1
|
Wang X, Ding T. A Review on the Current State of Microcapsule-Based Self-Healing Dental Composites. J Funct Biomater 2024; 15:165. [PMID: 38921538 PMCID: PMC11204524 DOI: 10.3390/jfb15060165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Resin-based dental composites, commonly used in dentistry, offer several advantages including minimally invasive application, esthetically pleasing appearance, and good physical and mechanical properties. However, these dental composites can be susceptible to microcracks due to various factors in the complex oral environment. These microcracks can potentially lead to clinical restoration failure. Conventional materials and methods are inadequate for detecting and repairing these microcracks in situ. Consequently, incorporating self-healing properties into dental composites has become a necessity. Recent years have witnessed rapid advancements in self-healing polymer materials, drawing inspiration from biological bionics. Microcapsule-based self-healing dental composites (SHDCs) represent some of the most prevalent types of self-healing materials utilized in this domain. In this article, we undertake a comprehensive review of the most recent literature, highlighting key insights and findings related to microcapsule-based SHDCs. Our discussion centers particularly on the preparation techniques, application methods, and the promising future of self-healing microcapsules in the field of dentistry.
Collapse
Affiliation(s)
| | - Tian Ding
- School of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China;
| |
Collapse
|
2
|
Zhang C, Li C, Zhang K, Zhang S, Liu J, Wang M, Wang L. Building Flame-Retardant Polymer Electrolytes via Microcapsule Technology for Stable Lithium Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27470-27480. [PMID: 38742958 DOI: 10.1021/acsami.4c04154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Flame retardants could improve the safety properties of lithium batteries (LBs) with the sacrifice of electrochemical performance due to parasitic reactions. To concur with this, we designed thermal-response clothes for hexachlorophosphazene (HCP) additives by the microcapsule technique with urea-formaldehyde (UF) resin as the shell. HCP@UF combines with polyacrylonitrile (PAN) by hydrogen bonds successfully to form PAN-HCP@UF as the flame-retardant solid polymer electrolyte. The hydrogen bonds ensure excellent mechanical properties of the polymer electrolyte. The multiscale free radical-annihilating agent HCP effectively eliminates hydrogen free radicals of electrolytes under high temperature, showing excellent flame retardation. During the operation of the battery, functional groups on the UF resin act as active sites to promote the migration of lithium ions, while the internal HCP is protected from electrochemical reaction. With 25% HCP@UF addition, the limiting oxygen index of the PAN-HCP@UF increases to 28% and the Li+ transfer number up to 0.80. By UF protection, the initial capacity retention rate of the Li||LFP battery that assembles with PAN-HCP@UF is 88.8% after 500 cycles at 0.5 C. Thus, the microcapsule-encapsulated approach is deemed to provide an innovative strategy to prepare high-safety solid-state LB with a stable long cycle life.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Caixia Li
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kai Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Shenghao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jingwen Liu
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Minghui Wang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Lei Wang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
3
|
Orfanidis S, Kosarli M, Karagianni M, Paipetis AS, Papavassiliou G, Fardis M. Structural integrity and healing efficiency study of micro-capsule based composite materials via 1H NMR relaxometry. Sci Rep 2023; 13:12189. [PMID: 37500804 PMCID: PMC10374639 DOI: 10.1038/s41598-023-39302-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/23/2023] [Indexed: 07/29/2023] Open
Abstract
In this work we present a novel approach utilizing nuclear magnetic resonance (NMR) relaxometry to assess the structural stability of microcapsules employed as self-healing agents in advanced aerospace composites both in ambient and harsh environmental conditions. We successfully correlate the amount of the encapsulated self-healing agent with the signal intensity and confirm non-destructively the quantity of the encapsulated self-healing agent mass for the first time in the literature using 1H NMR spin-spin relaxation techniques on urea-formaldehyde (UF) microcapsules of different diameters containing an epoxy healing agent. The amount of self-healing agent is shown to increase by reducing the capsule diameter; however, the reduced shell mass renders the capsules more fragile and prone to failure. Most notably, via NMR experiments conducted during thermal cycling simulating flight conditions, we demonstrate that the microcapsule integrity under thermal fatigue varies according to their size. Especially we experimentally verify that the microcapsules with the most sensitive shells are the 147 nm and 133 nm diameter microcapsules, which are the most commonly used in self-healing systems. Finally, we were able to retrieve the same results using a portable NMR spectrometer developed in-house for in situ microcapsule testing, thus demonstrating the potential of NMR relaxometry as a powerful non-destructive evaluation tool for the microcapsule production line.
Collapse
Affiliation(s)
- S Orfanidis
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15310 Aghia Paraskevi, Attiki, Greece
- Department of Materials Science and Engineering, University of Ioannina, 45110, Ioannina, Greece
| | - M Kosarli
- Department of Materials Science and Engineering, University of Ioannina, 45110, Ioannina, Greece
| | - M Karagianni
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15310 Aghia Paraskevi, Attiki, Greece
| | - A S Paipetis
- Department of Materials Science and Engineering, University of Ioannina, 45110, Ioannina, Greece
| | - G Papavassiliou
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15310 Aghia Paraskevi, Attiki, Greece
| | - M Fardis
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15310 Aghia Paraskevi, Attiki, Greece.
| |
Collapse
|
4
|
One-pot efficient preparation of microcapsules based on photopolymerization for self-healing coatings. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Characterization of polyurea microcapsules synthesized with an isocyanate of low toxicity and eco-friendly esters via microfluidics: shape, shell thickness, morphology and encapsulation efficiency. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
6
|
Allahdini A, Jafari R, Momen G. Development of a dual capsule self‐healing silicone composite using silicone chemistry and poly(melamine‐urea‐formaldehyde) shells. J Appl Polym Sci 2022. [DOI: 10.1002/app.51670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Anahita Allahdini
- Department of Applied Sciences University of Quebec in Chicoutimi (UQAC) Chicoutimi Québec Canada
| | - Reza Jafari
- Department of Applied Sciences University of Quebec in Chicoutimi (UQAC) Chicoutimi Québec Canada
| | - Gelareh Momen
- Department of Applied Sciences University of Quebec in Chicoutimi (UQAC) Chicoutimi Québec Canada
| |
Collapse
|
7
|
Watanabe T, Sakai Y, Sugimori N, Ikeda T, Monzen M, Ono T. Microfluidic Production of Monodisperse Biopolymer Microcapsules for Latent Heat Storage. ACS MATERIALS AU 2022; 2:250-259. [PMID: 36855389 PMCID: PMC9888623 DOI: 10.1021/acsmaterialsau.1c00068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microencapsulation of phase change materials in a polymer shell is a promising technology to prevent them from leakage and to use them as a handleable powder state. However, the microencapsulation process is a time-consuming process because the typical shell-forming step requires polymerization or evaporation of the solvent. In this study, we report a simple and rapid flow process to prepare monodisperse biocompatible cellulose acetate (CA) microcapsules encapsulating n-hexadecane (HD) for latent heat storage applications. The microcapsules were prepared by combining microfluidic droplet formation and subsequent rapid solvent removal from the droplets by solvent diffusion. The diameter and shell thickness of the microcapsules could be controlled by adjusting the flow rate and the HD-to-CA weight ratio in the dispersed phase. We found that 1-hexadecanol added to the microcapsules played the role of a nucleation agent and mitigated the supercooling phenomenon during crystallization. Furthermore, cross-linking of the CA shell with poly(propylene glycol), tolylene 2,4-diisocyanate terminated, resulted in the formation of a thin and dense shell. The microcapsules exhibited a 66 wt % encapsulation efficiency and a 176 J g-1 latent heat storage capacity, with negligible supercooling. We believe that this microflow process can contribute to the preparation of environmentally friendly microcapsules for heat storage applications.
Collapse
Affiliation(s)
- Takaichi Watanabe
- Department
of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan,. Phone: +81-86-251-8072
| | - Yuko Sakai
- Department
of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Naomi Sugimori
- Chusei
Oil Co., Ltd., 8252-8,
Otoshima, Tamashima, Kurashiki 713-8103, Japan
| | - Toshinori Ikeda
- Chusei
Oil Co., Ltd., 8252-8,
Otoshima, Tamashima, Kurashiki 713-8103, Japan
| | - Masayuki Monzen
- Chusei
Oil Co., Ltd., 8252-8,
Otoshima, Tamashima, Kurashiki 713-8103, Japan
| | - Tsutomu Ono
- Department
of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan,. Phone: +81-86-251-8083
| |
Collapse
|
8
|
Li J, Ji X, Tang Z, Hu Y, Hua W. Preparation and evaluation of self‐healing microcapsules for asphalt based on response surface optimization. J Appl Polym Sci 2022. [DOI: 10.1002/app.51430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jia Li
- School of Highway Chang'an University Xi'an Shaanxi China
| | - Xiaoping Ji
- School of Highway Chang'an University Xi'an Shaanxi China
| | - Zhennong Tang
- Jinhua Highway and Transportation Management Center Jinhua Zhejiang China
| | - Yonglin Hu
- Jindong District Highway Management Section of Jinhua Jinhua Zhejiang China
| | - Wenlong Hua
- Jinhua Highway and Transportation Management Center Jinhua Zhejiang China
| |
Collapse
|
9
|
Mytara AD, Chronaki K, Nikitakos V, Papaspyrides CD, Beltsios K, Vouyiouka S. Synthesis of Polyamide-Based Microcapsules via Interfacial Polymerization: Effect of Key Process Parameters. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5895. [PMID: 34640292 PMCID: PMC8510004 DOI: 10.3390/ma14195895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 01/21/2023]
Abstract
Polyamide microcapsules have gathered significant research interest during the past years due to their good barrier properties; however, the potential of their application is limited due to the fragility of the polymeric membrane. Fully aliphatic polyamide microcapsules (PA MCs) were herein prepared from ethylene diamine and sebacoyl chloride via interfacial polymerization, and the effect of key encapsulation parameters, i.e., monomers ratio, core solvent, stirring rate and time during the polymerization step, were examined concerning attainable process yield and microcapsule properties (shell molecular weight and thermal properties, MC size and morphology). The process yield was found to be mainly influenced by the nature of the organic solvent, which was correlated to the diffusion potential of the diamine from the aqueous phase to the organic core through the polyamide membrane. Thus, spherical microcapsules with a size between 14 and 90 μm and a yield of 33% were prepared by using toluene as core solvent. Milder stirring during the polymerization step led to an improved microcapsule morphology; yet, the substantial improvement of mechanical properties remains a challenge.
Collapse
Affiliation(s)
- Angeliki D. Mytara
- Laboratory of Polymer Technology, School of Chemical Engineering, Zographou Campus, National Technical University of Athens, 15780 Athens, Greece; (A.D.M.); (K.C.); (V.N.); (C.D.P.)
| | - Konstantina Chronaki
- Laboratory of Polymer Technology, School of Chemical Engineering, Zographou Campus, National Technical University of Athens, 15780 Athens, Greece; (A.D.M.); (K.C.); (V.N.); (C.D.P.)
| | - Vasilis Nikitakos
- Laboratory of Polymer Technology, School of Chemical Engineering, Zographou Campus, National Technical University of Athens, 15780 Athens, Greece; (A.D.M.); (K.C.); (V.N.); (C.D.P.)
| | - Constantine D. Papaspyrides
- Laboratory of Polymer Technology, School of Chemical Engineering, Zographou Campus, National Technical University of Athens, 15780 Athens, Greece; (A.D.M.); (K.C.); (V.N.); (C.D.P.)
| | - Konstantinos Beltsios
- Department of Materials Science and Engineering, School of Chemical Engineering, Zographou Campus, National Technical University of Athens, 15780 Athens, Greece
| | - Stamatina Vouyiouka
- Laboratory of Polymer Technology, School of Chemical Engineering, Zographou Campus, National Technical University of Athens, 15780 Athens, Greece; (A.D.M.); (K.C.); (V.N.); (C.D.P.)
| |
Collapse
|
10
|
Healing Efficiency of CNTs-Modified-UF Microcapsules That Provide Higher Electrical Conductivity and EMI Shielding Properties. Polymers (Basel) 2021; 13:polym13162753. [PMID: 34451294 PMCID: PMC8400653 DOI: 10.3390/polym13162753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/05/2022] Open
Abstract
In this study, the effect of the addition of multi-walled carbon nanotubes (MWCNTs), at three percentages, into the urea-formaldehyde (UF) shell-wall of microcapsules on the healing efficiency is reported. The modified shell-wall created a conductive network in semi-conductive epoxies, which led to an improvement of the electromagnetic interference shielding effectiveness (EMI SE); utilizing the excellent electrical properties of the CNTs. The microcapsule’s mean diameter and shell wall were examined via scanning electron microscopy (SEM). Thermal stability was evaluated via thermogravimetric analysis (TGA). The healing efficiency was assessed in terms of fracture toughness, while the electrical properties were measured using impedance spectroscopy. The measurements of the EMI SE were carried out in the frequency range of 7–9 GHz. The derived results indicated that the incorporation of the CNTs resulted in a decrease in the mean size of the microcapsules, while the thermal stability remained unchanged. In particular, the introduction of 0.5% w/v CNTs did not affect the healing efficiency, while it increased the initial mechanical properties of the epoxy after the incorporation of the self-healing system by 27%. At the same time, it led to the formation of a conductive network, providing electrical conductivity to the epoxies. The experimental results showed that the SE increased on average 5 dB or more after introducing conductive microcapsules.
Collapse
|
11
|
Effect of Microcapsules of a Waterborne Core Material on the Properties of a Waterborne Primer Coating on a Wooden Surface. COATINGS 2021. [DOI: 10.3390/coatings11060657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microcapsules of a waterborne core material were prepared using a waterborne primer. The microcapsules of the waterborne core material were added to the waterborne primer to explore the effects of different core–shell ratios and mass fractions of the microcapsules on the property of the waterborne primer coating on the wooden surface. The results show that as the mass fraction of the microcapsules increased, the chromatic aberration increased by degrees, the glossiness decreased gradually, and the hardness increased by degrees, whilst—except for the coating with 0.50:1 microcapsules—the adhesion decreased gradually. When the mass fraction of the microcapsules increased, the impact resistance increased first and decreased later, or remained unchanged after reaching a certain value. When the mass fraction of the microcapsules increased, the elongation at the break increased first and decreased later. When the core–shell ratio was small and the mass fraction was between 5.0% and 15.0%, the coating had better liquid resistance. When the core–shell ratio was 0.67:1 and the mass fraction was 10.0%, the overall property of the coating on the Basswood was the best. The technology of microencapsulation provides a technical reference for the waterborne primer with self-repair qualities on the surface of wooden products.
Collapse
|
12
|
Yan X, Han Y, Yin T. Synthesis of Urea-Formaldehyde Microcapsule Containing Fluororesin and Its Effect on Performances of Waterborne Coatings on Wood Surface. Polymers (Basel) 2021; 13:polym13111674. [PMID: 34063997 PMCID: PMC8196724 DOI: 10.3390/polym13111674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
In order to self-repair the cracks of waterborne coatings on Basswood at room temperature, with fluororesin and waterborne coatings embedded in the shell structure of urea formaldehyde (UF) resin, the microcapsules were fabricated via in-situ polymerization, and the effect of microcapsules on the chroma, gloss, mechanics and repair effect for waterborne coatings on wood was discussed. The results indicated that the coating effect was the most significant when the ratio value of the core materials to the shell material of microcapsules in mass was 0.75, and the agglomeration of particles was the least and the surface was the smoothest when the content of microcapsules was 1.0%. It was negative between the gloss of the film and microcapsule content. The ratio value of the core materials to the shell material in mass and the amount of microcapsules had great influence on the film hardness and adhesion, but had little effect on the impact resistance. When the ratio value of the core materials to the shell material of microcapsules in mass was 0.65 and the addition amount was 4.0-10.0%, the aging resistance of the film was improved most significantly. When the ratio value of the core materials to the shell material of microcapsules in mass was 0.65 and the addition amount was 7.0%, the overall properties of topcoat film on Basswood board was the most significant. It is for the application of fluororesin microcapsules possessing self-repairing effect in waterborne coating on Basswood board that a technical groundwork is provided by this study.
Collapse
Affiliation(s)
- Xiaoxing Yan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China; (Y.H.); (T.Y.)
- Correspondence: ; Tel.: +86-25-8542-7528
| | - Yan Han
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China; (Y.H.); (T.Y.)
| | - Taiyu Yin
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China; (Y.H.); (T.Y.)
| |
Collapse
|
13
|
Preparation of Microcapsules of Urea Formaldehyde Resin Coated Waterborne Coatings and Their Effect on Properties of Wood Crackle Coating. COATINGS 2020. [DOI: 10.3390/coatings10080764] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Urea formaldehyde coated waterborne acrylic resin microcapsules with core-wall ratios of 0.30, 0.45, 0.60, 0.67, and 0.75, and mass fractions of 1.0%, 4.0%, 7.0%, 10.0%, 13.0%, and 16.0% were prepared by in situ polymerization. Their micro morphology was examined by scanning electron microscope and infrared spectrum measurements. The gloss, color difference, adhesion, hardness, and impact resistance of the coating surface were investigated in detail. The influence of the core-wall ratio on the performance of the waterborne crackle coating on the wood surface and the self-healing performance were examined. The results showed that when the core-wall ratio of microcapsules was 0.67, an evenly dispersed powder state with particle size of about 3 μm microcapsules was obtained, and the highest coverage was achieved. When the mass fraction of the microcapsule was 4.0%, it had the optimum effect on surface performance. The adhesion was grade two, gloss was 10.9%, impact resistance was 15 kg·cm, chromatic aberration was 1.0, hardness was H, and it had the best effect on the healing of microcracks in the wood coating. As the coating added with microcapsules can inhibit the microcracks of the coating and plays a protective role for the substrate to achieve a self-healing effect, this study lays a technical foundation for the self-healing of surface cracks in coatings for wood.
Collapse
|
14
|
Parsaee S, Mirabedini SM, Farnood R, Alizadegan F. Development of self‐healing coatings based on urea‐formaldehyde/polyurethane microcapsules containing epoxy resin. J Appl Polym Sci 2020. [DOI: 10.1002/app.49663] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sadaf Parsaee
- Iran Polymer and Petrochemical Institute Tehran Iran
- Department of chemistry, East Tehran Branch Islamic Azad University Tehran Iran
| | - S. Mojtaba Mirabedini
- Iran Polymer and Petrochemical Institute Tehran Iran
- Department of Chemical Engineering and Applied Chemistry University of Toronto Toronto Canada
| | - Ramin Farnood
- Department of Chemical Engineering and Applied Chemistry University of Toronto Toronto Canada
| | | |
Collapse
|