1
|
Molecular Organization in Exponentially Growing Multilayer Thin Films Assembled with Polyelectrolytes and Clay. Polymers (Basel) 2022; 14:polym14204333. [PMID: 36297911 PMCID: PMC9607186 DOI: 10.3390/polym14204333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Multilayer thin film assembly by the layer-by-layer (LbL) technique offers an inexpensive and versatile route for the synthesis of functional nanomaterials. In the case of polymer-clay systems, however, the technique faces the challenges of low clay loading and lack of tunability of the film characteristics. This is addressed in the present work that achieves exponential growth in clay-containing polyelectrolyte films having high clay loading and tailored properties. Our approach involves the incorporation of a weak polyelectrolyte and a clay with relatively high charge density and small particle size. The system of investigation comprises poly(diallyldimethylammonium chloride) (PDDA) as the polycation and laponite clay and poly(acrylic acid) (PAA) or poly(sodium-4-styrene sulfonate) (PSS) as polyanions that are used alternately to create multilayers. Successful high clay loading and exponential growth were achieved by two different approaches of polyanion incorporation in the multilayers. A progressive increase in the degree of ionization of PAA was shown to contribute to the exponential growth. Our findings also include novel pathways to manipulate thickness, surface topography, and clay content. The strategy presented here can lead to novel approaches to fabricate tailor-made nanomaterials for distinct applications.
Collapse
|
2
|
Howard MT, Wang S, Berger AG, Martin JR, Jalili-Firoozinezhad S, Padera RF, Hammond PT. Sustained release of BMP-2 using self-assembled layer-by-layer film-coated implants enhances bone regeneration over burst release. Biomaterials 2022; 288:121721. [PMID: 35981926 PMCID: PMC10396073 DOI: 10.1016/j.biomaterials.2022.121721] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/08/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022]
Abstract
Current clinical products delivering the osteogenic growth factor bone morphogenetic protein 2 (BMP-2) for bone regeneration have been plagued by safety concerns due to a high incidence of off-target effects resulting from bolus release and supraphysiological doses. Layer-by-layer (LbL) film deposition offers the opportunity to coat bone defect-relevant substrates with thin films containing proteins and other therapeutics; however, control of release kinetics is often hampered by interlayer diffusion of drugs throughout the film during assembly, which causes burst drug release. In this work, we present the design of different laponite clay diffusional barrier layer architectures in self-assembled LbL films to modulate the release kinetics of BMP-2 from the surface of a biodegradable implant. Release kinetics were tuned by incorporating laponite in different film arrangements and with varying deposition techniques to achieve release of BMP-2 over 2 days, 4 days, 14 days, and 30 days. Delivery of a low dose (0.5 μg) of BMP-2 over 2 days and 30 days using these LbL film architectures was then compared in an in vivo rat critical size calvarial defect model to determine the effect of BMP-2 release kinetics on bone regeneration. After 6 weeks, sustained release of BMP-2 over 30 days induced 3.7 times higher bone volume and 7.4 times higher bone mineral density as compared with 2-day release of BMP-2, which did not induce more bone growth than the uncoated scaffold control. These findings represent a crucial step in the understanding of how BMP-2 release kinetics influence treatment efficacy and underscore the necessity to optimize protein delivery methods in clinical formulations for bone regeneration. This work could be applied to the delivery of other therapeutic proteins for which careful tuning of the release rate is a key optimization parameter.
Collapse
Affiliation(s)
- MayLin T Howard
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| | - Sheryl Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| | - Adam G Berger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| | - John R Martin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| | - Sasan Jalili-Firoozinezhad
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| | - Robert F Padera
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02215, United States.
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| |
Collapse
|
4
|
Dong J, Cheng Z, Tan S, Zhu Q. Clay nanoparticles as pharmaceutical carriers in drug delivery systems. Expert Opin Drug Deliv 2020; 18:695-714. [PMID: 33301349 DOI: 10.1080/17425247.2021.1862792] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Clay minerals are a class of silicates with chemical inertness, colloid, and thixotropy, which have excellent physicochemical properties, good biocompatibility, low toxicity, and have high application potential in biomedical fields. These inorganic materials have been widely used in pharmaceutical excipients and active substances. In recent years, nanoclay mineral materials have been used as drug vehicles for the delivery of a variety of drugs based on their broad specific surface area, rich porosity, diverse morphology, good adsorption performance, and high ion exchange capacity. AREAS COVERED This review introduces the structures, properties, and applications of various common natural and synthetic nanoclay materials as drug carriers. Natural nanoclays have different morphologies including nanoplates, nanotubes, and nanofibers. Synthetic materials have controllable sizes and flexible structures, where mesoporous silica nanoparticles, laponite, and imogolite are typical ones. These inorganic nanoparticles are often linked to polymers to form multifunctional drug delivery systems for better pharmaceutical performance. EXPERT OPINION The clay nanomaterials have typical properties, including enhanced solubility of insoluble drugs, targeting therapeutic sites, controlled release, and stimulation of responsive drug delivery systems.
Collapse
Affiliation(s)
- Jiani Dong
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Zeneng Cheng
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Songwen Tan
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Qubo Zhu
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Bataglioli RA, Rocha Neto JB, Leão BS, Germiniani LG, Taketa TB, Beppu MM. Interplay of the Assembly Conditions on Drug Transport Mechanisms in Polyelectrolyte Multilayer Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12532-12544. [PMID: 33064494 PMCID: PMC7660939 DOI: 10.1021/acs.langmuir.0c01980] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/03/2020] [Indexed: 05/06/2023]
Abstract
The layer-by-layer film deposition is a suitable strategy for the design and functionalization of drug carriers with superior performance, which still lacks information describing the influence of assembly conditions on the mechanisms governing the drug release process. Herein, traditional poly(acrylic acid)/poly(allylamine) polyelectrolyte multilayers (PEM) were explored as a platform to study the influence of the assembly conditions such as pH, drug loading method, and capping layer deposition on the mechanisms that control the release of calcein, the chosen model drug, from PEM. Films with 20-40 bilayers were assembled at pH 4.5 or 8.8, and the drug loading process was carried out during- or post-film assembly. Release data were fitted to three release models, namely, Higuchi, Ritger-Peppas, and Berens-Hopfenberg, to investigate the mechanism governing the drug transport, such as the apparent diffusion and the relaxation time. The postassembly drug loading method leads to a higher drug loading capacity than the during-assembly method, attributed to the washing out of calcein during film assembly steps in the latter method. Higuchi's and Ritger-Peppas' model analyses indicate that the release kinetic constant increased with the number of bilayers for the postassembly method. The opposite trend is observed for the during-assembly method. The Berens-Hopfenberg release model enabled the decoupling of each drug transport mechanism's contribution, indicating the increase of the diffusion contribution with the number of bilayers for the postassembly method at pH 4.5 and the increase of the polymer relaxation contribution for the during-assembly method at pH 8.8. Deborah's number, which represents the ratio of the polymer relaxation time to the diffusion time, follows the trends observed for the relaxation contribution for the conditions investigated. The deposition of the capping phospholipid layer over the payload also favored the polymer relaxation contribution in the drug release, featuring new strategies to investigate the drug release in PEM.
Collapse
Affiliation(s)
- Rogério A. Bataglioli
- School of Chemical Engineering, University
of Campinas, Avenida Albert Einstein 500, 13083-852 Campinas, SP, Brazil
| | - João Batista
M. Rocha Neto
- School of Chemical Engineering, University
of Campinas, Avenida Albert Einstein 500, 13083-852 Campinas, SP, Brazil
| | - Bruno S. Leão
- School of Chemical Engineering, University
of Campinas, Avenida Albert Einstein 500, 13083-852 Campinas, SP, Brazil
| | - Luiz Guilherme
L. Germiniani
- School of Chemical Engineering, University
of Campinas, Avenida Albert Einstein 500, 13083-852 Campinas, SP, Brazil
| | - Thiago B. Taketa
- School of Chemical Engineering, University
of Campinas, Avenida Albert Einstein 500, 13083-852 Campinas, SP, Brazil
| | - Marisa M. Beppu
- School of Chemical Engineering, University
of Campinas, Avenida Albert Einstein 500, 13083-852 Campinas, SP, Brazil
| |
Collapse
|