (CA) solution in acetone and films were formed by casting. The films were characterized regarding their transparency and light transmittance, microstructure, mechanical properties, crystallinity, water contact angle, porosity, water vapor permeability, and thermal properties. The results showed good dispersion of RSNF in CA matrix and films with good transparency and homogeneity could be prepared at RSNF loadings of less than 5%. As shown from contact angle and atomic force microscopy (AFM) measurements, the RSNF resulted in increased hydrophilic nature and roughness of the films. No significant improvement in tensile strength and Young’s modulus was recorded as a result of adding RSNF to CA. Addition of the RSNF did not significantly affect the porosity, crystallinity and melting temperature of CA, but slightly increased its glass transition temperature.
Collapse
Affiliation(s)
- Mohammad Hassan
- Cellulose and Paper Department & Centre of Excellence for Advanced Sciences, National Research Centre, 33 El-Behouth street, Dokki, Giza 12622, Egypt.
- Egypt Nanotechnology Centre, Cairo University, El-Sheikh Zayed, 6th October City 12588, Egypt.
| | - Linn Berglund
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE 97187 Luleå, Sweden.
| | - Ragab Abou-Zeid
- Cellulose and Paper Department & Centre of Excellence for Advanced Sciences, National Research Centre, 33 El-Behouth street, Dokki, Giza 12622, Egypt.
| | - Enas Hassan
- Cellulose and Paper Department & Centre of Excellence for Advanced Sciences, National Research Centre, 33 El-Behouth street, Dokki, Giza 12622, Egypt.
| | - Wafaa Abou-Elseoud
- Cellulose and Paper Department & Centre of Excellence for Advanced Sciences, National Research Centre, 33 El-Behouth street, Dokki, Giza 12622, Egypt.
| | - Kristiina Oksman
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE 97187 Luleå, Sweden.
- Fibre and Particle Engineering, University of Oulu, FI-90014 Oulu, Finland.
| |
Collapse
|
11
|
Chakrabarty A, Teramoto Y. Recent Advances in Nanocellulose Composites with Polymers: A Guide for Choosing Partners and How to Incorporate Them. Polymers (Basel) 2018; 10:E517. [PMID: 30966551 PMCID: PMC6415375 DOI: 10.3390/polym10050517] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/21/2018] [Accepted: 04/26/2018] [Indexed: 12/31/2022] Open
Abstract
In recent years, the research on nanocellulose composites with polymers has made significant contributions to the development of functional and sustainable materials. This review outlines the chemistry of the interaction between the nanocellulose and the polymer matrix, along with the extent of the reinforcement in their nanocomposites. In order to fabricate well-defined nanocomposites, the type of nanomaterial and the selection of the polymer matrix are always crucial from the viewpoint of polymer⁻filler compatibility for the desired reinforcement and specific application. In this review, recent articles on polymer/nanocellulose composites were taken into account to provide a clear understanding on how to use the surface functionalities of nanocellulose and to choose the polymer matrix in order to produce the nanocomposite. Here, we considered cellulose nanocrystal (CNC) and cellulose nanofiber (CNF) as the nanocellulosic materials. A brief discussion on their synthesis and properties was also incorporated. This review, overall, is a guide to help in designing polymer/nanocellulose composites through the utilization of nanocellulose properties and the selection of functional polymers, paving the way to specific polymer⁻filler interaction.
Collapse
Affiliation(s)
- Arindam Chakrabarty
- Department of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan.
| | - Yoshikuni Teramoto
- Department of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan.
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan.
| |
Collapse
|
12
|
Dufresne A. Cellulose nanomaterials as green nanoreinforcements for polymer nanocomposites. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:20170040. [PMID: 29277738 PMCID: PMC5746555 DOI: 10.1098/rsta.2017.0040] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/12/2017] [Indexed: 05/25/2023]
Abstract
Unexpected and attractive properties can be observed when decreasing the size of a material down to the nanoscale. Cellulose is no exception to the rule. In addition, the highly reactive surface of cellulose resulting from the high density of hydroxyl groups is exacerbated at this scale. Different forms of cellulose nanomaterials, resulting from a top-down deconstruction strategy (cellulose nanocrystals, cellulose nanofibrils) or bottom-up strategy (bacterial cellulose), are potentially useful for a large number of industrial applications. These include the paper and cardboard industry, use as reinforcing filler in polymer nanocomposites, the basis for low-density foams, additives in adhesives and paints, as well as a wide variety of filtration, electronic, food, hygiene, cosmetic and medical products. This paper focuses on the use of cellulose nanomaterials as a filler for the preparation of polymer nanocomposites. Impressive mechanical properties can be obtained for these materials. They obviously depend on the type of nanomaterial used, but the crucial point is the processing technique. The emphasis is on the melt processing of such nanocomposite materials, which has not yet been properly resolved and remains a challenge.This article is part of a discussion meeting issue 'New horizons for cellulose nanotechnology'.
Collapse
Affiliation(s)
- Alain Dufresne
- University Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
| |
Collapse
|