1
|
Tan Y, Wang J, Zhan L, Yang H, Gong Y. Removal of Cr(VI) from aqueous solution using ball mill modified biochar: multivariate modeling, optimization and experimental study. Sci Rep 2024; 14:4853. [PMID: 38418490 PMCID: PMC10901879 DOI: 10.1038/s41598-024-55520-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024] Open
Abstract
Chromium (Cr(VI)) pollution has attracted wide attention due to its high toxicity and carcinogenicity. Modified biochar has been widely used in the removal of Cr(VI) in water as an efficient and green adsorbent. However, the existing biochar prepared by chemical modification is usually complicated in process, high in cost, and has secondary pollution, which limits its application. It is urgent to explore modified biochar with simple process, low cost and environmental friendliness. Therefore, ball milling wheat straw biochar (BM-WB) was prepared by ball milling technology in this paper. The adsorption characteristics and mechanism of Cr(VI) removal by BM-WB were analyzed by functional group characterization, adsorption model and response surface method. The results showed that ball milling effectively reduced the particle size of biochar, increased the specific surface area, and more importantly, enhanced the content of oxygen-containing functional groups on the surface of biochar. After ball milling, the adsorption capacity of Cr(VI) increased by 3.5-9.1 times, and the adsorption capacity reached 52.21 mg/g. The adsorption behavior of Cr(VI) follows the pseudo-second-order kinetics and Langmuir isotherm adsorption model rate. Moreover, the Cr(VI) adsorption process of BM-WB is endothermic and spontaneous. Under the optimized conditions of pH 2, temperature 45 °C, and adsorbent dosage 0.1 g, the removal rate of Cr(VI) in the solution can reach 100%. The mechanism of Cr(VI) adsorption by BM-WB is mainly based on electrostatic attraction, redox and complexation. Therefore, ball milled biochar is a cheap, simple and efficient Cr(VI) removal material, which has a good application prospect in the field of remediation of Cr(VI) pollution in water.
Collapse
Affiliation(s)
- Yunfeng Tan
- College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China.
| | - Jinxia Wang
- College of Resources and Safety, Chongqing Vocational Institute of Engineering, Chongqing, 402260, China.
| | - Lingling Zhan
- General College, Chongqing Vocational Institute of Engineering, Chongqing, 402260, China
| | - Hongjun Yang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yinchun Gong
- Chongqing Zhihai Technology Co., Ltd, Chongqing, 402260, China
| |
Collapse
|
2
|
Ali A, Khan S, Garg U, Luqman M, Bhagwath SS, Azim Y. Chitosan-based hydrogel system for efficient removal of Cu[II] and sustainable utilization of spent adsorbent as a catalyst for environmental applications. Int J Biol Macromol 2023; 247:125805. [PMID: 37453639 DOI: 10.1016/j.ijbiomac.2023.125805] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
The growing requirement for clean potable water requires sustainable methods of eliminating heavy metal ions and other organic contaminants. Herein, we synthesized a novel dual-purpose magnetically separable chitosan-based hydrogel system (CSGO-R@IO) that can efficiently remove toxic Cu2+ pollutants from water. FT-IR, XRD, SEM-EDX, VSM, XPS analyses were used to characterize the synthesized hydrogel. The CSGO-R@IO hydrogel showed high swelling capacity (1036.06 %), prominent adsorption capacity for Cu2+ ions (119.5 mg/g), and good recyclability up to four cycles. The adsorption data of Cu+2 ions on hydrogel fitted better to the Langmuir isotherm model (R2 = 0.9942), indicating spontaneous monolayer adsorption of Cu2+ ions on a homogenous surface. The adsorption kinetic studies fitted better with the pseudo-second-order model (R2 = 0.9992), suggesting that the adsorption process was controlled by chemisorption. We also showed a sustainable way to convert harmful Cu2+ pollutants into valuable Cu nanoparticles for catalysis, and Cu nanoparticles loaded hydrogel (CSGO-R@IO/Cu) had high catalytic activity. Hence, building attractive multipurpose hydrogel systems will give us new ideas about how to design and use new adsorbents to clean water in real life. They will also help in recycle metals (copper and maybe others) to conserve resources.
Collapse
Affiliation(s)
- Anwer Ali
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Faculty of Engineering & Technology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, Ha'il University, Ha'il 2440, Saudi Arabia.
| | - Utsav Garg
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Faculty of Engineering & Technology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohammad Luqman
- Department of Chemical Engineering, College of Engineering, Taibah University, 4430, Yanbu 46421, Saudi Arabia
| | - Sundeep S Bhagwath
- Department of Basic Dental and Medical Sciences, College of Dentistry, Ha'il University, Ha'il 2440, Saudi Arabia
| | - Yasser Azim
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Faculty of Engineering & Technology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| |
Collapse
|
3
|
Arni LA, Hapiz A, Abdulhameed AS, Khadiran T, ALOthman ZA, Wilson LD, Jawad AH. Design of separable magnetic chitosan grafted-benzaldehyde for azo dye removal via a response surface methodology: Characterization and adsorption mechanism. Int J Biol Macromol 2023:125086. [PMID: 37247708 DOI: 10.1016/j.ijbiomac.2023.125086] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
In this study, a magnetic chitosan grafted-benzaldehyde (CS-BD/Fe3O4) was hydrothermally prepared using benzaldehyde as a grafting agent to produce a promising adsorbent for the removal of acid red 88 (AR88) dye. The CS-BD/Fe3O4 was characterized by infrared spectroscopy, surface area analysis, scanning electron microscopy-energy dispersive X-ray, vibrating sample magnetometry, powder X-ray diffraction, CHN elemental analysis, and point of zero charge (pHPZC). The Box-Behnken design (BBD) was adopted to study the role of variables that influence AR88 dye adsorption (A: CS-BD/Fe3O4 dose (0.02-0.1 g), B: pH (4-10), and time C: (10-90 min)). The ANOVA results of the BBD model indicated that the F-value for the AR88 removal was 22.19 %, with the corresponding p-value of 0.0002. The adsorption profiles at equilibrium and dynamic conditions reveal that the Temkin model and the pseudo-first-order kinetics model provide an adequate description of the isotherm results, where the maximum adsorption capacity (qmax) with the AR88 dye was 154.1 mg/g. Several mechanisms, including electrostatic attraction, n-π interaction, π-π interaction, and hydrogen bonding, regulate the adsorption of AR88 dyes onto CS-BD/Fe3O4 surface. As a result, this research indicates that the CS-BD/Fe3O4 can be utilized as an effective and promising bio-adsorbent for azo dye removal from contaminated wastewater.
Collapse
Affiliation(s)
- Laili Azmiati Arni
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ahmad Hapiz
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ahmed Saud Abdulhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Anbar, Ramadi, Iraq
| | - Tumirah Khadiran
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor, Malaysia
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| |
Collapse
|
4
|
Preparation of metal organic frameworks modified chitosan composite with high capacity for Hg(II) adsorption. Int J Biol Macromol 2023; 232:123329. [PMID: 36669630 DOI: 10.1016/j.ijbiomac.2023.123329] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/26/2022] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
In this study, a novel modified chitosan composite adsorbent (UNCS) was prepared by crosslinking between chitosan and metal organic frameworks (MOFs) material UiO-66-NH2 using epichlorohydrin as crosslinker. The influence of the prepared conditions was investigated. The structure and morphology of the composite were characterized by FT-IR, XRD, SEM, TGA, BET and zeta potential analysis. Effects of different variables for adsorption of Hg(II) on this adsorbent were explored. The kinetic studies indicated that the adsorption process followed the pseudo-second-order kinetic model and the adsorption equilibrium could be reached within 2 h. The adsorption was mainly controlled by chemical process. Adsorption isothermal studies illustrated that the adsorption fitted Langmuir isotherm model, implying the homogeneous adsorption on the surface of the adsorbent. The adsorbent exhibited high uptake and the maximum capacity from Langmuir model could reach 896.8 mg g-1 at pH 6. Thermodynamic studies showed the spontaneous nature and exothermic nature of the adsorption process. Additionally, the removal of Hg(II) on UNCS could achieve over 90 %. The adsorption-desorption cycled experiments indicated the appropriate reusability of the adsorbent. Hence, this adsorbent would be promising for the removal of Hg(II) from wastewater.
Collapse
|
5
|
Shahinpour A, Tanhaei B, Ayati A, Beiki H, Sillanpää M. Binary dyes adsorption onto novel designed magnetic clay-biopolymer hydrogel involves characterization and adsorption performance: Kinetic, equilibrium, thermodynamic, and adsorption mechanism. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
6
|
Dorri H, Zeraatkar Moghaddam A, Ghiamati E, Barikbin B. A comprehensive study on the adsorption-photocatalytic processes using CoFe 2O 4/SiO 2/MnO 2 magnetic nanocomposite as a novel photo-catalyst for removal of Cr (VI) under simulated sunlight: Isotherm, kinetic and thermodynamic studies. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:147-165. [PMID: 35669821 PMCID: PMC9163262 DOI: 10.1007/s40201-021-00763-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/24/2021] [Indexed: 06/15/2023]
Abstract
PURPOSE The present study aimed to investigate the efficiency of CoFe2O4/SiO2/flower-like MnO2 nanoparticles as a catalyst for Cr (VI) adsorption-photocatalytic processes. METHODS The magnetic nanocomposite used was first synthesized and then characterized using TEM, SEM, EDX, XRD, FTIR, XRF and BET advanced techniques. The removal of the Cr (VI) was performed through a batch adsorption approach and the effects of sample pH (A; 2-6), initial chromate concentration (B; 50-100 ppm) and adsorbent weight to sample volume ratio (C; 1-3 mg ml-1), hole scavenger (0.1 -0.3%w/v) and time (E; 30-60 min), to evaluate the individual and interactive effects under ultraviolet light conditions, were also studied by the central composite design in the photocatalytic process of adsorption. RESULTS The adsorption-photocatalytic performance of the CoFe2O4/SiO2/MnO2 composite was high in which 98.1% of Cr(VI) after 30 min of photocatalytic treatment in optimum conditions (i.e. pH = 3, catalyst concentration = 2 mg L-1, Cr(VI) concentration = 200 mg L-1, and hole scavenger concentration = 0.4% (w/ v), At laboratory temperature, speed = 400 rpm, under UV radiation).Under optimum conditions, Cr(VI) reductive followed pseudo-second-order kinetics and followed the Langmuir and Temkin isotherms, also, positive value of ΔH° indicates endothermic nature. CONCLUSIONS The results showed that the synthesized CoFe2O4/SiO2/MnO2 magnetic nanocomposite holds a great potential for use as a photocatalyst to remove Cr (VI) in adsorption reactions. It can be used as an effective catalyst in the eradication of Cr (VI) wastewater. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40201-021-00763-1.
Collapse
Affiliation(s)
- Hadigheh Dorri
- Department of Chemistry, College of Sciences, University of Birjand, 97175‐615 Birjand, Iran
| | - Ali Zeraatkar Moghaddam
- Department of Chemistry, College of Sciences, University of Birjand, 97175‐615 Birjand, Iran
| | - Ebrahim Ghiamati
- Department of Chemistry, College of Sciences, University of Birjand, 97175‐615 Birjand, Iran
| | - Behnam Barikbin
- Social Determinants of Health Research Center, Birjand University of Medical Sciences, 97175-379 Birjand, Iran
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Tabrizi SH, Tanhaei B, Ayati A, Ranjbari S. Substantial improvement in the adsorption behavior of montmorillonite toward Tartrazine through hexadecylamine impregnation. ENVIRONMENTAL RESEARCH 2022; 204:111965. [PMID: 34453900 DOI: 10.1016/j.envres.2021.111965] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
In the present work, the surface of montmorillonite K10 was successfully modified by hexadecylamine surfactant (Mt-HDA) and its intercalation and characteristics were assessed by XRD, FTIR, SEM, EDX and BET methods. Also, its adsorption performance was systematically examined in the removal of Tartrazine (TZ), as a sulfonated azo dye model, from aqueous phase. Our results showed that the HDA modification remarkably improved the adsorption ability of montmorillonite toward TZ molecules. The highest adsorption efficiency was achieved >98% at the pH range of 4-6 within a fast process (less than 30 min). The maximum adsorption capacity Mt-HDA toward TZ molecules was found to be ~59 mg/g at 45 °C. The kinetic study indicated that the adsorption kinetic follows pseudo-second-order model, which shows the chemisorption process between Mt-HDA and TZ molecules. Besides, the adsorption isotherm showed the monolayer coverage of Mt-HDA surface adsorption sites, which was fitted with the Langmuir isotherm model in an exothermic process. The adsorption mechanism was studied.
Collapse
Affiliation(s)
| | - Bahareh Tanhaei
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Ali Ayati
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Sara Ranjbari
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| |
Collapse
|
8
|
One-Step Fabrication of Amino-Functionalized Fe3O4@SiO2 Core-Shell Magnetic Nanoparticles as a Potential Novel Platform for Removal of Cadmium (II) from Aqueous Solution. SUSTAINABILITY 2022. [DOI: 10.3390/su14042290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fe3O4@SiO2-NH2 core-shell magnetic nanoparticles were developed by a rapid one-step precipitation route followed by reverse microemulsion and amine functionalization. In this study, an Fe3O4@SiO2-NH2 nanoparticle was used to evaluate its adsorption efficiency for the treatment of a synthetic solution of Cd(II) ion. The structural and physicochemical properties of Fe3O4@SiO2-NH2 nanoparticles were characterized by XRD, SEM-EDAX, TEM, FTIR and TGA. From the TEM analysis, the morphology of Fe3O4@SiO2-NH2 was found as 100–300 nm. In TGA, the first weight loss was noticed between 373 and 573 K, the second was between 673 and 773 K and the final weight loss took place above 773 K. Batch experimental tests, such as pH, dosage of Fe3O4@SiO2-NH2, Cd(II) ion concentration, temperature as well as interaction time, were conducted and evaluated. Experimental study data were used for the non-linear forms exhibited by isotherms and kinetics of the sorption procedure. The equilibrium adsorption observations were adequately combined with pseudo-first-order kinetics as well as Freundlich isotherm. Monolayer maximum adsorption capacity was found to be 40.02 mg/g, recorded at pH 6 with an interaction time of 30 min, temperature of 303 K and sorbent dose of 2.0 g/L. The thermodynamic study indicated that the adsorption process was an exothermic, spontaneous reaction (−∆oo = −15.46–7.81 (kJ/mol)). The as-synthesized sorbent had excellent recyclability, and its adsorption efficiency was maintained after five cycles of reuse. The findings of the study exhibited the magnetic Fe3O4@SiO2-NH2-nanoparticle as an alternative effective adsorbent in eradicating Cd(II) ions from aqueous solution.
Collapse
|
9
|
Karimi F, Ayati A, Tanhaei B, Sanati AL, Afshar S, Kardan A, Dabirifar Z, Karaman C. Removal of metal ions using a new magnetic chitosan nano-bio-adsorbent; A powerful approach in water treatment. ENVIRONMENTAL RESEARCH 2022; 203:111753. [PMID: 34331923 DOI: 10.1016/j.envres.2021.111753] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 05/02/2023]
Abstract
In this study, a magnetic chitosan/Al2O3/Fe3O4 (M-Cs) nanocomposite was developed by ethylenediaminetetraacetic acid (EDTA) functionalization to enhance its adsorption behavior for the removal of Cd(II), Cu(II) and Zn(II) metal ions from aqueous solution. The results revealed that the EDTA functionalization of M-Cs increased its adsorption capacity ~9.1, ~5.6 and ~14.3 times toward Cu, Cd and Zn ions. The maximum adsorption capacity followed the order of Cd(II) > Cu(II) > Zn(II) and the maximum adsorption efficiency was achieved at pH of 5.3 with the removal percentage of 99.98, 93.69 and 83.81 %, respectively, for the removal of Cu, Cd and Zn ions. The metal ions adsorption kinetic obeyed pseudo-second-order equation and the Langmuir isothermal was found the most fitted model for their adsorption isothermal experimental data. In addition, the thermodynamic study illustrated that the adsorption process was exothermic and spontaneous in nature.
Collapse
Affiliation(s)
- Fatemeh Karimi
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Ali Ayati
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Bahareh Tanhaei
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Afsaneh L Sanati
- Institute of Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, Polo II, 3030-290, Coimbra, Portugal
| | - Safoora Afshar
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Alireza Kardan
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Zeynab Dabirifar
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Ceren Karaman
- Akdeniz University, Department of Electricity and Energy, Antalya, 07070, Turkey
| |
Collapse
|
10
|
Rigoletto DM, Calza P, Gaggero E, Laurenti DE. Hybrid materials for the removal of emerging pollutants in water: classification, synthesis, and properties. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
11
|
Exploration on Optimized Control Way of D-Amino Acid for Efficiently Mitigating Membrane Biofouling of Membrane Bioreactor. MEMBRANES 2021; 11:membranes11080612. [PMID: 34436375 PMCID: PMC8401574 DOI: 10.3390/membranes11080612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022]
Abstract
The thorny issue of membrane biofouling in membrane bioreactors (MBR) calls for new effective control measures. Herein, D-amino acid (DAA) was employed to mediate MBR membrane biofouling by inhibiting biofilm information and disintegrating formed biofilm. Different DAA control ways involving membrane property, DAA-adding timing, and DAA-control mode were explored through experiments and the multiple linear regression model and the response surface methodology. The optimized DAA control ways were acquired, involving DAA used as an active agent, and the DAA-adding timing of 4 h cultured before running, as well as both hydrophilic and hydrophobic membrane, resulting in an approximately 40.24% decrease in the membrane biofouling rate in comparison with the conventional MBR. DAA is an efficient membrane biofouling mediating approach for MBR under optimized control ways combination and a facile solution for solving membrane biofouling in actual membrane systems.
Collapse
|
12
|
Recent advances in removal techniques of Cr(VI) toxic ion from aqueous solution: A comprehensive review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115062] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Farrokhi A, Bivareh F, Dejbakhshpour S, Moghaddam AZ. Insight into the photocatalytic properties of phosphonate‐based metal–organic frameworks for reduction of Cr (VI) and Synergistic elimination of organic dyes under natural sunlight. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alireza Farrokhi
- Department of Chemistry, Faculty of Science University of Birjand Birjand 97179‐414 Iran
| | - Farzaneh Bivareh
- Department of Chemistry, Faculty of Science University of Birjand Birjand 97179‐414 Iran
| | - Saeideh Dejbakhshpour
- Department of Chemistry, Faculty of Science University of Birjand Birjand 97179‐414 Iran
| | | |
Collapse
|
14
|
Ranjbari S, Tanhaei B, Ayati A, Khadempir S, Sillanpää M. Efficient tetracycline adsorptive removal using tricaprylmethylammonium chloride conjugated chitosan hydrogel beads: Mechanism, kinetic, isotherms and thermodynamic study. Int J Biol Macromol 2020; 155:421-429. [DOI: 10.1016/j.ijbiomac.2020.03.188] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 01/11/2023]
|
15
|
Yu S, Cui J, Wang J, Zhong C, Wang X, Wang N. Facile fabrication of Cu(II) coordinated chitosan-based magnetic material for effective adsorption of reactive brilliant red from aqueous solution. Int J Biol Macromol 2020; 149:562-571. [DOI: 10.1016/j.ijbiomac.2020.01.285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 10/25/2022]
|