1
|
Lee CY, Hsu CC, Wang CH, Jeng US, Tung SH, Hu CC, Liu CL. Exploring Pyrazine-Based Organic Redox Couples for Enhanced Thermoelectric Performance in Wearable Energy Harvesters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407622. [PMID: 39358979 DOI: 10.1002/smll.202407622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/13/2024] [Indexed: 10/04/2024]
Abstract
Thermoelectric generators (TEGs) based on thermogalvanic cells can convert low-temperature waste heat into electricity. Organic redox couples are well-suited for wearable devices due to their nontoxicity and the potential to enhance the ionic Seebeck coefficient through functional-group modifications. Pyrazine-based organic redox couples with different functional groups is comparatively analyzed through cyclic voltammetry under varying temperatures. The results reveal substantial differences in entropy changes with temperature and highlight 2,5-pyrazinedicarboxylic acid dihydrate (PDCA) as the optimal candidate. How the functional groups of the pyrazine compounds impact the ionic Seebeck coefficient is examined, by calculating the electrostatic potential based on density functional theory. To evaluate the thermoelectric properties, PDCA is integrated in different concentrations into a double-network hydrogel comprising poly(vinyl alcohol) and polyacrylamide. The resulting champion device exhibits an impressive ionic Seebeck coefficient (Si) of 2.99 mV K-1, with ionic and thermal conductivities of ≈67.6 µS cm-1 and ≈0.49 W m-1 K-1, respectively. Finally, a TEG is constructed by connecting 36 pieces of 20 × 10-3 m PDCA-soaked hydrogel in series. It achieves a maximum power output of ≈0.28 µW under a temperature gradient of 28.3 °C and can power a small light-emitting diode. These findings highlight the significant potential of TEGs for wearable devices.
Collapse
Affiliation(s)
- Chia-Yu Lee
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Ching-Chieh Hsu
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chia-Hsin Wang
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chi-Chang Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
2
|
Shi Y, Liu J, Deng J, Cao L, Li L, Shao J, Li J, Xiong D. Tough Bonding of PVA Hydrogel-on-Textured Titanium Alloy with Varying Texture Densities in Swollen State. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13773-13783. [PMID: 38920266 DOI: 10.1021/acs.langmuir.4c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Cartilage defects in large joints are a common occurrence in numerous degenerative diseases, especially in osteoarthritis. The hydrogel-on-metal composite has emerged as a potential candidate material, as hydrogels, to some extent, replicate the composition of human articular cartilage consisting of collagen fibers and proteoglycans. However, achieving tough bonding between the hydrogel and titanium alloy remains a significant challenge due to the swelling of the hydrogel in a liquid medium. This swelling results in reduced interfacial toughness between the hydrogel and titanium alloy, limiting its potential clinical applications. Herein, our approach aimed to achieve durable bonding between a hydrogel and a titanium alloy composite in a swollen state by modifying the surface texture of the titanium alloy. Various textures, including circular and triangular patterns, with dimple densities ranging from 10 to 40%, were created on the surface of the titanium alloy. Subsequently, poly(vinyl alcohol) (PVA) hydrogel was deposited onto the textured titanium alloy using a casting-drying method. Our findings revealed that PVA hydrogel on the textured titanium alloy with a 30% texture density exhibited the highest interfacial toughness in the swollen state, measuring at 1300 J m-2 after reaching equilibrium swelling in deionized water, which is a more than 2-fold increase compared to the hydrogel on a smooth substrate. Furthermore, we conducted an analysis of the morphologies of the detached hydrogel from the textured titanium alloy after various swelling durations. The results indicated that interfacial toughness could be enhanced through mechanical interlocking, facilitated by the expanded volume of the hydrogel protrusions as the swelling time increased. Collectively, our study demonstrates the feasibility of achieving tough bonding between a hydrogel and a metal substrate in a liquid environment. This research opens up promising avenues for designing soft/hard heterogeneous materials with strong adhesive properties.
Collapse
Affiliation(s)
- Yan Shi
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Jia Liu
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Jinhai Deng
- School of Cancer & Pharmaceutical Sciences, King's College London, London SE1 1UL, United Kingdom
| | - Lulu Cao
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing 100044, China
| | - Long Li
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Jiaojing Shao
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Jianliang Li
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dangsheng Xiong
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
3
|
Wang Z, Meng F, Zhang Y, Guo H. Low-Friction Hybrid Hydrogel with Excellent Mechanical Properties for Simulating Articular Cartilage Movement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2368-2379. [PMID: 36725688 DOI: 10.1021/acs.langmuir.2c03109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hydrogels, which can withstand large deformations and have stable chemical properties, are considered a potential material for cartilage repair. However, hydrogels still face some challenges regarding their mechanical properties, tribological behavior, and biocompatibility. Thus, we synthesized a hybrid hydrogel by means of chemical cross-linking and transesterification using glycerol ethoxylate (GE) and zwitterionic polysulfobetaine methacrylate (PSBMA) as raw materials. The hybrid hydrogel showed excellent compressive stress at approximately 3.50 MPa and low loss factors (0.023-0.049). Moreover, because GE has good water binding properties, helping to form a stable hydration layer and maintain low energy dissipation, a low friction coefficient (μ ≈ 0.028) was obtained with the "soft-soft contact mode" of a hydrogel hemisphere and hydrogel disc under reciprocating motion. In vitro cytotoxicity, skin sensitization, and irritation reaction tests were carried out to show good biocompatibility of the GE-PSBMA hybrid hydrogel. In this study, a hybrid hydrogel with no potential cytotoxicity, strong compressive capacity, and excellent lubricity was obtained to provide a potential alternative for developing polymer hybrids, as well as demonstrating an idea for the application of hybrid hydrogels in cartilage replacement.
Collapse
Affiliation(s)
- Zhongnan Wang
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing100044, China
| | - Fanjie Meng
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing100044, China
| | - Yue Zhang
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing100044, China
| | - Hui Guo
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing100044, China
| |
Collapse
|
4
|
Chen Y, Song J, Wang S, Liu W. Cationic Modified PVA Hydrogels Provide Low Friction and Excellent Mechanical Properties for Potential Cartilage and Orthopedic Applications. Macromol Biosci 2023; 23:e2200275. [PMID: 36254859 DOI: 10.1002/mabi.202200275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/27/2022] [Indexed: 01/19/2023]
Abstract
Poly(vinyl alcohol) (PVA) hydrogel is a promising candidate for articular cartilage repair yet restrained by its mechanical strength and tribological property. Current work reports a newly designed PVA-based hydrogel modified by glycerol (g), bacterial cellulose (BC), and a cationic polymer poly (diallyl dimethylammonium chloride) (PDMDAAC), which is a novel cationic strengthening choice. The resultant PVA-g-BC-PDMDAAC hydrogel proves the effectiveness of this modification scheme, with a confined compressive modulus of 19.56 MPa and a friction coefficient of 0.057 at a joint-equivalent load and low sliding speed. The water content, swelling property, and creep behavior of this hydrogel are also within a cartilage-mimetic range. The properties of PVA-based hydrogels before PDMDAAC addition are likewise studied as a cross-reference. Besides, PDMDAAC-modified PVA hydrogel realizes ideal mechanical and lubrication properties with a relatively low PVA concentration (10 wt.%) and facile fabrication process, which lays a foundation for mass production and marketization in the future.
Collapse
Affiliation(s)
- Yuru Chen
- Department of Mechanical Engineering, Tsinghua University, 100084, Beijing, China.,Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Jian Song
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, 518107, Shenzhen, China
| | - Song Wang
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, 518057, Shenzhen, China
| | - Weiqiang Liu
- Department of Mechanical Engineering, Tsinghua University, 100084, Beijing, China.,Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China.,Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, 518057, Shenzhen, China
| |
Collapse
|
5
|
Improved mechanical and tribological properties of PAAm/PVA hydrogel-Ti6Al4V alloy configuration for cartilage repair. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Ye Z, Lu H, Jia E, Chen J, Fu L. Organic solvents enhance polyvinyl alcohol/polyethylene glycol self‐healing hydrogels for artificial cartilage. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zishuo Ye
- Group of Mechanical and Biomedical Engineering College of Mechanical and Electronic Engineering, Xi'an Polytechnic University Xi'an China
| | - Hailin Lu
- Group of Mechanical and Biomedical Engineering College of Mechanical and Electronic Engineering, Xi'an Polytechnic University Xi'an China
| | - Endong Jia
- Group of Mechanical and Biomedical Engineering College of Mechanical and Electronic Engineering, Xi'an Polytechnic University Xi'an China
| | - Jian Chen
- Group of Mechanical and Biomedical Engineering College of Mechanical and Electronic Engineering, Xi'an Polytechnic University Xi'an China
| | - Lifeng Fu
- Department of Orthopadics Shaoxing China
| |
Collapse
|
7
|
Chen Y, Song J, Wang S, Liu W. PVA-Based Hydrogels: Promising Candidates for Articular Cartilage Repair. Macromol Biosci 2021; 21:e2100147. [PMID: 34272821 DOI: 10.1002/mabi.202100147] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/07/2021] [Indexed: 12/16/2022]
Abstract
The complex, gradient physiological structure of articular cartilage is a severe hindrance of its self-repair, leaving the clinical treatment of cartilage defects a demanding issue to be addressed. Currently applied tissue engineering treatments and traditional non-tissue engineering treatments have different limitations, for example, cell dedifferentiation, immune rejection, and prosthesis-related complications. Thus, studies have been focusing on seeking promising candidates for novel cartilage repair methods. Polyvinyl alcohol (PVA) hydrogels with excellent biocompatibility and tunable material properties have become the alternatives. For pure PVA hydrogels, the mechanical strength and lubricity are not capable of replacing articular cartilage until proper modifications are done. This paper summarizes the research progress in PVA hydrogels, including the preparation, modification, and cartilage-repair-aimed biomimetic improvements. Design guidance of PVA hydrogels is put forward as assistance to functional hydrogel preparation. Finally, the prospects and main obstacles of PVA hydrogels are discussed.
Collapse
Affiliation(s)
- Yuru Chen
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jian Song
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Song Wang
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, China
| | - Weiqiang Liu
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, China.,Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
8
|
Li Z, Xu W, Wang X, Jiang W, Ma X, Wang F, Zhang C, Ren C. Fabrication of PVA/PAAm IPN hydrogel with high adhesion and enhanced mechanical properties for body sensors and antibacterial activity. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110253] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|