1
|
Dobrosielska M, Dobrucka R, Brząkalski D, Kozera P, Martyła A, Gabriel E, Kurzydłowski KJ, Przekop RE. Polyamide 11 Composites Reinforced with Diatomite Biofiller-Mechanical, Rheological and Crystallization Properties. Polymers (Basel) 2023; 15:polym15061563. [PMID: 36987343 PMCID: PMC10053006 DOI: 10.3390/polym15061563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Amorphic diatomaceous earth is derived from natural sources, and polyamide 11 (PA11) is produced from materials of natural origin. Both of these materials show a low harmfulness to the environment and a reduced carbon footprint. This is why the combination of these two constituents is beneficial not only to improve the physicochemical and mechanical properties of polyamide 11 but also to produce a biocomposite. For the purpose of this paper, the test biocomposite was produced by combining polyamide 11, as well as basic and pre-fractionated diatomaceous earth, which had been subjected to silanization. The produced composites were used to carry out rheological (melt flow rate-MFR), mechanical (tensile strength, bending strength, impact strength), crystallographic (X-ray Diffraction-XRD), thermal and thermo-mechanical (differential scanning calorimetry-DSC, dynamic mechanical thermal analysis-DMTA) analyses, as well as a study of hydrophobic-hydrophilic properties of the material surface (wetting angle) and imaging of the surface of the composites and the fractured specimens. The tests showed that the additive 3-aminopropyltriethoxysilane (APTES) acted as an agent that improved the elasticity of composites and the melt flow rate. In addition, the produced composites showed a hydrophilic surface profile compared to pure polylactide and polyamide 11.
Collapse
Affiliation(s)
- Marta Dobrosielska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Wołoska 141, 02-507 Warsaw, Poland
| | - Renata Dobrucka
- Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Wołoska 141, 02-507 Warsaw, Poland
- Department of Non-Food Products Quality and Packaging Development, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61-875 Poznań, Poland
| | - Dariusz Brząkalski
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Paulina Kozera
- Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Wołoska 141, 02-507 Warsaw, Poland
| | - Agnieszka Martyła
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Ewa Gabriel
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Krzysztof J Kurzydłowski
- Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45c, 15-351 Bialystok, Poland
| | - Robert E Przekop
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| |
Collapse
|
2
|
Cremer J, Kaltschmidt BP, Kiel A, Eberhard J, Schmidt S, Kaltschmidt C, Kaltschmidt B, Hütten A, Anselmetti D. Aging of Industrial Polypropylene Surfaces in Detergent Solution and Its Consequences for Biofilm Formation. Polymers (Basel) 2023; 15:polym15051247. [PMID: 36904487 PMCID: PMC10006934 DOI: 10.3390/polym15051247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
The performance of plastic components in water-bearing parts of industrial and household appliances, often in the presence of harsh environments and elevated temperatures, critically relies on the mechanical and thermal polymer stability. In this light, the precise knowledge of aging properties of polymers formulated with dedicated antiaging additive packages as well as various fillers is crucial for long-time device warranty. We investigated and analysed the time-dependent, polymer-liquid interface aging of different industrial performance polypropylene samples in aqueous detergent solution at high temperatures (95 °C). Special emphasis was put on the disadvantageous process of consecutive biofilm formation that often follows surface transformation and degradation. Atomic force microscopy, scanning electron microscopy, and infrared spectroscopy were used to monitor and analyse the surface aging process. Additionally, bacterial adhesion and biofilm formation was characterised by colony forming unit assays. One of the key findings is the observation of crystalline, fibre-like growth of ethylene bis stearamide (EBS) on the surface during the aging process. EBS is a widely used process aid and lubricant enabling the proper demoulding of injection moulding plastic parts. The aging-induced surface-covering EBS layers changed the surface morphology and promoted bacterial adhesion as well as biofilm formation of Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Julian Cremer
- Department of Experimental Biophysics & Applied Nanoscience, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
- Correspondence:
| | - Bernhard P. Kaltschmidt
- Department of Thin Films and Physics of Nanostructures, Center of Spinelectronic Materials and Devices, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Annika Kiel
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | | | | | - Christian Kaltschmidt
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Barbara Kaltschmidt
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Andreas Hütten
- Department of Thin Films and Physics of Nanostructures, Center of Spinelectronic Materials and Devices, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Dario Anselmetti
- Department of Experimental Biophysics & Applied Nanoscience, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
3
|
Bartoli M, Arrigo R, Malucelli G, Tagliaferro A, Duraccio D. Recent Advances in Biochar Polymer Composites. Polymers (Basel) 2022; 14:polym14122506. [PMID: 35746082 PMCID: PMC9228632 DOI: 10.3390/polym14122506] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 02/06/2023] Open
Abstract
“Biochar” (BC) is the solid residue recovered from the thermal cracking of biomasses in an oxygen-poor atmosphere. Recently, BC has been increasingly explored as a sustainable, inexpensive, and viable alternative to traditional carbonaceous fillers for the development of polymer-based composites. In fact, BC exhibits high thermal stability, high surface area, and electrical conductivity; moreover, its main properties can be properly tuned by controlling the conditions of the production process. Due to its intriguing characteristics, BC is currently in competition with high-performing fillers in the formulation of multi-functional polymer-based composites, inducing both high mechanical and electrical properties. Moreover, BC can be derived from a huge variety of biomass sources, including post-consumer agricultural wastes, hence providing an interesting opportunity toward a “zero waste” circular bioeconomy. This work aims at providing a comprehensive overview of the main achievements obtained by combining BC with several thermoplastic and thermosetting matrices. In particular, the effect of the introduction of BC on the overall performance of different polymer matrices will be critically reviewed, highlighting the influence of differently synthesized BC on the final performance and behavior of the resulting composites. Lastly, a comparative perspective on BC with other carbonaceous fillers will be also provided.
Collapse
Affiliation(s)
- Mattia Bartoli
- Center for Sustainable Future Technologies, Italian Institute of Technology, Via Livorno 60, 10144 Turin, Italy;
| | - Rossella Arrigo
- Department of Applied Science and Technology, Politecnico di Torino, Viale Teresa Michel 5, 15121 Alessandria, Italy;
- Correspondence: ; Tel.: +39-0131229363
| | - Giulio Malucelli
- Department of Applied Science and Technology, Politecnico di Torino, Viale Teresa Michel 5, 15121 Alessandria, Italy;
| | - Alberto Tagliaferro
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10123 Torino, Italy;
| | - Donatella Duraccio
- Institute of Sciences and Technologies for Sustainable Energy and Mobility, National Council of Research, Strada delle Cacce 73, 10135 Torino, Italy;
| |
Collapse
|
4
|
Domingo GD, Souza AMC. PA6
/
PA66
/talc composite: Effect of reprocessing on the structure and properties. J Appl Polym Sci 2022. [DOI: 10.1002/app.51869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gustavo D. Domingo
- Department of Materials Engineering Centro Universitário FEI São Bernardo do Campo Brazil
| | - Adriana M. C. Souza
- Department of Materials Engineering Centro Universitário FEI São Bernardo do Campo Brazil
| |
Collapse
|
5
|
García Hernández Z, Miranda Teran ZN, González Morones P, Yañez Macías R, Solís Rosales SG, Romero GY, Sifuentes‐Nieves I, Hernández‐Hernández E. Performance of nylon 6 composites reinforced with modified agave fiber: Structural, morphological, and mechanical features. J Appl Polym Sci 2021. [DOI: 10.1002/app.50857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zureima García Hernández
- Departamento de Materiales Avanzados Centro de Investigación en Química Aplicada Saltillo Mexico
| | | | - Pablo González Morones
- Departamento de Materiales Avanzados Centro de Investigación en Química Aplicada Saltillo Mexico
| | - Roberto Yañez Macías
- Departamento de Materiales Avanzados Centro de Investigación en Química Aplicada Saltillo Mexico
| | - Silvia G. Solís Rosales
- Departamento de Materiales Avanzados Centro de Investigación en Química Aplicada Saltillo Mexico
| | - Gabriela Yolotzin Romero
- Departamento de Materiales Avanzados Centro de Investigación en Química Aplicada Saltillo Mexico
| | - Israel Sifuentes‐Nieves
- Departamento de Materiales Avanzados Centro de Investigación en Química Aplicada Saltillo Mexico
| | | |
Collapse
|
6
|
Qi S, Wen X, Li S, Li X, Mao C, Dong X, Zhao Y, Su Y, Wang K, Wang D. New insight into the
thermal‐oxidative
stability of polyamide 6: A comparison investigation on the effect of hindered amine and
CuI
/
KI. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shunxin Qi
- Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Xiangning Wen
- Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Shaofan Li
- Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Xungang Li
- Shanxi Institute of Chemical Industry Ltd. Taiyuan China
| | - Chenxi Mao
- Shanxi Institute of Chemical Industry Ltd. Taiyuan China
| | - Xia Dong
- Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Ying Zhao
- Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Yunlan Su
- Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Kezhi Wang
- Shanxi Institute of Chemical Industry Ltd. Taiyuan China
| | - Dujin Wang
- Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
7
|
Watt E, Abdelwahab MA, Snowdon MR, Mohanty AK, Khalil H, Misra M. Hybrid biocomposites from polypropylene, sustainable biocarbon and graphene nanoplatelets. Sci Rep 2020; 10:10714. [PMID: 32612178 PMCID: PMC7329909 DOI: 10.1038/s41598-020-66855-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/28/2020] [Indexed: 11/24/2022] Open
Abstract
Polypropylene (PP) is an attractive polymer for use in automotive parts due to its ease of processing, hydrophobic nature, chemical resistance and low density. The global shift towards eliminating non-renewable resource consumption has promoted research of sustainable biocarbon (BioC) filler in a PP matrix, but this material often leads to reduction in composite strength and requires additional fillers. Graphene nano-platelets (GnPs) have been the subject of considerable research as a nanofiller due to their strength, while maleic anhydride grafted polypropylene (MA-g-PP) is a commonly used compatibilizer for improvement of interfacial adhesion in composites. This study compared the thermo-mechanical properties of PP/BioC/MA-g-PP/GnP composites with varying wt.% of GnP. Morphological analysis revealed uniform dispersion of BioC, while significant agglomeration of GnPs limited their even dispersion throughout the PP matrix. In the optimal blend of 3 wt.% GnP and 17 wt.% BioC biocontent, tensile strength and modulus increased by ~19% and ~22% respectively, as compared to 20 wt.% BioC biocomposites. Thermal stability and performance enhancement occurred through incorporation of the fillers. Thus, hybridization of fillers in the compatibilized matrix presents a promising route to the enhancement of material properties, while reducing petroleum-based products through use of sustainable BioC filler in composite structures.
Collapse
Affiliation(s)
- Ethan Watt
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Mohamed A Abdelwahab
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Michael R Snowdon
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
- School of Engineering, Thornbrough Building, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Amar K Mohanty
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
- School of Engineering, Thornbrough Building, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Hamdy Khalil
- Woodbridge Foam Corporation, 4240 Sherwoodtowne Boulevard, Mississauga, L4Z 2G6, Ontario, Canada
| | - Manjusri Misra
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
- School of Engineering, Thornbrough Building, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
8
|
Surface Modification of Flax Fibers for Manufacture of Engineering Thermoplastic Biocomposites. JOURNAL OF COMPOSITES SCIENCE 2020. [DOI: 10.3390/jcs4020064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this feasibility study is to develop application-oriented natural fiber-reinforced biocomposites with improved mechanical and durability performance. The biocomposites were manufactured via a film-stacking process of epoxy-coated flax textiles and polyamide 6 (PA6). The fabricated biocomposites were subjected to thermo-oxidative ageing for 250, 500 and 1000 h and tested with regard to tensile properties. The results show that the biocomposites with epoxy-coated flax fibers possess considerably higher tensile properties compared with the reference specimens under all tested conditions.
Collapse
|
9
|
Chang BP, Mohanty AK, Misra M. Studies on durability of sustainable biobased composites: a review. RSC Adv 2020; 10:17955-17999. [PMID: 35517220 PMCID: PMC9054028 DOI: 10.1039/c9ra09554c] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/20/2020] [Indexed: 12/18/2022] Open
Abstract
This review provides a comprehensive discussion on the long-term durability performance and degradation behaviour of the increasingly popular sustainable biobased composites under various aging environments.
Collapse
Affiliation(s)
- Boon Peng Chang
- Bioproducts Discovery and Development Centre
- Department of Plant Agriculture
- Crop Science Building
- University of Guelph
- Guelph
| | - Amar K. Mohanty
- Bioproducts Discovery and Development Centre
- Department of Plant Agriculture
- Crop Science Building
- University of Guelph
- Guelph
| | - Manjusri Misra
- Bioproducts Discovery and Development Centre
- Department of Plant Agriculture
- Crop Science Building
- University of Guelph
- Guelph
| |
Collapse
|