1
|
Zhu J, Zhang Z, Wen Y, Song X, Tan WK, Ong CN, Li J. Recent Advances in Superabsorbent Hydrogels Derived from Agro Waste Materials for Sustainable Agriculture: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72. [PMID: 39215710 PMCID: PMC11487571 DOI: 10.1021/acs.jafc.4c04970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/07/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Superabsorbent hydrogels made from agro waste materials have the potential to promote sustainable agriculture and environmental sustainability. These hydrogels not only help reduce water consumption and increase crop yields but also contribute to minimizing waste and lowering greenhouse gas emissions. Recent research on superabsorbent hydrogels derived from agro wastes has focused on the preparation of hydrogels based on natural polymers isolated from agro wastes, such as cellulose, hemicellulose, and lignin. This review provides an in-depth examination of hydrogels developed from raw agro waste materials and natural polymers extracted from agro wastes, highlighting that these studies start with raw wastes as the main materials. The utilization strategies for specific types of agro wastes are comprehensively described. This review outlines different methods utilized in the production of these hydrogels, including physical cross-linking techniques such as dissolution-regeneration and freeze-thawing, as well as chemical cross-linking methods involving various cross-linking agents and graft polymerization techniques such as free radical polymerization, microwave-assisted polymerization, and γ radiation graft polymerization. Specifically, this review explores the applications of agro waste-based superabsorbent hydrogels in enhancing soil properties such as water retention and slow-release of fertilizers for sustainable agriculture.
Collapse
Affiliation(s)
- Jingling Zhu
- Department
of Biomedical Engineering, National University
of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- NUS Environmental
Research Institute (NERI), National University
of Singapore, 5A Engineering
Drive 1, Singapore117411, Singapore
| | - Zhongxing Zhang
- Department
of Biomedical Engineering, National University
of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Yuting Wen
- Department
of Biomedical Engineering, National University
of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- National
University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215000, China
- National
University of Singapore (Chongqing) Research Institute, Yubei District, Chongqing 401120, China
| | - Xia Song
- Department
of Biomedical Engineering, National University
of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Wee Kee Tan
- NUS Environmental
Research Institute (NERI), National University
of Singapore, 5A Engineering
Drive 1, Singapore117411, Singapore
| | - Choon Nam Ong
- NUS Environmental
Research Institute (NERI), National University
of Singapore, 5A Engineering
Drive 1, Singapore117411, Singapore
- Saw Swee
Hock School of Public Health, National University
of Singapore, 12 Science
Drive 2, Singapore 117549, Singapore
| | - Jun Li
- Department
of Biomedical Engineering, National University
of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- NUS Environmental
Research Institute (NERI), National University
of Singapore, 5A Engineering
Drive 1, Singapore117411, Singapore
- National
University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215000, China
- National
University of Singapore (Chongqing) Research Institute, Yubei District, Chongqing 401120, China
| |
Collapse
|
2
|
Sarhan N, Arafa EG, Elgiddawy N, Elsayed KNM, Mohamed F. Urea intercalated encapsulated microalgae composite hydrogels for slow-release fertilizers. Sci Rep 2024; 14:15032. [PMID: 38951590 PMCID: PMC11217492 DOI: 10.1038/s41598-024-58875-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/03/2024] [Indexed: 07/03/2024] Open
Abstract
In agriculture, hydrogels can be addressed for effective operation of water and controlled-release fertilizers. Hydrogels have a significant ability for retaining water and improving nutrient availability in soil, enhancing plant growth while reducing water and fertilizer usage. This work aimed to prepare a hydrogel composite based on microalgae and biopolymers including chitosan and starch for use as a soil conditioner. The hydrogel composite was characterized by FTIR, XRD, and SEM. All hydrogel properties were studied including swelling degree, biodegradability, water-holding capacity, water retention, and re-swelling capacity in soil and water. The urea fertilizer loading and releasing behavior of the prepared hydrogels were investigated. The results revealed that the range of the maximal urea loading was between 99 and 440%, and the kinetics of loading was fitted with Freundlich model. The urea release % exhibited 78-95%, after 30 days, and the kinetics of release was fitted with zero-order, Higuchi, and Korsmeyer-Peppas models. Furthermore, the prepared hydrogels obtained a significant water-holding capacity, after blending soil (50 g) with small amount of hydrogels (1 g), the capacity increased in the range of 99.4-101.5%. In sum, the prepared hydrogels have the potential to be applied as a soil conditioner.
Collapse
Affiliation(s)
- Nada Sarhan
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62 511, Egypt
| | - Esraa G Arafa
- Chemistry Department, Faculty of Science, Beni-Suef University, Salah Salim St., Beni-Suef, 62514, Egypt.
| | - Nada Elgiddawy
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62 511, Egypt
| | - Khaled N M Elsayed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Fatma Mohamed
- Chemistry Department, Faculty of Science, Beni-Suef University, Salah Salim St., Beni-Suef, 62514, Egypt
- Materials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
- Nanophotonics and Applications Lab, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| |
Collapse
|
3
|
El Idrissi A, Tayi F, Dardari O, Essamlali Y, Jioui I, Ayouch I, Akil A, Achagri G, Dänoun K, Amadine O, Zahouily M. Urea-rich sodium alginate-based hydrogel fertilizer as a water reservoir and slow-release N carrier for tomato cultivation under different water-deficit levels. Int J Biol Macromol 2024; 272:132814. [PMID: 38825281 DOI: 10.1016/j.ijbiomac.2024.132814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
In this study, a new eco-friendly urea-rich sodium alginate-based hydrogel with a slow-release nitrogen property was prepared, and its effectiveness was evaluated in the cultivation of tomato plants under different water stress levels. The structure and performance of the hydrogel were investigated by FTIR, XRD, TGA, DTG, and SEM. The swelling and release experiments showed that prepared urea-rich hydrogel exhibited a high-water holding capacity (412 ± 4 g/g) and showed a sustained and slow nitrogen release property. A greenhouse pot experiment was conducted using two hydrogel levels (0.1 and 0.5 wt%) under two water deficit levels (30 and 70 % based on required water irrigation). Germination tests indicated that the developed hydrogel fertilizer has no phytotoxicity and has a positive impact on the germination rate even under water deficit conditions. The application of hydrogel fertilizer at 0.5 wt% significantly (p > 0.05) enhanced plant growth parameters such as leaf number, chlorophyll content, stem diameter, and plant length compared to the control treatment. The magnitude of the responses to the hydrogel fertilizer application depended on the concentration of applied hydrogel fertilizer and stress severity with the most positive effects on the growth and yield of tomato observed at a level of 0.5 %. Tomato yield was significantly enhanced by 19.58 %-12.81 %, 18.58 %-22.02 %, and 39.38 %-43.18 % for the plant amended with hydrogel at 0.1-0.5 wt% and grown under water deficit levels of 0, 30, and 70 %, respectively, compared to the control treatment.
Collapse
Affiliation(s)
- Ayoub El Idrissi
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, B.P. 146 Casablanca, Morocco; MAScIR Foundation, VARENA Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| | - Fatima Tayi
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, B.P. 146 Casablanca, Morocco; MAScIR Foundation, VARENA Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Othmane Dardari
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, B.P. 146 Casablanca, Morocco; MAScIR Foundation, VARENA Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Younes Essamlali
- MAScIR Foundation, VARENA Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| | - Ilham Jioui
- MAScIR Foundation, VARENA Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Ikrame Ayouch
- MAScIR Foundation, VARENA Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Adil Akil
- MAScIR Foundation, VARENA Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Ghizlane Achagri
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Karim Dänoun
- MAScIR Foundation, VARENA Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Othmane Amadine
- MAScIR Foundation, VARENA Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mohamed Zahouily
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, B.P. 146 Casablanca, Morocco; MAScIR Foundation, VARENA Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| |
Collapse
|
4
|
Omidian H, Akhzarmehr A, Chowdhury SD. Advancements in Cellulose-Based Superabsorbent Hydrogels: Sustainable Solutions across Industries. Gels 2024; 10:174. [PMID: 38534592 DOI: 10.3390/gels10030174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
The development of superabsorbent hydrogels is experiencing a transformative era across industries. While traditional synthetic hydrogels have found broad utility, their non-biodegradable nature has raised environmental concerns, driving the search for eco-friendlier alternatives. Cellulose-based superabsorbents, derived from sustainable sources, are gaining prominence. Innovations include biodegradable polymer hydrogels, natural cellulose-chitosan variants, and cassava starch-based alternatives. These materials are reshaping agriculture by enhancing soil fertility and water retention, serving as potent hemostatic agents in medicine, contributing to pollution control, and providing eco-friendly construction materials. Cellulose-based hydrogels also offer promise in drug delivery and hygiene products. Advanced characterization techniques aid in optimizing their properties, while the shift towards circular economy practices further highlights sustainability. This manuscript provides a comprehensive overview of these advancements, highlighting their diverse applications and environmental benefits.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Arnavaz Akhzarmehr
- Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Sumana Dey Chowdhury
- Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
5
|
Fabian DRC, Durpekova S, Dusankova M, Hanusova D, Bergerova ED, Sedlacik M, Skoda D, Sedlarik V. Renewable whey-based hydrogel with polysaccharides and polyvinyl alcohol as a soil amendment for sustainable agricultural application. Int J Biol Macromol 2024; 259:129056. [PMID: 38159689 DOI: 10.1016/j.ijbiomac.2023.129056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/12/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
This work describes the preparation of a novel biopolymer hydrogel based on acid whey, cellulose derivatives and polyvinyl alcohol (PVA). The hydrogel was prepared and characterized with the aim of producing an environmentally-friendly soil amendment to increase water retention capacity of the soil. The findings showed considerable swelling properties of the hydrogels depending on the PVA content and crosslinking density. The samples with PVA in a concentration 2.5 % and 5 % were more rigid, the gel fraction increased with a subsequently decrease in their swelling capacity. The hydrogels crosslinked with 15 % of citric acid demonstrated a constant swelling ratio (SR) of around 500 % within 10 swelling/drying cycles. The hydrogels crosslinked with 10 % citric acid and supplemented with 1 % of PVA showed SR of 1000-1400 % caused by less crosslinked polymer network and increased pore volume for water uptake. It was found that hydrogel with a higher gel fraction had a stable structure. Supplementing PVA at 5 % extended the period of decomposition of the hydrogel material by almost 60 % in the soil environment and soil humidity was maintained for longer. Applying 2 % of the hydrogel 5PVA to soil increased the water retention capacity by 19 %.
Collapse
Affiliation(s)
- Dalila Rubicela Cruz Fabian
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Silvie Durpekova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic.
| | - Miroslava Dusankova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Dominika Hanusova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Eva Domincova Bergerova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Michal Sedlacik
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic
| | - David Skoda
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Vladimir Sedlarik
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic
| |
Collapse
|
6
|
Cruz Fabian DR, Durpekova S, Dusankova M, Cisar J, Drohsler P, Elich O, Borkova M, Cechmankova J, Sedlarik V. Renewable Poly(Lactic Acid)Lignocellulose Biocomposites for the Enhancement of the Water Retention Capacity of the Soil. Polymers (Basel) 2023; 15:polym15102243. [PMID: 37242817 DOI: 10.3390/polym15102243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
This manuscript details the preparation and characterization of a renewable biocomposite material intended as a soil conditioner based on low-molecular-weight poly(lactic acid) (PLA) and residual biomass (wheat straw and wood sawdust). The swelling properties and biodegradability of the PLA-lignocellulose composite under environmental conditions were evaluated as indicators of its potential for applications in soil. Its mechanical and structural properties were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Results showed that the incorporation of lignocellulose waste material into PLA increased the swelling ratio of the biocomposite by up to 300%. The application of the biocomposite of 2 wt% in soil enhanced its capacity for water retention by 10%. In addition, the cross-linked structure of the material proved to be capable of swelling and deswelling repeatedly, indicating its good reusability. Incorporating lignocellulose waste in the PLA enhanced its stability in the soil environment. After 50 days of the experiment, almost 50% of the sample had degraded in the soil.
Collapse
Affiliation(s)
- Dalila Rubicela Cruz Fabian
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Silvie Durpekova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Miroslava Dusankova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Jaroslav Cisar
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Petra Drohsler
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Ondrej Elich
- Dairy Research Institute, Ke Dvoru 12a, 160 00 Prague, Czech Republic
| | - Marketa Borkova
- Dairy Research Institute, Ke Dvoru 12a, 160 00 Prague, Czech Republic
| | - Jarmila Cechmankova
- Research Institute for Soil and Water Conservation, Zabovreska 250, 15627 Prague, Czech Republic
| | - Vladimir Sedlarik
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic
| |
Collapse
|
7
|
Saberi Riseh R, Gholizadeh Vazvani M, Hassanisaadi M, Thakur VK, Kennedy JF. Use of whey protein as a natural polymer for the encapsulation of plant biocontrol bacteria: A review. Int J Biol Macromol 2023; 234:123708. [PMID: 36806771 DOI: 10.1016/j.ijbiomac.2023.123708] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 02/21/2023]
Abstract
Climate changes, drought, the salinity of water and soil, the emergence of new breeds of pests and pathogens, the industrialization of countries, and environmental contamination are among the factors limiting the production of agricultural products. The use of chemicals (in the form of fertilizers, pesticides and fungicides) to enhance products against biotic and abiotic stresses has limitations. To eliminate the effects of agricultural chemicals, synthetic agrochemicals should be replaced with natural substances and useful microorganisms. To be more effective and efficient, plant biocontrol bacteria need a coating layer around themselves to protect them from adverse conditions. Whey protein, a valuable by-product of the cheese industry, is one of the important natural polymers. Due to its high protein content, safety, and biodegradability, whey can have many applications in agriculture and encapsulation of bacteria to resist pests and plant diseases. This compound is a rich source of amino acids that can activate plant defense systems and defense enzymes. Considering the amazing potentialities of formulation whey protein, this review attends to the efficiency of whey protein as coating layers on fruit and vegetables and in the packaging system to increase the shelf life of agricultural products against phytopathogens.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Edinburgh EH9 3JG, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, India; Centre for Research and Development, Chandigarh University, Mohali 140413, Punjab, India.
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
8
|
A New Design of Poly(N-Isopropylacrylamide) Hydrogels Using Biodegradable Poly(Beta-Aminoester) Crosslinkers as Fertilizer Reservoirs for Agricultural Applications. Gels 2023; 9:gels9020127. [PMID: 36826297 PMCID: PMC9956257 DOI: 10.3390/gels9020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Poly(N-isopropylacrylamide) (P(NIPAAm)) hydrogels were prepared by free-radical polymerization with biodegradable poly (β-amino ester) (PBAE) crosslinkers at 1 wt% and 3 wt% ratio, and compared with conventional N,N'-methylene bisacrylamide (MBA)-crosslinked hydrogel. The influence of the type, molecular weight, and diacrylate/amine ratio of the crosslinker on the crosslink density, compressive strength, and swelling and biodegradation behavior of the hydrogels was investigated. The hydrogels synthesized with lower molecular weight PBAE crosslinkers showed higher crosslinking degrees and compressive strength and lower swelling ratios. To reveal the controlled release behavior of the fertilizer, KNO3 was used as the model, and its loading and release behavior from these hydrogels was also examined. The N/T5/1 sample with 1.5/1.0 diacrylate/amine molar ratio and 1 wt% PBAE ratio demonstrated the most controlled release of KNO3 with 66.9% after 18 days in soil. In addition, the hydrogel with the porosity of 71.65% and crosslinking degree of 2.85 × 10-5 mol cm-3 showed a swelling ratio of 69.44 g/g, biodegradation rate of 23.9%, and compressive strength of 1.074 MPa. Thus, it can be concluded that the new designed biodegradable P(NIPAAm) hydrogels can be promising materials as nitrate fertilizer reservoirs and also for controlled fertilizer release in soil media for agricultural applications.
Collapse
|
9
|
Liu M, Tong S, Tong Z, Guan Y, Sun Y. A strong, biodegradable and transparent cellulose‐based bioplastic stemmed from waste paper. J Appl Polym Sci 2023. [DOI: 10.1002/app.53671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Mengmeng Liu
- Key laboratory of Bio‐based Material Science and Technology of Ministry of Education, School of Materials Science and Engineering Northeast Forestry University Harbin China
| | - Shoudi Tong
- School of Automation Harbin University of Science and Technology Harbin China
| | - Zhihan Tong
- Key laboratory of Bio‐based Material Science and Technology of Ministry of Education, School of Materials Science and Engineering Northeast Forestry University Harbin China
| | - Yuewen Guan
- Key laboratory of Bio‐based Material Science and Technology of Ministry of Education, School of Materials Science and Engineering Northeast Forestry University Harbin China
| | - Yinan Sun
- Key laboratory of Bio‐based Material Science and Technology of Ministry of Education, School of Materials Science and Engineering Northeast Forestry University Harbin China
| |
Collapse
|
10
|
Zhao C, Liu G, Tan Q, Gao M, Chen G, Huang X, Xu X, Li L, Wang J, Zhang Y, Xu D. Polysaccharide-based biopolymer hydrogels for heavy metal detection and adsorption. J Adv Res 2023; 44:53-70. [PMID: 36725194 PMCID: PMC9936414 DOI: 10.1016/j.jare.2022.04.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/14/2022] [Accepted: 04/09/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND With rapid development in agriculture and industry, water polluted with heavy metallic ions has come to be a serious problem. Adsorption-based methods are simple, efficient, and broadly used to eliminate heavy metals. Conventional adsorption materials have the problems of secondary environmental contamination. Hydrogels are considered effective adsorbents, and those prepared from biopolymers are biocompatible, biodegradable, non-toxic, safe to handle, and increasingly used to adsorb heavy metal ions. AIM OF REVIEW The natural origin and easy degradability of biopolymer hydrogels make them potential for development in environmental remediation. Its water absorption capacity enables it to efficiently adsorb various pollutants in the aqueous environment, and its internal pore channels increase the specific surface area for adsorption, which can provide abundant active binding sites for heavy metal ions through chemical modification. KEY SCIENTIFIC CONCEPT OF REVIEW As the most representative of biopolymer hydrogels, polysaccharide-based hydrogels are diverse, physically and chemically stable, and can undergo complex chemical modifications to enhance their performance, thus exhibiting superior ability to remove contaminants. This review summarizes the preparation methods of hydrogels, followed by a discussion of the main categories and applications of polysaccharide-based biopolymer hydrogels.
Collapse
Affiliation(s)
- Chenxi Zhao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China; College of Horticulture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Guangyang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China.
| | - Qiyue Tan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China; College of Horticulture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Mingkun Gao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China
| | - Ge Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China
| | - Xiaodong Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China
| | - Xiaomin Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China
| | - Lingyun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture of China, Beijing 100081, People's Republic of China
| | - Yaowei Zhang
- College of Horticulture, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China.
| |
Collapse
|
11
|
Hydrogel Application in Urban Farming: Potentials and Limitations—A Review. Polymers (Basel) 2022; 14:polym14132590. [PMID: 35808635 PMCID: PMC9268874 DOI: 10.3390/polym14132590] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/27/2023] Open
Abstract
Urban agriculture plays a vital role in ensuring the self-sufficiency of a great variety of fresh vegetables and nutrients. It promotes a sustainable food system as well as reducing the dependency on imports for the growing population. Urban farming has made it possible for agriculture practices to be implemented anywhere at any time in a sophisticated way. Hydrogel has been introduced in urban agriculture in the past few decades. However, the application of hydrogel in urban agriculture is still being explored in terms of hydrogel types, structure, physical and chemical properties, change due to external factors, and its suitability for different plant species. This review discusses the potentials and limitations of hydrogel in different application conditions. We present the state of knowledge on hydrogel production and crosslinking methods, hydrogel characteristics, water absorption and release mechanisms of hydrogel, hydrogel advantages and limitations, and current and future applications in urban farming.
Collapse
|
12
|
Zhang W, Guo L, Liu Q, Yang M, Chen J, Lei Z. Preparation and properties of a biodegradability superabsorbent composite based on flax cake protein‐g‐poly (acrylic acid)/Kaolinite. J Appl Polym Sci 2022. [DOI: 10.1002/app.51975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wenxu Zhang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou China
| | - Lulu Guo
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou China
| | - Qian Liu
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou China
| | - Mei Yang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou China
| | - Jing Chen
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou China
| | - Ziqiang Lei
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou China
| |
Collapse
|
13
|
Biopolymer Hydrogel Based on Acid Whey and Cellulose Derivatives for Enhancement Water Retention Capacity of Soil and Slow Release of Fertilizers. Polymers (Basel) 2021; 13:polym13193274. [PMID: 34641090 PMCID: PMC8512792 DOI: 10.3390/polym13193274] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
This study describes the development of a renewable and biodegradable biopolymer-based hydrogel for application in agriculture and horticulture as a soil conditioning agent and for release of a nutrient or fertilizer. The novel product is based on a combination of cellulose derivatives (carboxymethylcellulose and hydroxyethylcellulose) cross-linked with citric acid, as tested at various concentrations, with acid whey as a medium for hydrogel synthesis in order to utilize the almost unusable by-product of the dairy industry. The water uptake of the hydrogel was evaluated by swelling tests under variations in pH, temperature and ion concentration. Its swelling capacity, water retention and biodegradability were investigated in soil to simulate real-world conditions, the latter being monitored by the production of carbon dioxide during the biodegradation process by gas chromatography. Changes in the chemical structure and morphology of the hydrogels during biodegradation were assessed using Fourier transform infrared spectroscopy and scanning electron microscopy. The ability of the hydrogel to hold and release fertilizers was studied with urea and KNO3 as model substances. The results not only demonstrate the potential of the hydrogel to enhance the quality of soil, but also how acid whey can be employed in the development of a soil conditioning agent and nutrient release products.
Collapse
|
14
|
Eco-friendly carboxymethyl cellulose hydrogels filled with nanocellulose or nanoclays for agriculture applications as soil conditioning and nutrient carrier and their impact on cucumber growing. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126771] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Recent trends in organic coating based on biopolymers and biomass for controlled and slow release fertilizers. J Control Release 2021; 330:341-361. [DOI: 10.1016/j.jconrel.2020.12.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022]
|
16
|
Synthesis, characterization, and swelling behaviors of sodium carboxymethyl cellulose-g-poly(acrylic acid)/semi-coke superabsorbent. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03545-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Ning F, Zhang J, Kang M, Ma C, Li H, Qiu Z. Hydroxyethyl cellulose hydrogel modified with tannic acid as methylene blue adsorbent. J Appl Polym Sci 2020. [DOI: 10.1002/app.49880] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Feng Ning
- School of Resources Environmental and Chemical Engineering Nanchang University Nanchang China
| | - Jian Zhang
- School of Resources Environmental and Chemical Engineering Nanchang University Nanchang China
| | - Minxia Kang
- School of Resources Environmental and Chemical Engineering Nanchang University Nanchang China
| | - Changpo Ma
- School of Resources Environmental and Chemical Engineering Nanchang University Nanchang China
| | - Hui Li
- School of Resources Environmental and Chemical Engineering Nanchang University Nanchang China
| | - Zumin Qiu
- School of Resources Environmental and Chemical Engineering Nanchang University Nanchang China
| |
Collapse
|
18
|
Abstract
This study details the design and characterization of a new, biodegradable, and renewable whey/cellulose-based hydrogel (i.e., agricultural hydrogel). This was formulated from cellulose derivatives (carboxymethylcellulose (CMC) and hydroxyethylcellulose (HEC)) and acid whey cross-linked with citric acid, with the aim to obtain an agricultural product with a high swelling capacity to uphold the quality of soil and conserve water resources. With regard to the swelling behaviour of the prepared hydrogels, the authors initially assessed the swelling ratio and capacity for water uptake. Evaluating the chemical structure of the hydrogel and its thermal and viscoelastic properties involved performing Fourier transform infrared spectroscopy, differential scanning colorimetry, thermal gravimetric analysis, and rheological measurement of the hydrogel films. According to preliminary results, sufficient swelling capacity and stiffness were observed in a hydrogel prepared with 3% CMC and HEC, cross-linked with 5% citric acid. Moreover, the kinetics of water uptake revealed a promising capacity that was sustainable after 5 drying and swelling cycles. The results confirmed that the stability of the hydrogel was enhanced by the presence of the citric acid. As a consequence, it is necessary to utilize an appropriate cross-linking concentration and abide by certain conditions to ensure the swelling properties of the prepared hydrogel are sufficient. Further investigation of the topic, especially in relation to applications in soil, could confirm if the whey-cellulose-based hydrogel is actually suitable for agricultural use, thereby contributing to the advancement of sustainable arable farming.
Collapse
|
19
|
Tzoumani I, Lainioti GC, Aletras AJ, Zainescu G, Stefan S, Meghea A, Kallitsis JK. Modification of Collagen Derivatives with Water-Soluble Polymers for the Development of Cross-Linked Hydrogels for Controlled Release. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E4067. [PMID: 31817565 PMCID: PMC6947037 DOI: 10.3390/ma12244067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/22/2022]
Abstract
Novel cross-linked hydrogels were synthesized as potential materials for the development of smart biofertilizers. For this purpose, hydrogels were prepared using collagen hydrolysate recovered from tannery waste. The water-soluble polymer poly(sodium 4-styrenesulfonate-co-glycidyl methacrylate) (P(SSNa-co-GMAx)) was among others used for the cross-linking reaction that combined hydrophilic nature with epoxide groups. The synthetic procedure was thoroughly investigated in order to ensure high percentage of epoxide groups in combination with water-soluble behavior. The copolymer did not show cytotoxicity against normal lung, skin fibroblasts, or nasal polyps fibroblasts. Through the present work, we also present the ability to control the properties of cross-linked hydrogels by altering copolymer's composition and cross-linking parameters (curing temperature and time). Hydrogels were then studied in terms of water-uptake capacity for a period up to six days. The techniques Proton Nuclear Magnetic Resonance (1H NMR), Thermogravimetric Analysis (TGA), Size Exclusion Chromatography (SEC), and Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR) were applied for the characterization of the synthesized copolymers and the cross-linked hydrogels. Three samples of biofertilizers based on collagen hydrolysate functionalized with P(SSNa-co-GMAx) and starch and having nutrients encapsulated (N, P, K) were prepared and characterized by physical-chemical analysis and Energy Dispersive X-ray analysis-Scanning Electron Microscope (EDAX-SEM) in terms of microstructure. Preliminary tests for application as fertilizers were performed including the release degree of oxidable organic compounds.
Collapse
Affiliation(s)
- Ioanna Tzoumani
- Department of Chemistry, University of Patras, GR-265 04 Patras, Greece; (I.T.); (G.C.L.); (A.J.A.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Stadiou Str., Platani, P.O. Box 1414, GR-265 04 Rio-Patras, Greece
| | - Georgia Ch. Lainioti
- Department of Chemistry, University of Patras, GR-265 04 Patras, Greece; (I.T.); (G.C.L.); (A.J.A.)
| | - Alexios J. Aletras
- Department of Chemistry, University of Patras, GR-265 04 Patras, Greece; (I.T.); (G.C.L.); (A.J.A.)
| | - Gabriel Zainescu
- National R & D Institute for Textile and Leather-Division: Leather and Footwear Research Institute, 93 Ion Minulescu Str., 031215 Bucharest, Romania;
| | - Simina Stefan
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 1-7 Polizu Str., 011061 Bucharest, Romania;
| | - Aurelia Meghea
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 1-7 Polizu Str., 011061 Bucharest, Romania;
| | - Joannis K. Kallitsis
- Department of Chemistry, University of Patras, GR-265 04 Patras, Greece; (I.T.); (G.C.L.); (A.J.A.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Stadiou Str., Platani, P.O. Box 1414, GR-265 04 Rio-Patras, Greece
| |
Collapse
|
20
|
Cellulose based materials for controlled release formulations of agrochemicals: A review of modifications and applications. J Control Release 2019; 316:105-115. [PMID: 31704109 DOI: 10.1016/j.jconrel.2019.11.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 11/22/2022]
Abstract
Controlled release formulations (CRFs) of agrochemicals have been attracted considerable attention due to their friendliness to environment. The commercial supporting materials for CRFs of agrochemicals are non-degradable, leading to secondary pollution issue. Cellulose, as the most abundant natural materials in the world, is regarded as one of the most ideal substitutes for non-degradable supporting materials thanks to its good biocompatibility and biodegradability. As raw cellulose materials suffer several problems, such as poor mechanical strength, fast release rate, etc., chemical modifications are commonly performed to improve their properties. In this review, modification methods of cellulose materials for CRFs of agrochemicals were introduced. The relationships between release rate and cellulose based materials were discussed in detail. The applications of cellulose materials for CRFs of agrochemicals were also expounded.
Collapse
|
21
|
Rezazadeh B, Sirousazar M, Abbasi‐Chianeh V, Kheiri F. Polymer‐clay nanocomposite hydrogels for molecular irrigation application. J Appl Polym Sci 2019. [DOI: 10.1002/app.48631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Behnam Rezazadeh
- Faculty of Chemical EngineeringUrmia University of Technology Urmia Iran
| | | | | | - Farshad Kheiri
- Faculty of Chemical EngineeringUrmia University of Technology Urmia Iran
| |
Collapse
|
22
|
Zhang S, Yu C, Liu N, Teng Y, Yin C. Preparation of transparent anti-pollution cellulose carbamate regenerated cellulose membrane with high separation ability. Int J Biol Macromol 2019; 139:332-341. [PMID: 31351962 DOI: 10.1016/j.ijbiomac.2019.07.146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/14/2019] [Accepted: 07/24/2019] [Indexed: 12/20/2022]
Abstract
In this study, cellulose pulp and urea were used to synthesize cellulose carbamate (nitrogen content reaches 4.5%) by low-cost and environmentally friendly solid-liquid phase method. Cellulose carbamate fluid was prepared by using sodium hydroxide aqueous solution as solvent. The fluid was regenerated and formed in a coagulation bath, and finally a regenerated cellulose membrane with high transparency and separation ability was obtained. The simple chemical treatment of cellulose not only greatly increased the mass fraction of cellulose dissolution (It has reached 15%) and retains the original crystal form and thermal stability of cellulose. The surface of the membrane was relatively dense, and the inside has regular microchannel. The factors affect the transparency and water flux of regenerated cellulose membranes were discussed by orthogonal experimental range analysis. The ability of the regenerated cellulose membrane to reject dyes was tested. The results showed that the rejection of methyl blue and congo red reached 100%, and the rejection rate of methyl orange reached 60%. The oil/water separation ability and the anti-pollution ability of the regenerated cellulose membrane were tested. The oil/water separation effect reached 100%. This membrane may have application prospect in water treatment, biotechnology.
Collapse
Affiliation(s)
- Shaojie Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Chao Yu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Na Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Yun Teng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Cuiyu Yin
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
| |
Collapse
|
23
|
Dabbaghi A, Kabiri K, Ramazani A, Zohuriaan‐Mehr MJ, Jahandideh A. Synthesis of bio‐based internal and external cross‐linkers based on tannic acid for preparation of antibacterial superabsorbents. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4722] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Alaleh Dabbaghi
- Department of ChemistryUniversity of Zanjan PO Box 45195‐313 Zanjan Iran
| | - Kourosh Kabiri
- Adhesive and Resin DepartmentIran Polymer and Petrochemical Institute PO Box 14965‐115 Tehran Iran
- Biomass Conversion Science and Technology (BCST) DivisionIran Polymer and Petrochemical Institute Tehran Iran
| | - Ali Ramazani
- Department of ChemistryUniversity of Zanjan PO Box 45195‐313 Zanjan Iran
- Research Institute of Modern Biological Techniques (RIMBT)University of Zanjan PO Box 45195‐313 Zanjan Iran
| | - Mohammad J. Zohuriaan‐Mehr
- Adhesive and Resin DepartmentIran Polymer and Petrochemical Institute PO Box 14965‐115 Tehran Iran
- Biomass Conversion Science and Technology (BCST) DivisionIran Polymer and Petrochemical Institute Tehran Iran
| | - Arash Jahandideh
- Adhesive and Resin DepartmentIran Polymer and Petrochemical Institute PO Box 14965‐115 Tehran Iran
| |
Collapse
|