1
|
Liu Y, Dou Q. Improving the compatibility and toughness of sustainable polylactide/poly(butylene adipate-co-terephthalate) blends by incorporation of peroxide and diacrylate. Int J Biol Macromol 2024; 259:129355. [PMID: 38218295 DOI: 10.1016/j.ijbiomac.2024.129355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/27/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Polylactide/poly(butylene adipate-co-terephthalate) (PLA/PBAT) blends were compatibilized using dicumyl peroxide (DCP) and poly(ethylene glycol) 600 diacrylate (PEG600DA) through a one-step melt-blending process. The compatibility and performance of these blends were subsequently characterized. The results showed that grafts formed "in situ" effectively improved the compatibility and interfacial adhesion between PLA and PBAT phases. Melt viscosity and elasticity of both the PLA/PBAT/DCP and PLA/PBAT/DCP/PEG600DA blends evinced significant increases. Compared to PLA alone, both cold and melt crystallization abilities of the PLA/PBAT/DCP/PEG600DA blends were enhanced, with crystallinities increasing by 5 % - 10 %. Furthermore, the thermal stability, as well as hydrophobicity and oleophobicity of the compatibilized blends improved. In comparison with PLA, the elongation at break and notched impact strength for the PLA/PBAT/DCP/PEG600DA (60/40/0.1/4) blend achieved increases of 290 % and 44.23 kJ/m2, corresponding to improvements of 279 % and 1457 %, respectively. The toughening effect was substantially influenced by the ductile matrix (either a co-continuous phase or a flexible PBAT matrix) in addition to the strong interfacial adhesion and fine phase domain. These eco-friendly blends exhibit considerable potential for packaging articles and 3D printing products owing to their excellent mechanical properties and enhanced melt rheology.
Collapse
Affiliation(s)
- Yuanyuan Liu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Qiang Dou
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
2
|
Tunsound V, Krasian T, Daranarong D, Punyodom W, Jantanasakulwong K, Ross S, Tipduangta P, Rachtanapun P, Ross G, Jantrawut P, Amnuaypanich S, Worajittiphon P. Enhanced mechanical properties and biocompatibility of bacterial cellulose composite films with inclusion of 2D MoS 2 and helical carbon nanotubes for use as antimicrobial drug carriers. Int J Biol Macromol 2023; 253:126712. [PMID: 37673164 DOI: 10.1016/j.ijbiomac.2023.126712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/08/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Bacterial cellulose (BC) is a biomaterial being investigated for a range of applications. Herein, BC films derived from nata de coco pieces are reinforced by two-dimensional molybdenum disulfide (MoS2) and helical carbon nanotubes (HCNTs) to enhance their tensile mechanical properties, and the biocompatibility of the BC composite films is demonstrated. A simple preparation is presented using a kitchen blender to disperse and blend the BC fibers and additives in a common fabrication medium, followed by vacuum filtration. The mechanical properties of the BC/MoS2/HCNTs composite films are enhanced due to the synergistic effect of MoS2 and HCNTs embedded in the BC films. The MoS2/HCNTs binary additive (1 phr) is capable of increasing the strength and Young's modulus by 148 % and 333 %, respectively, relative to the BC films. The cell cytotoxicity of the BC/MoS2/HCNTs films was assessed using an MTT assay. The composite films are biocompatible with a cell viability of L929 fibroblast cells >70 %, coupled with observations of direct cell attachment on the films. The composite films also exhibited good performance in absorbing and releasing gentamicin antibiotics to inhibit the growth of Escherichia coli and Staphylococcus aureus. The BC/MoS2/HCNTs films are thus potential BC-based candidates as biocompatible robust antibiotic carriers.
Collapse
Affiliation(s)
- Vasuphat Tunsound
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tharnthip Krasian
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Donraporn Daranarong
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Winita Punyodom
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kittisak Jantanasakulwong
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Sukunya Ross
- Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Pratchaya Tipduangta
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornchai Rachtanapun
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Gareth Ross
- Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Pensak Jantrawut
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sittipong Amnuaypanich
- Department of Chemistry and the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patnarin Worajittiphon
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
3
|
Worajittiphon P, Santiwongsathit N, Bai SL, Daranarong D, Punyodom W, Sriyai M, Jantanasakulwong K, Rachtanapun P, Ross S, Tipduangta P, Srithep Y, Amnuaypanich S. Carboxymethyl cellulose/poly(vinyl alcohol) blended films reinforced by buckypapers of carbon nanotubes and 2D material (MoS 2): Enhancing mechanical strength, toughness, and barrier properties. Int J Biol Macromol 2023; 242:124726. [PMID: 37172702 DOI: 10.1016/j.ijbiomac.2023.124726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/23/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
Plastic waste is one cause of climate change. To solve this problem, packaging films are increasingly produced from biodegradable polymers. Eco-friendly carboxymethyl cellulose and its blends have been developed for such a solution. Herein, a unique strategy is demonstrated to improve the mechanical and barrier properties of carboxymethyl cellulose/poly(vinyl alcohol) (CMC/PVA) blended films for the packaging of nonfood dried products. The blended films were impregnated with buckypapers containing different combinations of multiwalled carbon nanotubes, two-dimensional molybdenum disulfide (2D MoS2) nanoplatelets, and helical carbon nanotubes (HCNTs). Compared to the blend, the polymer composite films exhibit significant increases in tensile strength (~105 %, from 25.53 to 52.41 MPa), Young's modulus (~297 %, from 155.48 to 617.48 MPa), and toughness (~46 %, from 6.69 to 9.75 MJ m-3). Polymer composite films containing HCNTs in buckypapers offer the highest toughness. For barrier properties, the polymer composite films are opaque. The water vapor transmission rate of the blended films decreases (~52 %, from 13.09 to 6.25 g h-1 m-2). Moreover, the maximum thermal-degradation temperature of the blend rises from 296 to 301 °C, especially for the polymer composite films with buckypapers containing MoS2 nanosheets that contribute to the barrier effect for both water vapor and thermal-decomposition gas molecules.
Collapse
Affiliation(s)
- Patnarin Worajittiphon
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand.
| | | | - Shu-Lin Bai
- School of Materials Science and Engineering, HEDPS/Center for Applied Physics and Technology, Peking University, Beijing 100871, China
| | - Donraporn Daranarong
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Winita Punyodom
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Montira Sriyai
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Bioplastics Production Laboratory for Medical Applications, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kittisak Jantanasakulwong
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pornchai Rachtanapun
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Sukunya Ross
- Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Pratchaya Tipduangta
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yottha Srithep
- Manufacturing and Materials Research Unit, Department of Manufacturing Engineering, Faculty of Engineering, Mahasarakham University, Mahasarakham 44150, Thailand
| | - Sittipong Amnuaypanich
- Department of Chemistry and the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
4
|
Dadashi P, Babaei A, Khoshnood M. Investigating the role of PA6/GO interactions on the morphological, rheological, and mechanical properties of PA6/ABS/GO nanocomposites. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2133617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- P. Dadashi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - A. Babaei
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
| | - M. Khoshnood
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|