1
|
Li W, Guan J, Fang H, Jiang Y, Zhong Y, Shi S, Cheng F. Continuously enhanced versatile nanocellulose films enabled by sustaining CO 2 capture and in-situ calcification. Carbohydr Polym 2024; 342:122362. [PMID: 39048191 DOI: 10.1016/j.carbpol.2024.122362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 07/27/2024]
Abstract
Cellulose possesses numerous favorable peculiarities to replace petroleum-based materials. Nevertheless, the extremely high hygroscopicity of cellulose severely degrades their mechanical performance, which is a major obstacle to the production of high-strength, multi-functional cellulose-based materials. In this work, a simple strategy was proposed to fabricate durable versatile nanocellulose films based on sustaining CO2 capture and in-situ calcification. In this strategy, Ca(OH)2 was in-situ formed on the films by Ca2+ crosslinking and subsequent introduction of OH-, which endowed the films with high mechanical strength and carbon sequestration ability. The following CO2 absorption process continuously improved the water resistance and durability of the films, and enabled them to maintain excellent mechanical properties and promising light management ability. After a 30-day CO2 absorption process, the water contact angle of the films can be increased from 43° to 79°, and the weight gain rate of the films in a 30 h water-absorption process can be sharply decreased from 331.2 % to 52.2 %. The films could maintain a high tensile strength of 340 MPa, and result in a CO2 absorption rate of 3.5 mmol/gcellulose after 30 days. In this study, the improvement of durability and carbon sequestration of nanocellulose films was achieved by a simple and effective method.
Collapse
Affiliation(s)
- Wenjing Li
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jilun Guan
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Huayang Fang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yuheng Jiang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yu Zhong
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Shaohong Shi
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Fangchao Cheng
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
2
|
Liu Y, Ma M, Shen Y, Zhao Z, Wang X, Wang J, Pan J, Wang D, Wang C, Li J. Polyhedral Oligomeric Sesquioxane Cross-Linked Chitosan-Based Multi-Effective Aerogel Preparation and Its Water-Driven Recovery Mechanism. Gels 2024; 10:279. [PMID: 38667698 PMCID: PMC11049377 DOI: 10.3390/gels10040279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
The use of environmentally friendly and non-toxic biomass-based interfacial solar water evaporators has been widely reported as a method for water purification in recent years. However, the poor stability of the water transport layer made from biomass materials and its susceptibility to deformation when exposed to harsh environments limit its practical application. To address this issue, water-driven recovery aerogel (PCS) was prepared by cross-linking epoxy-based polyhedral oligomeric silsesquioxane (EP-POSS) epoxy groups with chitosan (CS) amino groups. The results demonstrate that PCS exhibits excellent water-driven recovery performance, regaining its original volume within a very short time (1.9 s) after strong compression (ε > 80%). Moreover, PCS has a water absorption rate of 2.67 mm s-1 and exhibits an excellent water absorption capacity of 22.09 g g-1 even after ten cycles of absorption-removal. Furthermore, a photothermal evaporator (PCH) was prepared by loading the top layer with hydrothermally reacted tannins (HAs) and Zn2+ complexes. The results indicate that PCH achieves an impressive evaporation rate of 1.89 kg m-2 h-1 under one sun illumination. Additionally, due to the antimicrobial properties of Zn2+, PCH shows inhibitory effects against Staphylococcus aureus and Escherichia coli, thereby extending the application of solar water evaporators to include antimicrobial purification in natural waters.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (Y.L.); (M.M.); (Y.S.); (Z.Z.); (X.W.); (J.W.); (J.P.); (C.W.); (J.L.)
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Mingjian Ma
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (Y.L.); (M.M.); (Y.S.); (Z.Z.); (X.W.); (J.W.); (J.P.); (C.W.); (J.L.)
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Yuan Shen
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (Y.L.); (M.M.); (Y.S.); (Z.Z.); (X.W.); (J.W.); (J.P.); (C.W.); (J.L.)
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Zhengdong Zhao
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (Y.L.); (M.M.); (Y.S.); (Z.Z.); (X.W.); (J.W.); (J.P.); (C.W.); (J.L.)
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Xuefei Wang
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (Y.L.); (M.M.); (Y.S.); (Z.Z.); (X.W.); (J.W.); (J.P.); (C.W.); (J.L.)
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Jiaqi Wang
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (Y.L.); (M.M.); (Y.S.); (Z.Z.); (X.W.); (J.W.); (J.P.); (C.W.); (J.L.)
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Jiangbo Pan
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (Y.L.); (M.M.); (Y.S.); (Z.Z.); (X.W.); (J.W.); (J.P.); (C.W.); (J.L.)
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Di Wang
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (Y.L.); (M.M.); (Y.S.); (Z.Z.); (X.W.); (J.W.); (J.P.); (C.W.); (J.L.)
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Chengyu Wang
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (Y.L.); (M.M.); (Y.S.); (Z.Z.); (X.W.); (J.W.); (J.P.); (C.W.); (J.L.)
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Jian Li
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (Y.L.); (M.M.); (Y.S.); (Z.Z.); (X.W.); (J.W.); (J.P.); (C.W.); (J.L.)
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
3
|
Je M, Son HB, Han YJ, Jang H, Kim S, Kim D, Kang J, Jeong JH, Hwang C, Song G, Song HK, Ha TS, Park S. Formulating Electron Beam-Induced Covalent Linkages for Stable and High-Energy-Density Silicon Microparticle Anode. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305298. [PMID: 38233196 DOI: 10.1002/advs.202305298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/12/2023] [Indexed: 01/19/2024]
Abstract
High-capacity silicon (Si) materials hold a position at the forefront of advanced lithium-ion batteries. The inherent potential offers considerable advantages for substantially increasing the energy density in batteries, capable of maximizing the benefit by changing the paradigm from nano- to micron-sized Si particles. Nevertheless, intrinsic structural instability remains a significant barrier to its practical application, especially for larger Si particles. Here, a covalently interconnected system is reported employing Si microparticles (5 µm) and a highly elastic gel polymer electrolyte (GPE) through electron beam irradiation. The integrated system mitigates the substantial volumetric expansion of pure Si, enhancing overall stability, while accelerating charge carrier kinetics due to the high ionic conductivity. Through the cost-effective but practical approach of electron beam technology, the resulting 500 mAh-pouch cell showed exceptional stability and high gravimetric/volumetric energy densities of 413 Wh kg-1, 1022 Wh L-1, highlighting the feasibility even in current battery production lines.
Collapse
Affiliation(s)
- Minjun Je
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hye Bin Son
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yu-Jin Han
- Ulsan Advanced Energy Technology R&D Center, Korea Institute of Energy Research (KIER), Ulsan, 44776, Republic of Korea
| | - Hangeol Jang
- Ulsan Advanced Energy Technology R&D Center, Korea Institute of Energy Research (KIER), Ulsan, 44776, Republic of Korea
- School of Materials Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Sungho Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Dongjoo Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jieun Kang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | | | - Chihyun Hwang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science & Technology (UNIST), Ulsan, 44919, Republic of Korea
- Advanced Batteries Research Center, Korea Electronics Technology Institute (KETI), Gyeonggi-do, 13509, Republic of Korea
| | - Gyujin Song
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Ulsan Advanced Energy Technology R&D Center, Korea Institute of Energy Research (KIER), Ulsan, 44776, Republic of Korea
| | - Hyun-Kon Song
- School of Energy and Chemical Engineering, Ulsan National Institute of Science & Technology (UNIST), Ulsan, 44919, Republic of Korea
| | | | - Soojin Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
4
|
Li J, Wang W, Wu H, Peng F, Gao H, Guan Y. Preparation and characterization of hemicellulose films reinforced with amino polyhedral oligomeric silsesquioxane for biodegradable packaging. Int J Biol Macromol 2024; 254:127795. [PMID: 37939756 DOI: 10.1016/j.ijbiomac.2023.127795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
Biomass is one of the powerful alternatives to petroleum-based packaging materials. Herein, carboxymethyl hemicellulose (CMH) based films (CPF) were prepared using a convenient strategy. The chains of CMH provided the necessary supporting matrix, and the aminopropyl polyhedral oligomeric silsesquioxane (POSS-NH2) regulated the thermal and barrier properties of the CPF. The secondary amide groups and hydrogen bond were appeared in chemical structure, and SEM-EDS results indicated the preferable dispersion and compatibility of POSS-NH2 in CPFs. The thermal degradation temperature (Tonset > 260 °C), the coefficient of linear thermal expansion and glass transition temperature (Tg > 130 °C) have been improved by introduction of POSS-NH2. The tensile strength of CPF showed a higher level of 39.43 MPa with the POSS-NH2 loading of 20 wt%, which was 18.8 % higher than that of CMH film. More importantly, water vapor barrier property of films almost improved by two times, and its value is reduced to 18.82 g m-2 h-1. The shelf life of blueberry was effectively extended by the CPF coating for one week compared with commercial PE film. Therefore, CPF films displayed effective thermal performances, water vapor barrier characteristic and biodegradability, which might be exploited in packaging material for food application.
Collapse
Affiliation(s)
- Jing Li
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, PR China
| | - Wei Wang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, PR China
| | - Han Wu
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, PR China
| | - Feng Peng
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China.
| | - Hui Gao
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, PR China.
| | - Ying Guan
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
5
|
Chen X, Magniez K, Zhang P, Kujawski W, Chen Z, Dumée LF. A "Green" Stirring Plasma Functionalization Strategy for Controllable Oxygen-Containing Functional Groups on Octa-Methyl POSS Microstructure. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2770. [PMID: 37887921 PMCID: PMC10609975 DOI: 10.3390/nano13202770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
The distinctive cage-like structure of polyhedral oligomeric silsesquioxane (POSS) materials makes them highly effective fillers in composite membranes for separation applications. However, realizing their full potential in the application often requires specific surface functionalization with various groups. However, this requirement remains challenging owing to the limitations of wet-chemistry approaches, which frequently result in the generation of hazardous chemical by-products. In this paper, a "green" stirring plasma strategy is presented for the functionalization of octa-methyl POSS sub-micron particles into designable oxygen-containing functional groups using a low-pressure oxygen plasma from combined continuous wave and pulsed (CW+P) modes. Plasma from oxygen gas with CW mode offers highly oxygen-reactive species to continuously etch and activate the surface of the POSS. The resulting pulsed plasma assists in grafting more reactive oxygen species onto the active methyl groups of the POSS to form specific oxygen-containing functional groups including hydroxyl and carboxyl. A precise control of nearly one hydroxyl or one carboxyl group at the corner of the cage structure of the POSS is demonstrated, without damaging the core. Therefore, the plasma process discussed in this work is suggested by the authors as controllable fundamental research for the surface functionalization of sub-micron particles, promoting a more environmentally friendly pathway for the preparation of designable fillers.
Collapse
Affiliation(s)
- Xiao Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (X.C.); (P.Z.)
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572024, China
- Institute for Frontier Materials, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC 3216, Australia;
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland;
| | - Kevin Magniez
- Institute for Frontier Materials, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC 3216, Australia;
- Textor Technologies PTY LTD, 41 Tullamarine Park Road, Tullamarine, VIC 3043, Australia
| | - Pengchao Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (X.C.); (P.Z.)
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572024, China
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland;
| | - Zhiqiang Chen
- Institute for Frontier Materials, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC 3216, Australia;
| | - Ludovic F. Dumée
- Khalifa University, Department of Chemical Engineering, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on 2D Nanomaterials, Arzanah Precinct, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Mehmandoust M, Li G, Erk N. Biomass-Derived Carbon Materials as an Emerging Platform for Advanced Electrochemical Sensors: Recent Advances and Future Perspectives. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mohammad Mehmandoust
- Department of Analytical Chemistry, Ankara University, Faculty of Pharmacy, 06560 Ankara, Turkey
| | - Guangli Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Nevin Erk
- Department of Analytical Chemistry, Ankara University, Faculty of Pharmacy, 06560 Ankara, Turkey
| |
Collapse
|
7
|
Hu S, Chen X, Bin Rusayyis MA, Purwanto NS, Torkelson JM. Reprocessable polyhydroxyurethane networks reinforced with reactive polyhedral oligomeric silsesquioxanes (POSS) and exhibiting excellent elevated temperature creep resistance. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Liu Y, Chaiprasert T, Ouali A, Unno M. Well-defined cyclic silanol derivatives. Dalton Trans 2022; 51:4227-4245. [PMID: 35191910 DOI: 10.1039/d1dt04270j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cyclic silanol derivatives (CSDs), possessing siloxane rings consisting of T-unit silicon and oxygen atoms, are considered efficient precursors for the preparation of versatile well-defined building blocks of hybrid materials such as cyclic, cage- or ladder-type SQs. This review provides an outline of the main synthetic routes to numerous stereoregular CSDs with different sizes of siloxane rings since the first example of CSDs reported by Brown et al. in 1965. The typical reaction conditions and chemical shifts of 29Si NMR of all mentioned CSDs in this review are summarized in tables and schemes to recapitulate the state of the art. The synthesis of all-cis-cyclotetrasiloxanes (T4), the most investigated CSDs, and their functionalization by different organic reactions to access various all-cis-T4 with functional groups are methodically presented. Moreover, the potential of CSDs in multiple application fields is discussed to show the possible research directions of this family of compounds in the future.
Collapse
Affiliation(s)
- Yujia Liu
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan.
| | - Thanawat Chaiprasert
- Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road Pathum Wan Wang Mai, Bangkok 10330, Thailand
| | - Armelle Ouali
- ICGM, Univ Montpellier, CNRS, ENSCM, 1919 route de Mende, Montpellier 34293 Cedex 5, France
| | - Masafumi Unno
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan.
| |
Collapse
|
9
|
New Ceramics Precursors Containing Si and Ge Atoms-Cubic Germasilsesquioxanes-Synthesis, Thermal Decomposition and Spectroscopic Analysis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041441. [PMID: 35209229 PMCID: PMC8880693 DOI: 10.3390/molecules27041441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/26/2022]
Abstract
Compounds of the silsesquioxane type are attractive material precursors. High molecular weights and well-defined structures predestine them to create ceramics with a controlled composition at the molecular level. New molecular precursors of ceramic materials with the ratio of Si:Ge = 7:1 atoms were obtained. The influence of organic substituents on the thermal decomposition processes of germasilsesquioxanes was investigated. Some of the structures obtained are characterized by a high non-volatile residue after the thermal decomposition process. The introduction of the germanium atom to the structure of the silsesquioxane molecular cage reduces the thermal stability of the obtained structures.
Collapse
|
10
|
Liu Y, Koizumi K, Takeda N, Unno M, Ouali A. Synthesis of Octachloro- and Octaazido-Functionalized T 8-Cages and Application to Recyclable Palladium Catalyst. Inorg Chem 2022; 61:1495-1503. [PMID: 34995060 DOI: 10.1021/acs.inorgchem.1c03209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Unprecedented T8-cages bearing eight chloromethyldimethylsilylethyl substituents were obtained in excellent yield from the readily and commercially available octavinylsilsesquioxane. The chloro groups can be quantitatively substituted by azido ones to yield the corresponding octaazido T8 without rearrangement of the cage. The syntheses of both functionalizable POSSs are scalable (gram-scale). The azido-functionalized T8 compound constitutes a versatile building block able to undergo copper-catalyzed azide-alkyne [3 + 2] cycloaddition. As a proof of concept, it was allowed to react with 2-ethynylpyridine to give rise to a multidentate ligand bearing eight 2-pyridyl-triazole moieties (N,N-pincers). The coordination of the eight N,N-bidentate ligands to palladium(II) led to the corresponding octa-palladium complex shown to successfully promote the coupling reaction between anisole and phenylboronic acid. The low solubility of this catalytic complex in the reaction medium enabled (or facilitated or made possible) its straightforward recovery and recycling with four cycles with no loss of activity.
Collapse
Affiliation(s)
- Yujia Liu
- Gunma University Initiative for Advanced Research (GIAR)-International Open Laboratory with ICGM France, Kiryu 376-8515, Japan.,Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Kyoka Koizumi
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Nobuhiro Takeda
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Masafumi Unno
- Gunma University Initiative for Advanced Research (GIAR)-International Open Laboratory with ICGM France, Kiryu 376-8515, Japan.,Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Armelle Ouali
- Gunma University Initiative for Advanced Research (GIAR)-International Open Laboratory with ICGM France, Kiryu 376-8515, Japan.,ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34296, France
| |
Collapse
|
11
|
Liu Y, Kigure M, Okawa R, Takeda N, Unno M, Ouali A. Synthesis and characterization of tetrathiol-substituted double-decker or ladder silsesquioxane nano-cores. Dalton Trans 2021; 50:3473-3478. [PMID: 33660737 DOI: 10.1039/d1dt00042j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tetra(3-mercaptopropyl)-silsesquioxanes with double-decker (DDSQ) or ladder nano-cores were easily prepared from the corresponding tetraallyl derivatives through fast and convenient thiol-ene reactions. An additional tetrathiol-DDSQ with more flexible arms was also synthesized in high yield from the corresponding tetrachloro-DDSQ derivative. The three novel tetrathiol silsesquioxanes described represent versatile building blocks for the preparation of hybrid organic-inorganic materials.
Collapse
Affiliation(s)
- Yujia Liu
- Gunma University Initiative for Advanced Research (GIAR)-International Open Laboratory with ICGM, France.
| | - Mana Kigure
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology. Gunma University, Kiryu 376-8515, Japan
| | - Riho Okawa
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology. Gunma University, Kiryu 376-8515, Japan
| | - Nobuhiro Takeda
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology. Gunma University, Kiryu 376-8515, Japan
| | - Masafumi Unno
- Gunma University Initiative for Advanced Research (GIAR)-International Open Laboratory with ICGM, France. and Department of Chemistry and Chemical Biology, Graduate School of Science and Technology. Gunma University, Kiryu 376-8515, Japan
| | - Armelle Ouali
- Gunma University Initiative for Advanced Research (GIAR)-International Open Laboratory with ICGM, France. and ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34296, France
| |
Collapse
|