1
|
Guo X, Liu L, Feng H, Li D, Xia Z, Yang R. Flame Retardancy of Nylon 6 Fibers: A Review. Polymers (Basel) 2023; 15:polym15092161. [PMID: 37177307 PMCID: PMC10181247 DOI: 10.3390/polym15092161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
As synthetic fibers with superior performances, nylon 6 fibers are widely used in many fields. Due to the potential fire hazard caused by flammability, the study of the flame retardancy of nylon 6 fibers has been attracting more and more attention. The review has summarized the present research status of flame-retarded nylon 6 fibers from three aspects: intrinsic flame-retarded nylon 6, nylon 6 composites, and surface strategies of nylon 6 fibers/fabrics. The current main focus is still how to balance the application performances, flame retardancy, and production cost. Moreover, melt dripping during combustion remains a key challenge for nylon 6 fibers, and the further developing trend is to study novel flame retardants and new flame-retardancy technologies for nylon 6 fibers.
Collapse
Affiliation(s)
- Xiaocheng Guo
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Linjing Liu
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Kingfa Sci. & Tech. Co., Ltd., Guangzhou 510663, China
| | - Haisheng Feng
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Dinghua Li
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhonghua Xia
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Rongjie Yang
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
Li B, Sun Y, Yao J, Shen Y, Wu H, Li J, Yang M. Characterization of the keratin/polyamide 6 composite fiber's structure and performance prepared by the optimized spinning process based on the rheological analysis. Int J Biol Macromol 2022; 222:938-949. [DOI: 10.1016/j.ijbiomac.2022.09.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/17/2022] [Accepted: 09/25/2022] [Indexed: 11/05/2022]
|
3
|
Mechanical Reinforcement in Nylon 6 Nanocomposite Fiber Incorporated with Dopamine Reduced Graphene Oxide. MATERIALS 2022; 15:ma15155095. [PMID: 35897526 PMCID: PMC9330574 DOI: 10.3390/ma15155095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023]
Abstract
The emergence of graphene-based polymer composite fibers provides a new opportunity to study the high-performance and functional chemical fibers. In this work, we have developed an efficient and convenient method with polydopamine (PDA) to functionalize and reduce graphene oxide (GO) simultaneously, and the modified graphene nanosheets can obtain uniform dispersion and strong interfacial bonding in nylon 6 (PA6). Furthermore, the reinforced PA6 composite fibers were prepared through mixing PDA-rGO into the PA6 polymer matrix and then melt spinning. The functional modification was characterized by surface analysis and structural testing including SEM, TEM, FTIR, and Raman. When the addition amount of the modified GO was 0.15 wt%, the tensile strength and Young’s modulus of the composite fiber reached 310.4 MPa and 462.3 MPa, respectively. The results showed a meaningful reinforcement with an effect compared to the pure nylon 6 fiber. Moreover, the composite fiber also exhibited an improved crystallinity and thermal stability, as measured by DSC and TGA.
Collapse
|
4
|
Xiao R, Yu G, Xu BB, Wang N, Liu X. Fiber Surface/Interfacial Engineering on Wearable Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102903. [PMID: 34418304 DOI: 10.1002/smll.202102903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Surface/interfacial engineering is an essential technique to explore the fiber materials properties and fulfil new functionalities. An extensive scope of current physical and chemical treating methods is reviewed here together with a variety of real-world applications. Moreover, a new surface/interface engineering approach is also introduced: self-assembly via π-π stacking, which has great potential for the surface modification of fiber materials due to its nondestructive working principle. A new fiber family member, metal-oxide framework (MOF) fiber shows promising candidacy for fiber based wearable electronics. The understanding of surface/interfacial engineering techniques on fiber materials is advanced here and it is expected to guide the rational design of future fiber based wearable electronics.
Collapse
Affiliation(s)
- Ruimin Xiao
- Department of Materials, Faculty of Science and Engineering, University of Manchester, Oxford Rd., Manchester, M13 9PL, UK
| | - Guiqin Yu
- College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Southern Road, Lanzhou, Gansu, 730000, China
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Nan Wang
- The Nanoscience Centre, University of Cambridge, Cambridge, CB3 0FF, UK
| | - Xuqing Liu
- Department of Materials, Faculty of Science and Engineering, University of Manchester, Oxford Rd., Manchester, M13 9PL, UK
| |
Collapse
|
5
|
Fabrication and characterization of polyamide 6@polyaniline core shell nanofibrous composite reinforced via reduced graphene oxide. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03769-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Lee KPM, Baum T, Shanks R, Daver F. Graphene–polyamide‐6 composite for additive manufacture of multifunctional electromagnetic interference shielding components. J Appl Polym Sci 2020. [DOI: 10.1002/app.49909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Thomas Baum
- School of Engineering RMIT University Bundoora Victoria Australia
| | - Robert Shanks
- School of Science RMIT University Melbourne Victoria Australia
| | - Fugen Daver
- School of Engineering RMIT University Bundoora Victoria Australia
| |
Collapse
|
7
|
Vasiljević J, Demšar A, Leskovšek M, Simončič B, Čelan Korošin N, Jerman I, Šobak M, Žitko G, Van de Velde N, Čolović M. Characterization of Polyamide 6/Multilayer Graphene Nanoplatelet Composite Textile Filaments Obtained Via In Situ Polymerization and Melt Spinning. Polymers (Basel) 2020; 12:polym12081787. [PMID: 32785048 PMCID: PMC7464262 DOI: 10.3390/polym12081787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Studies of the production of fiber-forming polyamide 6 (PA6)/graphene composite material and melt-spun textile fibers are scarce, but research to date reveals that achieving the high dispersion state of graphene is the main challenge to nanocomposite production. Considering the significant progress made in the industrial mass production of graphene nanoplatelets (GnPs), this study explored the feasibility of production of PA6/GnPs composite fibers using the commercially available few-layer GnPs. To this aim, the GnPs were pre-dispersed in molten ε-caprolactam at concentrations equal to 1 and 2 wt %, and incorporated into the PA6 matrix by the in situ water-catalyzed ring-opening polymerization of ε-caprolactam, which was followed by melt spinning. The results showed that the incorporated GnPs did not markedly influence the melting temperature of PA6 but affected the crystallization temperature, fiber bulk structure, crystallinity, and mechanical properties. Furthermore, GnPs increased the PA6 complex viscosity, which resulted in the need to adjust the parameters of melt spinning to enable continuous filament production. Although the incorporation of GnPs did not provide a reinforcing effect of PA6 fibers and reduced fiber tensile properties, the thermal stability of the PA6 fiber increased. The increased melt viscosity and graphene anti-dripping properties postponed melt dripping in the vertical flame spread test, which consequently prolonged burning within the samples.
Collapse
Affiliation(s)
- Jelena Vasiljević
- Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, 1000 Ljubljana, Slovenia; (A.D.); (M.L.); (B.S.)
- Correspondence: (J.V.); (I.J.); Tel.: +386-1-20-03-200 (J.V.); +386-1-4760-440 (I.J.)
| | - Andrej Demšar
- Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, 1000 Ljubljana, Slovenia; (A.D.); (M.L.); (B.S.)
| | - Mirjam Leskovšek
- Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, 1000 Ljubljana, Slovenia; (A.D.); (M.L.); (B.S.)
| | - Barbara Simončič
- Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, 1000 Ljubljana, Slovenia; (A.D.); (M.L.); (B.S.)
| | - Nataša Čelan Korošin
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia;
| | - Ivan Jerman
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (M.Š.); (G.Ž.); (N.V.d.V.); (M.Č.)
- Correspondence: (J.V.); (I.J.); Tel.: +386-1-20-03-200 (J.V.); +386-1-4760-440 (I.J.)
| | - Matic Šobak
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (M.Š.); (G.Ž.); (N.V.d.V.); (M.Č.)
| | - Gregor Žitko
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (M.Š.); (G.Ž.); (N.V.d.V.); (M.Č.)
| | - Nigel Van de Velde
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (M.Š.); (G.Ž.); (N.V.d.V.); (M.Č.)
| | - Marija Čolović
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (M.Š.); (G.Ž.); (N.V.d.V.); (M.Č.)
| |
Collapse
|
8
|
Kelnar I, Bal Ü, Ujčič A, Kaprálková L, Krejčíková S, Steinhart M, Nofar M. Creep behavior of HDPE/PA66 microfibrillar composites modified with graphite nanoplatelets. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02093-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Yu Y, Tan Z, Zhang J, Liu G. Microstructural evolution and mechanical investigation of hot stretched graphene oxide reinforced polyacrylonitrile nanofiber yarns. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuxi Yu
- Fujian Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, College of MaterialsXiamen University Xiamen China
| | - Zekai Tan
- Fujian Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, College of MaterialsXiamen University Xiamen China
| | - Jibin Zhang
- Science and Technology on Reactor System Design Technology LaboratoryNuclear Power Institute of China Chengdu China
| | - Guan‐bin Liu
- Clothing Research InstituteXiamen University of Technology Xiamen China
| |
Collapse
|
10
|
Zhang N, Zhao X, Fu X, Zhao D, Yang G. Preparation and Characterization of Polyamide‐6/Reduced Graphene Oxide Composite Microspheres. ChemistrySelect 2019. [DOI: 10.1002/slct.201901339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Na Zhang
- School of Chemistry and Chemical EngineeringHefei University of Technology Hefei 230009, China
| | - Xingke Zhao
- Department of Chemical and Materials EngineeringHefei University Hefei 230009 China
| | - Xubing Fu
- CAS Key Laboratory of Engineering PlasticsChinese Academy of Sciences Beijing 100190 China
| | - Dajiang Zhao
- School of Chemistry and Chemical EngineeringHefei University of Technology Hefei 230009, China
| | - Guisheng Yang
- School of Chemistry and Chemical EngineeringHefei University of Technology Hefei 230009, China
- Hefei Genius Advanced Material Co., Ltd Hefei 230009 China
| |
Collapse
|