1
|
Straus I, Kravanja G, Hribar L, Kriegl R, Jezeršek M, Shamonin M, Drevensek-Olenik I, Kokot G. Surface Modification of Magnetoactive Elastomers by Laser Micromachining. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1550. [PMID: 38612065 PMCID: PMC11012975 DOI: 10.3390/ma17071550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
It has been recently demonstrated that laser micromachining of magnetoactive elastomers is a very convenient method for fabricating dynamic surface microstructures with magnetically tunable properties, such as wettability and surface reflectivity. In this study, we investigate the impact of the micromachining process on the fabricated material's structural properties and its chemical composition. By employing scanning electron microscopy, we investigate changes in size distribution and spatial arrangement of carbonyl iron microparticles dispersed in the polydimethylsiloxane (PDMS) matrix as a function of laser irradiation. Based on the images obtained by a low vacuum secondary electron detector, we analyze modifications of the surface topography. The results show that most profound modifications occur during the low-exposure (8 J/cm2) treatment of the surface with the laser beam. Our findings provide important insights for developing theoretical models of functional properties of laser-sculptured microstructures from magnetoactive elastomers.
Collapse
Affiliation(s)
- Izidor Straus
- Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia; (I.S.); (G.K.)
| | - Gaia Kravanja
- Faculty of Mechanical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia; (G.K.); (L.H.); (M.J.)
| | - Luka Hribar
- Faculty of Mechanical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia; (G.K.); (L.H.); (M.J.)
| | - Raphael Kriegl
- East Bavarian Centre for Intelligent Materials (EBACIM), Ostbayerische Technische Hochschule Regensburg, 93053 Regensburg, Germany; (R.K.); (M.S.)
| | - Matija Jezeršek
- Faculty of Mechanical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia; (G.K.); (L.H.); (M.J.)
| | - Mikhail Shamonin
- East Bavarian Centre for Intelligent Materials (EBACIM), Ostbayerische Technische Hochschule Regensburg, 93053 Regensburg, Germany; (R.K.); (M.S.)
| | - Irena Drevensek-Olenik
- Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia; (I.S.); (G.K.)
- Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Gašper Kokot
- Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia; (I.S.); (G.K.)
- Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Nadzharyan TA, Kramarenko EY. Effects of Filler Anisometry on the Mechanical Response of a Magnetoactive Elastomer Cell: A Single-Inclusion Modeling Approach. Polymers (Basel) 2023; 16:118. [PMID: 38201782 PMCID: PMC10780330 DOI: 10.3390/polym16010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
A finite-element model of the mechanical response of a magnetoactive elastomer (MAE) volume element is presented. Unit cells containing a single ferromagnetic inclusion with geometric and magnetic anisotropy are considered. The equilibrium state of the cell is calculated using the finite-element method and cell energy minimization. The response of the cell to three different excitation modes is studied: inclusion rotation, inclusion translation, and uniaxial cell stress. The influence of the magnetic properties of the filler particles on the equilibrium state of the MAE cell is considered. The dependence of the mechanical response of the cell on the filler concentration and inclusion anisometry is calculated and analyzed. Optimal filler shapes for maximizing the magnetic response of the MAE are discussed.
Collapse
|
3
|
Straus I, Kokot G, Kravanja G, Hribar L, Kriegl R, Shamonin M, Jezeršek M, Drevenšek-Olenik I. Dynamically tunable lamellar surface structures from magnetoactive elastomers driven by a uniform magnetic field. SOFT MATTER 2023; 19:3357-3365. [PMID: 37097616 DOI: 10.1039/d3sm00012e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Stimuli responsive materials are key ingredients for any application that requires dynamically tunable or on-demand responses. In this work we report experimental and theoretical investigation of magnetic-field driven modifications of soft-magnetic elastomers whose surface was processed by laser ablation into lamellar microstructures that can be manipulated by a uniform magnetic field. We present a minimal hybrid model that elucidates the associated deflection process of the lamellae and explains the lamellar structure frustration in terms of dipolar magnetic forces arising from the neighbouring lamellae. We experimentally determine the magnitude of the deflection as a function of magnetic flux density and explore the dynamic response of lamellae to fast changes in a magnetic field. A relationship between the deflection of lamellae and modifications of the optical reflectance of the lamellar structures is resolved.
Collapse
Affiliation(s)
- Izidor Straus
- University of Ljubljana, Faculty of Mathematics and Physics, Ljubljana, Slovenia
| | | | - Gaia Kravanja
- University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia
| | - Luka Hribar
- University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia
| | - Raphael Kriegl
- Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany
| | - Mikhail Shamonin
- Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany
| | - Matija Jezeršek
- University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia
| | - Irena Drevenšek-Olenik
- University of Ljubljana, Faculty of Mathematics and Physics, Ljubljana, Slovenia
- Jožef Stefan Institute, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Nadzharyan TA, Shamonin M, Kramarenko EY. Theoretical Modeling of Magnetoactive Elastomers on Different Scales: A State-of-the-Art Review. Polymers (Basel) 2022; 14:4096. [PMID: 36236044 PMCID: PMC9572082 DOI: 10.3390/polym14194096] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022] Open
Abstract
A review of the latest theoretical advances in the description of magnetomechanical effects and phenomena observed in magnetoactive elastomers (MAEs), i.e., polymer networks filled with magnetic micro- and/or nanoparticles, under the action of external magnetic fields is presented. Theoretical modeling of magnetomechanical coupling is considered on various spatial scales: from the behavior of individual magnetic particles constrained in an elastic medium to the mechanical properties of an MAE sample as a whole. It is demonstrated how theoretical models enable qualitative and quantitative interpretation of experimental results. The limitations and challenges of current approaches are discussed and some information about the most promising lines of research in this area is provided. The review is aimed at specialists involved in the study of not only the magnetomechanical properties of MAEs, but also a wide range of other physical phenomena occurring in magnetic polymer composites in external magnetic fields.
Collapse
Affiliation(s)
- Timur A. Nadzharyan
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Mikhail Shamonin
- East Bavarian Centre for Intelligent Materials (EBACIM), Ostbayerische Technische Hochschule (OTH) Regensburg, Seybothstr. 2, 93053 Regensburg, Germany
| | - Elena Yu. Kramarenko
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS), 119991 Moscow, Russia
- Enikilopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences (ISPM RAS), 117393 Moscow, Russia
| |
Collapse
|
5
|
Kriegl R, Kravanja G, Hribar L, Čoga L, Drevenšek-Olenik I, Jezeršek M, Kalin M, Shamonin M. Microstructured Magnetoactive Elastomers for Switchable Wettability. Polymers (Basel) 2022; 14:polym14183883. [PMID: 36146027 PMCID: PMC9503804 DOI: 10.3390/polym14183883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
We demonstrate the control of wettability of non-structured and microstructured magnetoactive elastomers (MAEs) by magnetic field. The synthesized composite materials have a concentration of carbonyl iron particles of 75 wt.% (≈27 vol.%) and three different stiffnesses of the elastomer matrix. A new method of fabrication of MAE coatings on plastic substrates is presented, which allows one to enhance the response of the apparent contact angle to the magnetic field by exposing the particle-enriched side of MAEs to water. A magnetic field is not applied during crosslinking. The highest variation of the contact angle from (113 ± 1)° in zero field up to (156 ± 2)° at about 400 mT is achieved in the MAE sample with the softest matrix. Several lamellar and pillared MAE structures are fabricated by laser micromachining. The lateral dimension of surface structures is about 50 µm and the depth varies between 3 µm and 60 µm. A systematic investigation of the effects of parameters of laser processing (laser power and the number of passages of the laser beam) on the wetting behavior of these structures in the absence and presence of a magnetic field is performed. In particular, strong anisotropy of the wetting behavior of lamellar structures is observed. The results are qualitatively discussed in the framework of the Wenzel and Cassie–Baxter models. Finally, directions of further research on magnetically controlled wettability of microstructured MAE surfaces are outlined. The obtained results may be useful for the development of magnetically controlled smart surfaces for droplet-based microfluidics.
Collapse
Affiliation(s)
- Raphael Kriegl
- East Bavarian Centre for Intelligent Materials (EBACIM), Ostbayerische Technische Hochschule (OTH) Regensburg, Seybothstr. 2, 93053 Regensburg, Germany
- Correspondence: (R.K.); (M.S.)
| | - Gaia Kravanja
- Laboratory for Laser Techniques, Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, SI-1000 Ljubljana, Slovenia
| | - Luka Hribar
- Laboratory for Laser Techniques, Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, SI-1000 Ljubljana, Slovenia
| | - Lucija Čoga
- Laboratory for Tribology and Interface Nanotechnology, Faculty of Mechanical Engineering, University of Ljubljana, Bogišićeva 8, SI-1000 Ljubljana, Slovenia
| | - Irena Drevenšek-Olenik
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
- Department of Complex Matter, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Matija Jezeršek
- Laboratory for Laser Techniques, Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, SI-1000 Ljubljana, Slovenia
| | - Mitjan Kalin
- Laboratory for Tribology and Interface Nanotechnology, Faculty of Mechanical Engineering, University of Ljubljana, Bogišićeva 8, SI-1000 Ljubljana, Slovenia
| | - Mikhail Shamonin
- East Bavarian Centre for Intelligent Materials (EBACIM), Ostbayerische Technische Hochschule (OTH) Regensburg, Seybothstr. 2, 93053 Regensburg, Germany
- Correspondence: (R.K.); (M.S.)
| |
Collapse
|
6
|
Cazacu M, Dascalu M, Stiubianu GT, Bele A, Tugui C, Racles C. From passive to emerging smart silicones. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Amassing remarkable properties, silicones are practically indispensable in our everyday life. In most classic applications, they play a passive role in that they cover, seal, insulate, lubricate, water-proof, weather-proof etc. However, silicone science and engineering are highly innovative, seeking to develop new compounds and materials that meet market demands. Thus, the unusual properties of silicones, coupled with chemical group functionalization, has allowed silicones to gradually evolve from passive materials to active ones, meeting the concept of “smart materials”, which are able to respond to external stimuli. In such cases, the intrinsic properties of polysiloxanes are augmented by various chemical modifications aiming to attach reactive or functional groups, and/or by engineering through proper cross-linking pattern or loading with suitable fillers (ceramic, magnetic, highly dielectric or electrically conductive materials, biologically active, etc.), to add new capabilities and develop high value materials. The literature and own data reflecting the state-of-the art in the field of smart silicones, such as thermoplasticity, self-healing ability, surface activity, electromechanical activity and magnetostriction, thermo-, photo-, and piezoresponsivity are reviewed.
Collapse
Affiliation(s)
- Maria Cazacu
- Department of Inorganic Polymers , “Petru Poni” Institute of Macromolecular Chemistry , Aleea Gr. Ghica Voda 41A , 700487 Iasi , Romania
| | - Mihaela Dascalu
- Department of Inorganic Polymers , “Petru Poni” Institute of Macromolecular Chemistry , Aleea Gr. Ghica Voda 41A , 700487 Iasi , Romania
| | - George-Theodor Stiubianu
- Department of Inorganic Polymers , “Petru Poni” Institute of Macromolecular Chemistry , Aleea Gr. Ghica Voda 41A , 700487 Iasi , Romania
| | - Adrian Bele
- Department of Inorganic Polymers , “Petru Poni” Institute of Macromolecular Chemistry , Aleea Gr. Ghica Voda 41A , 700487 Iasi , Romania
| | - Codrin Tugui
- Department of Inorganic Polymers , “Petru Poni” Institute of Macromolecular Chemistry , Aleea Gr. Ghica Voda 41A , 700487 Iasi , Romania
| | - Carmen Racles
- Department of Inorganic Polymers , “Petru Poni” Institute of Macromolecular Chemistry , Aleea Gr. Ghica Voda 41A , 700487 Iasi , Romania
| |
Collapse
|
7
|
Clark AT, Marchfield D, Cao Z, Dang T, Tang N, Gilbert D, Corbin EA, Buchanan KS, Cheng XM. The effect of polymer stiffness on magnetization reversal of magnetorheological elastomers. APL MATERIALS 2022; 10:041106. [PMID: 36861033 PMCID: PMC9974180 DOI: 10.1063/5.0086761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/03/2022] [Indexed: 06/18/2023]
Abstract
Ultrasoft magnetorheological elastomers (MREs) offer convenient real-time magnetic field control of mechanical properties that provides a means to mimic mechanical cues and regulators of cells in vitro. Here, we systematically investigate the effect of polymer stiffness on magnetization reversal of MREs using a combination of magnetometry measurements and computational modeling. Poly-dimethylsiloxane-based MREs with Young's moduli that range over two orders of magnitude were synthesized using commercial polymers Sylgard™ 527, Sylgard 184, and carbonyl iron powder. The magnetic hysteresis loops of the softer MREs exhibit a characteristic pinched loop shape with almost zero remanence and loop widening at intermediate fields that monotonically decreases with increasing polymer stiffness. A simple two-dipole model that incorporates magneto-mechanical coupling not only confirms that micrometer-scale particle motion along the applied magnetic field direction plays a defining role in the magnetic hysteresis of ultrasoft MREs but also reproduces the observed loop shapes and widening trends for MREs with varying polymer stiffnesses.
Collapse
Affiliation(s)
- Andy T. Clark
- Department of Physics, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, USA
| | - David Marchfield
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Zheng Cao
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Tong Dang
- Department of Physics, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, USA
| | - Nan Tang
- Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Dustin Gilbert
- Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Elise A. Corbin
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, USA
- Department of Material Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803, USA
| | - Kristen S. Buchanan
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Xuemei M. Cheng
- Department of Physics, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, USA
| |
Collapse
|
8
|
Lovšin M, Brandl D, Glavan G, Belyaeva IA, Cmok L, Čoga L, Kalin M, Shamonin M, Drevenšek-Olenik I. Reconfigurable Surface Micropatterns Based on the Magnetic Field-Induced Shape Memory Effect in Magnetoactive Elastomers. Polymers (Basel) 2021; 13:polym13244422. [PMID: 34960973 PMCID: PMC8708412 DOI: 10.3390/polym13244422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022] Open
Abstract
A surface relief grating with a period of 30 µm is embossed onto the surface of magnetoactive elastomer (MAE) samples in the presence of a moderate magnetic field of about 180 mT. The grating, which is represented as a set of parallel stripes with two different amplitude reflectivity coefficients, is detected via diffraction of a laser beam in the reflection configuration. Due to the magnetic-field-induced plasticity effect, the grating persists on the MAE surface for at least 90 h if the magnetic field remains present. When the magnetic field is removed, the diffraction efficiency vanishes in a few minutes. The described effect is much more pronounced in MAE samples with larger content of iron filler (80 wt%) than in the samples with lower content of iron filler (70 wt%). A simple theoretical model is proposed to describe the observed dependence of the diffraction efficiency on the applied magnetic field. Possible applications of MAEs as magnetically reconfigurable diffractive optical elements are discussed. It is proposed that the described experimental method can be used as a convenient tool for investigations of the dynamics of magnetically induced plasticity of MAEs on the micrometer scale.
Collapse
Affiliation(s)
- Matija Lovšin
- Department of Complex Matter, J. Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (M.L.); (L.C.)
| | - Dominik Brandl
- East Bavarian Centre for Intelligent Materials (EBACIM), Ostbayerische Technische Hochschule (OTH) Regensburg, Seybothstr. 2, 93053 Regensburg, Germany; (D.B.); (G.G.); (I.A.B.); (M.S.)
| | - Gašper Glavan
- East Bavarian Centre for Intelligent Materials (EBACIM), Ostbayerische Technische Hochschule (OTH) Regensburg, Seybothstr. 2, 93053 Regensburg, Germany; (D.B.); (G.G.); (I.A.B.); (M.S.)
| | - Inna A. Belyaeva
- East Bavarian Centre for Intelligent Materials (EBACIM), Ostbayerische Technische Hochschule (OTH) Regensburg, Seybothstr. 2, 93053 Regensburg, Germany; (D.B.); (G.G.); (I.A.B.); (M.S.)
| | - Luka Cmok
- Department of Complex Matter, J. Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (M.L.); (L.C.)
| | - Lucija Čoga
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia; (L.Č.); (M.K.)
| | - Mitjan Kalin
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia; (L.Č.); (M.K.)
| | - Mikhail Shamonin
- East Bavarian Centre for Intelligent Materials (EBACIM), Ostbayerische Technische Hochschule (OTH) Regensburg, Seybothstr. 2, 93053 Regensburg, Germany; (D.B.); (G.G.); (I.A.B.); (M.S.)
| | - Irena Drevenšek-Olenik
- Department of Complex Matter, J. Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (M.L.); (L.C.)
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
9
|
Chen S, Zhu M, Zhang Y, Dong S, Wang X. Magnetic-Responsive Superhydrophobic Surface of Magnetorheological Elastomers Mimicking from Lotus Leaves to Rose Petals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2312-2321. [PMID: 33544610 DOI: 10.1021/acs.langmuir.0c03122] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In nature, many plants have evolved various wettability surfaces to survive and thrive in diverse environments. For example, the superhydrophobic surface of lotus can keep itself clean, while the rose petals can retain droplets for a long time. The former is referred to the "lotus effect," and the latter is known as the "rose petal effect." This research proposes a method to fabricate magnetic-responsive superhydrophobic magnetorheological elastomers (MREs) which could reversibly and instantly transition their surface wetting state between the "lotus effect" and the "rose petal effect." These surfaces with controllable wettability could find applications in the manipulation of liquids in biological and chemical systems. The MREs are cured by applying a uniform magnetic field to form "mountain-like" microstructures on their surfaces. This initial surface is rough and exhibits the lotus leaf effect. Because of the nonuniform magnetically induced deformation, the surface micromorphology and roughness can be altered by an applied magnetic field. The state of water droplets on its surface is changed from the Wenzel state to the Cassie-Baxter (CB) state. Therefore, the proposed MRE surface could switch their dynamic wetting features between the "rose petals" and "lotus leaves" via a magnetic field. An experimental platform for the wetting features of MRE surfaces is established to characterize the dynamic behaviors of water drops on MREs under a magnetic field. A magneto-mechanic coupled model is proposed to interpret how the magnetic field influences the MRE surface as well as the droplet movement.
Collapse
Affiliation(s)
- Shiwei Chen
- Chongqing University of Science and Technologies, Chongqing 400030, China
- Institute of Advanced Manufacturing Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Changzhou, 213164, China
| | - Minghui Zhu
- Chongqing University of Science and Technologies, Chongqing 400030, China
| | - Yuanhao Zhang
- Chongqing University of Science and Technologies, Chongqing 400030, China
| | - Shuai Dong
- Institute of Advanced Manufacturing Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Changzhou, 213164, China
| | - Xiaojie Wang
- Institute of Advanced Manufacturing Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Changzhou, 213164, China
| |
Collapse
|
10
|
Borin D, Stepanov G. Magneto-mechanical properties of elastic hybrid composites. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2019-0126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Abstract
The paper gives an overview of tunable elastic magnetic composites based on silicon rubber matrix highly filled with a magnetic soft and hard filler. The magnetic soft phase, which is represented by iron microparticles, allows active control of the physical properties of the composites, while the magnetically hard phase (e.g. neodymium–iron–boron alloy microparticles) is mainly responsible for passive adjustment of the composite. The control is performed by the application of an external magnetic field in situ, and passive adjustment is performed by means of pre-magnetization in order to change material remanent magnetization, i.e. the initial state. The potential and limits of active control and passive tuning of these composites in terms of their magneto-mechanical behavior are presented and discussed.
Collapse
Affiliation(s)
- Dmitry Borin
- Institute of Mechatronic Engineering, Technische Universität Dresden , Dresden , 01062 Germany
| | | |
Collapse
|
11
|
Romeis D, Kostrov SA, Kramarenko EY, Stepanov GV, Shamonin M, Saphiannikova M. Magnetic-field-induced stress in confined magnetoactive elastomers. SOFT MATTER 2020; 16:9047-9058. [PMID: 32915184 DOI: 10.1039/d0sm01337d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present a theoretical approach for calculating the state of stress induced by a uniform magnetic field in confined magnetoactive elastomers of arbitrary shape. The theory explicitly includes the magnetic field generated by magnetizable spherical inclusions in the sample interior assuming a non-linear magnetization behavior. The initial spatial distribution of particles and its change in an external magnetic field are considered. This is achieved by the introduction of an effective demagnetizing factor where both the sample shape and the material microstructure are taken into account. Theoretical predictions are fitted to the stress data measured using a specifically designed experimental setup. It is shown that the theory enables the quantification of the effect of material microstructure upon introducing a specific microstructural factor and its derivative with respect to the extensional strain in the undeformed state. The experimentally observed differences between isotropic and anisotropic samples, compliant and stiff elastomer matrices are explained.
Collapse
Affiliation(s)
- D Romeis
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
| | - S A Kostrov
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - E Yu Kramarenko
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow 119991, Russia
| | - G V Stepanov
- State Scientific Center of the Russian Federation, Institute of Chemistry and Technology of Organoelement Compounds, Moscow 111123, Russia
| | - M Shamonin
- East Bavarian Centre for Intelligent Materials (EBACIM), Ostbayerische Technische Hochschule (OTH) Regensburg, 93053 Regensburg, Germany
| | - M Saphiannikova
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
| |
Collapse
|
12
|
Kostrov SA, Gorodov VV, Sokolov BO, Muzafarov AM, Kramarenko EY. Low-Modulus Elastomeric Matrices for Magnetoactive Composites with a High Magnetic Field Response. POLYMER SCIENCE SERIES A 2020. [DOI: 10.1134/s0965545x20040082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Nadzharyan TA, Stolbov OV, Raikher YL, Kramarenko EY. Field-induced surface deformation of magnetoactive elastomers with anisometric fillers: a single-particle model. SOFT MATTER 2019; 15:9507-9519. [PMID: 31709433 DOI: 10.1039/c9sm02090j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface relief of magnetoactive elastomers (MAEs) based on soft polymer matrices filled with anisometric magnetically hard fillers is studied theoretically in magnetic fields applied perpendicular to the MAE surface. A single-particle 2D cell model describing the rotation of one individual elliptical particle in a near-surface MAE layer is developed. The equilibrium rotation angle of particles is defined by a balance between Zeeman, magnetic anisotropy and elastic (generated in the polymer matrix) energy increments. The Stoner-Wohlfarth model is used to describe magnetic properties of the filler particles while the elastic energy as a function of the particle rotation angle is evaluated numerically using FEM simulations. A representative surface MAE system is constructed via superposition of single-particle cells with field-driven magnetic particles, and surface relief characteristics are derived for various sets of geometric and statistical parameters. Limitations of the proposed approach have been discussed.
Collapse
Affiliation(s)
- T A Nadzharyan
- Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia. and A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, 119991, Russia
| | - O V Stolbov
- Institute of Continuous Media Mechanics of the Ural Branch of Russian Academy of Science, Perm, 614013, Russia
| | - Yu L Raikher
- Institute of Continuous Media Mechanics of the Ural Branch of Russian Academy of Science, Perm, 614013, Russia
| | - E Yu Kramarenko
- Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia. and A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
14
|
Saveleva MS, Eftekhari K, Abalymov A, Douglas TEL, Volodkin D, Parakhonskiy BV, Skirtach AG. Hierarchy of Hybrid Materials-The Place of Inorganics- in-Organics in it, Their Composition and Applications. Front Chem 2019; 7:179. [PMID: 31019908 PMCID: PMC6459030 DOI: 10.3389/fchem.2019.00179] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/07/2019] [Indexed: 12/21/2022] Open
Abstract
Hybrid materials, or hybrids incorporating both organic and inorganic constituents, are emerging as a very potent and promising class of materials due to the diverse, but complementary nature of the properties inherent of these different classes of materials. The complementarity leads to a perfect synergy of properties of desired material and eventually an end-product. The diversity of resultant properties and materials used in the construction of hybrids, leads to a very broad range of application areas generated by engaging very different research communities. We provide here a general classification of hybrid materials, wherein organics-in-inorganics (inorganic materials modified by organic moieties) are distinguished from inorganics-in-organics (organic materials or matrices modified by inorganic constituents). In the former area, the surface functionalization of colloids is distinguished as a stand-alone sub-area. The latter area-functionalization of organic materials by inorganic additives-is the focus of the current review. Inorganic constituents, often in the form of small particles or structures, are made of minerals, clays, semiconductors, metals, carbons, and ceramics. They are shown to be incorporated into organic matrices, which can be distinguished as two classes: chemical and biological. Chemical organic matrices include coatings, vehicles and capsules assembled into: hydrogels, layer-by-layer assembly, polymer brushes, block co-polymers and other assemblies. Biological organic matrices encompass bio-molecules (lipids, polysaccharides, proteins and enzymes, and nucleic acids) as well as higher level organisms: cells, bacteria, and microorganisms. In addition to providing details of the above classification and analysis of the composition of hybrids, we also highlight some antagonistic yin-&-yang properties of organic and inorganic materials, review applications and provide an outlook to emerging trends.
Collapse
Affiliation(s)
- Mariia S. Saveleva
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Remote Controlled Theranostic Systems Lab, Educational Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov, Russia
| | - Karaneh Eftekhari
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Anatolii Abalymov
- Remote Controlled Theranostic Systems Lab, Educational Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov, Russia
| | - Timothy E. L. Douglas
- Engineering Department and Materials Science Institute (MSI), Lancaster University, Lancaster, United Kingdom
| | - Dmitry Volodkin
- School of Science & Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Bogdan V. Parakhonskiy
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Andre G. Skirtach
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Effect of Material Composition on Tunable Surface Roughness of Magnetoactive Elastomers. Polymers (Basel) 2019; 11:polym11040594. [PMID: 30960578 PMCID: PMC6524129 DOI: 10.3390/polym11040594] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 11/16/2022] Open
Abstract
We investigated magnetic-field-induced modifications of the surface roughness of magnetoactive elastomers (MAEs) with four material compositions incorporating two concentrations of ferromagnetic microparticles (70 wt% and 80 wt%) and exhibiting two shear storage moduli of the resulting composite material (about 10 kPa and 30 kPa). The analysis was primarily based on spread optical reflection measurements. The surfaces of all four materials were found to be very smooth in the absence of magnetic field (RMS roughness below 50 nm). A maximal field-induced roughness modification (approximately 1 μm/T) was observed for the softer material with the lower filler concentration, and a minimal modification (less than 50 nm/T) was observed for the harder material with the higher filler concentration. All four materials showed a significant decrease in the total optical reflectivity with an increasing magnetic field as well. This effect is attributed to the existence of a distinct surface layer that is depleted of microparticles in the absence of a magnetic field but becomes filled with particles in the presence of the field. We analyzed the temporal response of the reflective properties to the switching on and off of the magnetic field and found switching-on response times of around 0.1 s and switching-off response times in the range of 0.3–0.6 s. These observations provide new insight into the magnetic-field-induced surface restructuring of MAEs and may be useful for the development of magnetically reconfigurable elastomeric optical surfaces.
Collapse
|
16
|
Sánchez PA, Minina ES, Kantorovich SS, Kramarenko EY. Surface relief of magnetoactive elastomeric films in a homogeneous magnetic field: molecular dynamics simulations. SOFT MATTER 2019; 15:175-189. [PMID: 30452054 PMCID: PMC6335957 DOI: 10.1039/c8sm01850b] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The structure of a thin magnetoactive elastomeric (MAE) film adsorbed on a solid substrate is studied by molecular dynamics simulations. Within the adopted coarse-grained approach, a MAE film consists of magnetic particles modeled as soft-core spheres, carrying point dipoles, connected by elastic springs representing a polymer matrix. MAE films containing 20, 25 and 30 vol% of randomly distributed magnetic particles are simulated. Once a magnetic field is applied, the competition between dipolar, elastic and Zeeman forces leads to the restructuring of the layer. The distribution of the magnetic particles as well as elastic strains within the MAE films are calculated for various magnetic fields applied perpendicular to the film surface. It is shown that the surface roughness increases strongly with growing magnetic field. For a given magnetic field, the roughness is larger for the softer polymeric matrix and exhibits a nonmonotonic dependence on the magnetic particle concentration. The obtained results provide a better understanding of the MAE surface structuring as well as possible guidelines for fabrication of MAE films with a tunable surface topology.
Collapse
Affiliation(s)
- Pedro A. Sánchez
- University of Vienna
, Sensengasse 8
,
1090
, Vienna
, Austria
.
- Ural Federal University
, Lenin av. 51
,
620000
, Ekaterinburg
, Russian Federation
| | - Elena S. Minina
- University of Vienna
, Sensengasse 8
,
1090
, Vienna
, Austria
.
- Ural Federal University
, Lenin av. 51
,
620000
, Ekaterinburg
, Russian Federation
| | - Sofia S. Kantorovich
- University of Vienna
, Sensengasse 8
,
1090
, Vienna
, Austria
.
- Ural Federal University
, Lenin av. 51
,
620000
, Ekaterinburg
, Russian Federation
| | - Elena Yu. Kramarenko
- Lomonosov Moscow State University, Faculty of Physics
,
Leninskie Gory
, 1-2, 119991
, Russian Federation
.
- A.N. Nesmeyanov Institute of Organoelement Compounds of RAS
, Vavilova 28
,
119334
, Moscow
, Russian Federation
| |
Collapse
|
17
|
Tailoring Performance, Damping, and Surface Properties of Magnetorheological Elastomers via Particle-Grafting Technology. Polymers (Basel) 2018; 10:polym10121411. [PMID: 30961336 PMCID: PMC6401872 DOI: 10.3390/polym10121411] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 11/25/2022] Open
Abstract
A novel concept based on advanced particle-grafting technology to tailor performance, damping, and surface properties of the magnetorheological elastomers (MREs) is introduced. In this work, the carbonyl iron (CI) particles grafted with poly(trimethylsilyloxyethyl methacrylate) (PHEMATMS) of two different molecular weights were prepared via surface-initiated atom transfer radical polymerization and the relations between the PHEMATMS chain lengths and the MREs properties were investigated. The results show that the magnetorheological performance and damping capability were remarkably influenced by different interaction between polydimethylsiloxane chains as a matrix and PHEMATMS grafts due to their different length. The MRE containing CI grafted with PHEMATMS of higher molecular weight exhibited a greater plasticizing effect and hence both a higher relative magnetorheological effect and enhanced damping capability were observed. Besides bulk MRE properties, the PHEMATMS modifications influenced also field-induced surface activity of the MRE sheets, which manifested as notable changes in surface roughness.
Collapse
|
18
|
Vidiasheva IV, Abalymov AA, Kurochkin MA, Mayorova OA, Lomova MV, German SV, Khalenkow DN, Zharkov MN, Gorin DA, Skirtach AG, Tuchin VV, Sukhorukov GB. Transfer of cells with uptaken nanocomposite, magnetite-nanoparticle functionalized capsules with electromagnetic tweezers. Biomater Sci 2018; 6:2219-2229. [DOI: 10.1039/c8bm00479j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Targeted cell delivery via electromagnetic tweezers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dmitry A. Gorin
- Saratov State University
- Saratov
- Russia
- Skolkovo Institute of Science and Technology
- Moscow
| | | | - Valery V. Tuchin
- Saratov State University
- Saratov
- Russia
- Tomsk State University
- Tomsk
| | - Gleb B. Sukhorukov
- Saratov State University
- Saratov
- Russia
- Queen Mary University of London
- England
| |
Collapse
|