1
|
Pu M, Fang C, Zhou X, Wang D, Lin Y, Lei W, Li L. Recent Advances in Environment-Friendly Polyurethanes from Polyols Recovered from the Recycling and Renewable Resources: A Review. Polymers (Basel) 2024; 16:1889. [PMID: 39000744 PMCID: PMC11244063 DOI: 10.3390/polym16131889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
Polyurethane (PU) is among the most universal polymers and has been extensively applied in many fields, such as construction, machinery, furniture, clothing, textile, packaging and biomedicine. Traditionally, as the main starting materials for PU, polyols deeply depend on petroleum stock. From the perspective of recycling and environmental friendliness, advanced PU synthesis, using diversified resources as feedstocks, aims to develop versatile products with excellent properties to achieve the transformation from a fossil fuel-driven energy economy to renewable and sustainable ones. This review focuses on the recent development in the synthesis and modification of PU by extracting value-added monomers for polyols from waste polymers and natural bio-based polymers, such as the recycled waste polymers: polyethylene terephthalate (PET), PU and polycarbonate (PC); the biomaterials: vegetable oil, lignin, cashew nut shell liquid and plant straw; and biomacromolecules: polysaccharides and protein. To design these advanced polyurethane formulations, it is essential to understand the structure-property relationships of PU from recycling polyols. In a word, this bottom-up path provides a material recycling approach to PU design for printing and packaging, as well as biomedical, building and wearable electronics applications.
Collapse
Affiliation(s)
- Mengyuan Pu
- School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China; (M.P.); (D.W.)
- School of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.L.); (W.L.)
| | - Changqing Fang
- School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China; (M.P.); (D.W.)
- School of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.L.); (W.L.)
| | - Xing Zhou
- School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China; (M.P.); (D.W.)
- School of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.L.); (W.L.)
| | - Dong Wang
- School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China; (M.P.); (D.W.)
- School of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.L.); (W.L.)
| | - Yangyang Lin
- School of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.L.); (W.L.)
| | - Wanqing Lei
- School of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.L.); (W.L.)
| | - Lu Li
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi’an 710021, China;
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi’an 710021, China
| |
Collapse
|
2
|
Olivito F, Jagdale P, Oza G. Synthesis and Biodegradation Test of a New Polyether Polyurethane Foam Produced from PEG 400, L-Lysine Ethyl Ester Diisocyanate (L-LDI) and Bis-hydroxymethyl Furan (BHMF). TOXICS 2023; 11:698. [PMID: 37624203 PMCID: PMC10457969 DOI: 10.3390/toxics11080698] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
In this paper we produced a bio-based polyether-polyurethane foam PU1 through the prepolymer method. The prepolymer was obtained by the reaction of PEG 400 with L-Lysine ethyl ester diisocyanate (L-LDI). The freshly prepared prepolymer was extended with 2,5-bis(hydroxymethyl)furan (BHMF) to produce the final polyurethane. The renewable chemical BHMF was produced through the chemical reduction of HMF by sodium borohydride. HMF was produced by a previously reported procedure from fructose using choline chloride and ytterbium triflate. To evaluate the degradation rate of the foam PU1, we tested the chemical stability by soaking it in a 10% sodium hydroxide solution. The weight loss was only 12% after 30 days. After that, we proved that enzymatic hydrolysis after 30 days using cholesterol esterase was more favoured than hydrolysis with NaOH, with a weight loss of 24%, probably due to the hydrophobic character of the PU1 and a better adhesion of the enzyme on the surface with respect to water. BHMF was proved to be of crucial importance for the enzymatic degradation assay at 37 °C in phosphate buffer solution, because it represents the breaking point inside the polyurethane chain. Soil burial degradation test was monitored for three months to evaluate whether the joint activity of sunlight, climate changes and microorganisms, including bacteria and fungi, could further increase the biodegradation. The unexpected weight loss after soil burial degradation test was 45% after three months. This paper highlights the potential of using sustainable resources to produce new biodegradable materials.
Collapse
Affiliation(s)
- Fabrizio Olivito
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Cosenza, Italy
| | - Pravin Jagdale
- Circular Carbon GmbH, Europaring 4, 94315 Straubing, Germany;
| | - Goldie Oza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Pedro Escobedo 76703, Mexico;
| |
Collapse
|
3
|
Binesh N, Farhadian N, Mohammadzadeh A, Karimi M. Dual‐drug delivery of sodium ceftriaxone and metronidazole by applying salt‐assisted chitosan nanoparticles: Stability, drug release, and time‐kill assay study against
Bacteroides fragilis. J Appl Polym Sci 2023. [DOI: 10.1002/app.53284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Nafiseh Binesh
- Chemical Engineering Department, Faculty of Engineering Ferdowsi University of Mashhad Mashhad Iran
| | - Nafiseh Farhadian
- Chemical Engineering Department, Faculty of Engineering Ferdowsi University of Mashhad Mashhad Iran
| | - Alireza Mohammadzadeh
- Microbiology Department, Faculty of Medicine Gonabad University of Medical Sciences Gonabad Iran
| | - Mohammad Karimi
- Emergency Medicine Department Birjand University of Medical Sciences Birjand Iran
| |
Collapse
|
4
|
Zhang T, Nie M, Li Y. Current Advances and Future Perspectives of Advanced Polymer Processing for Bone and Tissue Engineering: Morphological Control and Applications. Front Bioeng Biotechnol 2022; 10:895766. [PMID: 35694231 PMCID: PMC9178098 DOI: 10.3389/fbioe.2022.895766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/11/2022] [Indexed: 01/13/2023] Open
Abstract
Advanced polymer processing has received extensive attention due to its unique control of complex force fields and customizability, and has been widely applied in various fields, especially in preparation of functional devices for bioengineering and biotechnology. This review aims to provide an overview of various advanced polymer processing techniques including rotation extrusion, electrospinning, micro injection molding, 3D printing and their recent progresses in the field of cell proliferation, bone repair, and artificial blood vessels. This review dose not only attempts to provide a comprehensive understanding of advanced polymer processing, but also aims to guide for design and fabrication of next-generation device for biomedical engineering.
Collapse
|
5
|
Bonelli J, Ortega-Forte E, Vigueras G, Bosch M, Cutillas N, Rocas J, Ruiz J, Marchan V. Polyurethane-polyurea hybrid nanocapsules as efficient delivery systems of anticancer Ir(III) metallodrugs. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01542g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclometalated Ir(III) complexes hold great promise as an alternative to platinum metallodrugs for therapy and diagnosis of cancer. However, low aqueous solubility and poor cell membrane permeability difficult in vivo...
Collapse
|
6
|
Yao Y, Liu B, Xu Z, Yang J, Liu W. An unparalleled H-bonding and ion-bonding crosslinked waterborne polyurethane with super toughness and unprecedented fracture energy. MATERIALS HORIZONS 2021; 8:2742-2749. [PMID: 34494048 DOI: 10.1039/d1mh01217g] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Self-healing polyurethane elastomers have been extensively studied; however, developing an eco-friendly self-healable waterborne polyurethane (WPU) with exceptional mechanical properties remains a great challenge. Herein, we report healable, and highly tough WPU elastomers with unprecedented crack tolerance by introducing the concerted interactions of strong multiple H-bonds and ionic bonds in the network. The WPU elastomer demonstrated that the microphase separation structure contributes to an ultrahigh tensile strength (≈58 MPa), super toughness (≈456 MJ m-3), and unprecedented record fracture energy (≈320 kJ m-2). Due to the dynamic reconstruction of reversible H-bonds and ionic bonds, the WPU elastomer demonstrates a robust self-healability at 50 °C, allowing complete recovery of mechanical properties. Importantly, the thermoplasticity and reprocessability of WPUs enable direct 3D printing of different objects and electrospinning of tubes, showing great potential for expanding their application scope in soft robots and artificial stents.
Collapse
Affiliation(s)
- Yuan Yao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Bo Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Ziyang Xu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Jianhai Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
7
|
Liu F, Qu W, Zhang J, Liu J, Zhu Q, Yue T, Xu X, Ma N, Ma J, Sun Y, Tang Y, Zhang W, Chu PK. Cationic Alternating Polypeptide Fixed on Polyurethane at Multiple Sites for Excellent Antibacterial and Antifouling Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10657-10667. [PMID: 34449220 DOI: 10.1021/acs.langmuir.1c00997] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bacterial infection and blockage are severe problems for polyurethane (PU) catheters and there is an urgent demand for surface-functionalized polyurethane. Herein, a cationic alternating copolymer comprising allyl-substituted ornithine and glycine (allyl-substituted poly(Orn-alter-Gly)) with abundant carbon-carbon double bond functional groups (C═C) is designed. Polyurethane is prepared with a large quantity of C═C groups (PU-D), and different amounts of allyl-substituted poly(Orn-alter-Gly) are grafted onto the PU-D surface (PU-D-2%AMPs and PU-D-20%AMPs) via the C═C functional groups. The chemical structures of the allyl-substituted poly(Orn-alter-Gly) and polyurethane samples (PU, PU-D, PU-D-2%AMPs, and PU-D-20%AMPs) are characterized and the results reveal that allyl-substituted poly(Orn-alter-Gly) is decorated on the polyurethane. PU-D-20%AMPs shows excellent antibacterial activity against Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus because of the high surface potential caused by cationic allyl-substituted poly(Orn-alter-Gly), and it also exhibits excellent long-term antibacterial activity and antibiofilm properties. PU-D-20%AMPs also has excellent antifouling properties because the cationic copolymer is fixed at multiple reactive sites, thus avoiding the formation of movable long chain brush. A strong surface hydration barrier is also formed to prevent adsorption of proteins and ions, and in vivo experiments reveal excellent biocompatibility. This flexible strategy to prepare dual-functional polyurethane surfaces with antibacterial and antifouling properties has large potential in biomedical implants.
Collapse
Affiliation(s)
- Fuqiang Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Qu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qiongqiong Zhu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ting Yue
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangmei Xu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Nan Ma
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Junhui Ma
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Sun
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Tang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
8
|
Zhou X, Zhang X, Mengyuan P, He X, Zhang C. Bio-based polyurethane aqueous dispersions. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2020-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
With the advances of green chemistry and nanoscience, the synthesis of green, homogenous bio-based waterborne polyurethane (WPU) dispersions with high performance have gained great attention. The presented chapter deals with the recent synthesis of waterborne polyurethane with the biomass, especially the vegetable oils including castor oil, soybean oil, sunflower oil, linseed oil, jatropha oil, and palm oil, etc. Meanwhile, the other biomasses, such as cellulose, starch, lignin, chitosan, etc., have also been illustrated with the significant application in preparing polyurethane dispersions. The idea was to highlight the main vegetable oil-based polyols, and the isocyanate, diols as chain extenders, which have supplied a class of raw materials in WPU. The conversion of biomasses into active chemical agents, which can be used in synthesis of WPU, has been discussed in detail. The main mechanisms and methods are also presented. It is suggested that the epoxide ring opening method is still the main route to transform vegetable oils to polyols. Furthermore, the nonisocyanate WPU may be one of the main trends for development of WPU using biomasses, especially the abundant vegetable oils.
Collapse
Affiliation(s)
- Xing Zhou
- Faculty of Printing, Packaging Engineering and Digital Media Technology , Xi’an University of Technology , Xi’an 710048 , P. R. China
- School of Materials Science and Engineering , Xi’an University of Technology , Xi’an 710048 , P. R. China
| | - Xin Zhang
- Faculty of Printing, Packaging Engineering and Digital Media Technology , Xi’an University of Technology , Xi’an 710048 , P. R. China
| | - Pu Mengyuan
- Faculty of Printing, Packaging Engineering and Digital Media Technology , Xi’an University of Technology , Xi’an 710048 , P. R. China
| | - Xinyu He
- Faculty of Printing, Packaging Engineering and Digital Media Technology , Xi’an University of Technology , Xi’an 710048 , P. R. China
| | - Chaoqun Zhang
- College of Materials and Energy , South China Agricultural University , Guangzhou 510642 , P. R. China
| |
Collapse
|