1
|
Joukhadar R, Nižić Nodilo L, Lovrić J, Hafner A, Pepić I, Jug M. Functional Nanostructured Lipid Carrier-Enriched Hydrogels Tailored to Repair Damaged Epidermal Barrier. Gels 2024; 10:466. [PMID: 39057488 PMCID: PMC11275585 DOI: 10.3390/gels10070466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
In this study, a functional nanostructured lipid carriers (NLCs)-based hydrogel was developed to repair the damaged epidermal skin barrier. NLCs were prepared via a high-energy approach, using argan oil and beeswax as liquid and solid lipids, respectively, and were loaded with ceramides and cholesterol at a physiologically relevant ratio, acting as structural and functional compounds. Employing a series of surfactants and optimizing the preparation conditions, NLCs of 215.5 ± 0.9 nm in size and a negative zeta potential of -42.7 ± 0.9 were obtained, showing acceptable physical and microbial stability. Solid state characterization by differential scanning calorimetry and X-ray powder diffraction revealed the formation of imperfect crystal NLC-type. The optimized NLC dispersion was loaded into the gel based on sodium hyaluronate and xanthan gum. The gels obtained presented a shear thinning and thixotropic behavior, which is suitable for dermal application. Incorporating NLCs enhanced the rheological, viscoelastic, and textural properties of the gel formed while retaining the suitable spreadability required for comfortable application and patient compliance. The NLC-loaded gel presented a noticeable occlusion effect in vitro. It provided 2.8-fold higher skin hydration levels on the ex vivo porcine ear model than the NLC-free gel, showing a potential to repair the damaged epidermal barrier and nourish the skin actively.
Collapse
Affiliation(s)
| | | | | | | | | | - Mario Jug
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia; (R.J.); (L.N.N.); (J.L.); (A.H.); (I.P.)
| |
Collapse
|
2
|
Lee JH, Kim PY, Pyun YC, Park J, Kang TW, Seo JS, Lee DH, Khang G. Cartilage regeneration using transforming growth factor-beta 3-loaded injectable crosslinked hyaluronic acid hydrogel. Biomater Sci 2024; 12:479-494. [PMID: 38090986 DOI: 10.1039/d3bm01008b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Cartilage defects can be difficult to heal, potentially leading to complications such as osteoarthritis. Recently, a tissue engineering approach that uses scaffolds and growth factors has been proposed to regenerate new cartilage tissues. Herein, we investigated the application of hyaluronic acid (HA) gel loaded with transforming growth factor-beta 3 (TGF-β3) for enhanced cartilage regeneration. We assessed the clinical conditions required to efficiently enhance the ability of the modified HA gel to repair defective cartilage. Based on our findings, the prepared HA gel exhibited good physicochemical and mechanical properties and was non-toxic and non-inflammatory. Moreover, HA gel-loaded TGF-β3 (HAT) had improved biocompatibility and promoted the synthesis of cartilage-specific matrix and collagen, further improving its ability to repair defects. The application of HAT resulted in an initial burst release of HA, which degraded slowly in vivo. Finally, HAT combined with microfracture-inducing bone marrow stem cells could significantly improve the cartilage microenvironment and regeneration of cartilage defects. Our results indicate that HA is a suitable material for developing growth factor carriers, whereas HAT is a promising candidate for cartilage regeneration. Furthermore, this differentiated strategy provides a rapid and effective clinical approach for next-generation cartilage regeneration.
Collapse
Affiliation(s)
- Ju Hwa Lee
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea.
| | - Pil Yun Kim
- Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
- CGBio Co., Ltd, Soeul, Republic of Korea
| | - Yun Chang Pyun
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea.
| | - Jonggyu Park
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea.
| | - Tae Woong Kang
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea.
| | - Jin Sol Seo
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea.
| | - Dae Hoon Lee
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea.
| | - Gilson Khang
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea.
- Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| |
Collapse
|
3
|
Raschip IE, Darie-Nita RN, Fifere N, Hitruc GE, Dinu MV. Correlation between Mechanical and Morphological Properties of Polyphenol-Laden Xanthan Gum/Poly(vinyl alcohol) Composite Cryogels. Gels 2023; 9:gels9040281. [PMID: 37102893 PMCID: PMC10137999 DOI: 10.3390/gels9040281] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/28/2023] Open
Abstract
This study aimed to evaluate the effect of the synthesis parameters and the incorporation of natural polyphenolic extract within hydrogel networks on the mechanical and morphological properties of physically cross-linked xanthan gum/poly(vinyl alcohol) (XG/PVA) composite hydrogels prepared by multiple cryo-structuration steps. In this context, the toughness, compressive strength, and viscoelasticity of polyphenol-loaded XG/PVA composite hydrogels in comparison with those of the neat polymer networks were investigated by uniaxial compression tests and steady and oscillatory measurements under small deformation conditions. The swelling behavior, the contact angle values, and the morphological features revealed by SEM and AFM analyses were well correlated with the uniaxial compression and rheological results. The compressive tests revealed an enhancement of the network rigidity by increasing the number of cryogenic cycles. On the other hand, tough and flexible polyphenol-loaded composite films were obtained for a weight ratio between XG and PVA of 1:1 and 10 v/v% polyphenol. The gel behavior was confirmed for all composite hydrogels, as the elastic modulus (G') was significantly greater than the viscous modulus (G″) for the entire frequency range.
Collapse
Affiliation(s)
- Irina Elena Raschip
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | | | - Nicusor Fifere
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Gabriela-Elena Hitruc
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Maria Valentina Dinu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| |
Collapse
|
4
|
Sathasivam T, Hu L, Sugiarto S, Dou Q, Zhang Z, Tan HR, Leow Y, Zhu Q, Lee CLK, Yu H, Kai D. Facile Fabrication of Lignin-Cellulose Green Nanogels. Chem Asian J 2022; 17:e202200671. [PMID: 36002402 DOI: 10.1002/asia.202200671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/22/2022] [Indexed: 11/10/2022]
Abstract
There has been increasing exploration of the development and production of biodegradable polymers in response to issues with petrol-based polymers and their impact on the environment. Here we report a new approach to synthesize a natural nanogel from lignin and nanocellulose. First lignin nanobeads were synthesized by a solvent-shifting method, which showed a spherical shape with a diameter of 159.7 nm. Then the lignin nanobeads were incorporated into a nanocellulose network to form the lignin/cellulose nanogels. The nanocellulose fibrils (CNF-C) nanogels reveal a higher storage modulus than the nanocellulose crystal (CNC-C) ones due to the denser network with self-entanglement of longer cellulose chains. The presence of lignin nanobeads in the nanogels helped to increase the viscoelasticity of the nanogels. This work highlights that the new kinds of green nanogels could be potentially utilized in a variety of biomedical applications such as drug delivery and wound dressing.
Collapse
Affiliation(s)
| | - Lixuan Hu
- Northwestern Polytechnic University, Frontiers Science Center for Flexible Electronics, CHINA
| | - Sigit Sugiarto
- Institute of Materials Research and Engineering, Strategic Research Initiative, SINGAPORE
| | - Qingqing Dou
- Institute of Materials Research and Engineering, Strategic Research Initiative, SINGAPORE
| | - Zheng Zhang
- Institute of Materials Research and Engineering, Structural Materials, SINGAPORE
| | - Hui Ru Tan
- Institute of Materials Research and Engineering, Advanced Characterisation and Instrumentation, SINGAPORE
| | - Yihao Leow
- Institute of Materials Research and Engineering, Strategic Research Initiative, SINGAPORE
| | - Qiang Zhu
- Institute of Materials Research and Engineering, Advanced Characterisation and Instrumentation, SINGAPORE
| | - Chi-Lik Ken Lee
- Nanyang Technological University, Division of Chemistry and Biological Chemistry, SINGAPORE
| | - Haidong Yu
- Northwestern Polytechnic University, Frontiers Science Center for Flexible Electronics, CHINA
| | - Dan Kai
- Institute of Materials Research and Engineering, Advanced Sustainable materials, 2 Fusionopolis Way, Innovis, #08-03, 138634, Singpapore, SINGAPORE
| |
Collapse
|
5
|
Liu K, Huang ZHG, Yin DY, Wang XB. Pressure prediction model for deep profile control of expanded granular/viscoelastic movable gel formulation in low permeability reservoir. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2084407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- K. Liu
- Department of Petroleum Engineering, Changzhou University, Changzhou, China
| | - Z. H. G. Huang
- Department of Petroleum Engineering, Changzhou University, Changzhou, China
| | - D. Y. Yin
- Department of Petroleum Engineering, Northeast Petroleum University, Daqing, China
| | - X. B. Wang
- Department of Petroleum Engineering, Changzhou University, Changzhou, China
| |
Collapse
|
6
|
Ribeiro ES, Munhoz AP, Molon BDO, Molon BDO, Farias BSD, Junior TRSC, Pinto LADA, Diaz PS. Screening Among 8 Pathovars of Xanthomonas arboricola pv pruni. Ind Biotechnol (New Rochelle N Y) 2022. [DOI: 10.1089/ind.2021.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Eduardo Silveira Ribeiro
- Biotechnology Unit, Technology Development Center, Eliseu Maciel Faculty of Agronomy, Federal University of Pelotas, Campus Capão do Leão, Capão do Leão, Brazil
| | - Adriel Penha Munhoz
- Departament of Food Science and Technology, Eliseu Maciel Faculty of Agronomy, Federal University of Pelotas, Campus Capão do Leão, Capão do Leão, Brazil
| | - Bianca de Oliveira Molon
- Departament of Food Science and Technology, Eliseu Maciel Faculty of Agronomy, Federal University of Pelotas, Campus Capão do Leão, Capão do Leão, Brazil
| | - Bruna de Oliveira Molon
- Biotechnology Unit, Technology Development Center, Eliseu Maciel Faculty of Agronomy, Federal University of Pelotas, Campus Capão do Leão, Capão do Leão, Brazil
| | - Bruna Silva de Farias
- School of Chemistry and Food, Federal University of Rio Grande Rio Grande, Porto Alegre, Brazil
| | | | | | - Patrícia Silva Diaz
- Biotechnology Unit, Technology Development Center, Eliseu Maciel Faculty of Agronomy, Federal University of Pelotas, Campus Capão do Leão, Capão do Leão, Brazil
- Departament of Food Science and Technology, Eliseu Maciel Faculty of Agronomy, Federal University of Pelotas, Campus Capão do Leão, Capão do Leão, Brazil
| |
Collapse
|
7
|
Pereira KAB, Oliveira PF, Chaves I, Pedroni LG, Oliveira LA, Mansur CRE. Rheological properties of nanocomposite hydrogels containing aluminum and zinc oxides with potential application for conformance control. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-04978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Sharma G, Kumar A, Ghfar AA, García-Peñas A, Naushad M, Stadler FJ. Fabrication and Characterization of Xanthan Gum-cl-poly(acrylamide-co-alginic acid) Hydrogel for Adsorption of Cadmium Ions from Aqueous Medium. Gels 2021; 8:23. [PMID: 35049556 PMCID: PMC8775010 DOI: 10.3390/gels8010023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022] Open
Abstract
The present research demonstrates the facile fabrication of xanthan gum-cl-poly(acrylamide-co-alginic acid) (XG-cl-poly(AAm-co-AA)) hydrogel by employing microwave-assisted copolymerization. Simultaneous copolymerization of acrylamide (AAm) and alginic acid (AA) onto xanthan gum (XG) was carried out. Different samples were fabricated by changing the concentrations of AAm and AA. A sample with maximum swelling percentage was chosen for adsorption experiments. The structural and functional characteristics of synthesized hydrogel were elucidated using diverse characterization tools. Adsorption performance of XG-cl-poly(AAm-co-AA) hydrogel was investigated for the removal of noxious cadmium (Cd(II)) ions using batch adsorption from the aqueous system, various reaction parameters optimized include pH, contact time, temperature, and concentration of Cd(II) ions and temperature. The maximum adsorption was achieved at optimal pH 7, contact time 180 min, temperature 35 °C and cadmium ion centration of 10 mg·L-1. The XG-cl-poly(AAm-co-AA) hydrogel unveiled a very high adsorption potential, and its adsorption capacities considered based on the Langmuir isotherm for Cd(II) ions was 125 mg·g-1 at 35 °C. The Cd(II) ions adsorption data fitted nicely to the Freundlich isotherm and pseudo-first-order model. The reusability investigation demonstrated that hydrogel retained its adsorption capacity even after several uses without significant loss.
Collapse
Affiliation(s)
- Gaurav Sharma
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060, China; (A.K.); (F.J.S.)
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India
- School of Science and Technology, Glocal University, Saharanpur 247001, Uttar Pradesh, India
| | - Amit Kumar
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060, China; (A.K.); (F.J.S.)
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India
| | - Ayman A. Ghfar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Alberto García-Peñas
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, Leganés, 28911 Madrid, Spain;
| | - Mu. Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Florian J. Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060, China; (A.K.); (F.J.S.)
| |
Collapse
|
9
|
Rheological behavior of nanocellulose gels at various calcium chloride concentrations. Carbohydr Polym 2021; 274:118660. [PMID: 34702479 DOI: 10.1016/j.carbpol.2021.118660] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
In this work, the effects of calcium chloride (CaCl2) concentration on the creep-recovery, linear and nonlinear rheological behavior of nanocellulose gels had been investigated to quantify gel properties. The absolute zeta potential of nanocellulose gels were decreased as the CaCl2 concentration increased, which was related to the electrostatic repulsion that origin from carboxyl group could be effectively screened with increasing CaCl2 concentration. Rheological measurements further confirmed this result for nanocellulose gels, which revealed that the increased modulus and viscoelastic properties were obtained in the presence of CaCl2. The rheological properties of nanocellulose gels were showed to depend on CaCl2 concentration. The enhanced gel network structure was related to the Ca2+ ions that promoted crosslink between nanocellulose by salt bridge. This work highlighted the potential of using electrostatic complexation between nanocellulose and Ca2+ ions to form gels, and demonstrated the tunability of the rheological behavior by adjusting the concentration of CaCl2.
Collapse
|