1
|
Mohammed MAP, Mokhtar MN, Wakisaka M. A viscoelastic cohesive zone model for starch-gluten interface to simulate dough deformation. FOOD STRUCTURE 2023. [DOI: 10.1016/j.foostr.2022.100306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
2
|
Aabith S, Caulfield R, Akhlaghi O, Papadopoulou A, Homer-Vanniasinkam S, Tiwari MK. 3D direct-write printing of water soluble micromoulds for high-resolution rapid prototyping. ADDITIVE MANUFACTURING 2022; 58:None. [PMID: 37720325 PMCID: PMC10499758 DOI: 10.1016/j.addma.2022.103019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 09/19/2023]
Abstract
Direct-write printing has contributed tremendously to additive manufacturing; in particular extrusion based printing where it has extended the range of materials for 3D printing and thus enabled use across many more sectors. The printing inks for direct-write printing however, need careful synthesis and invariably undergo extensive preparation before being able to print. Hence, new ink synthesis efforts are required every time a new material is to be printed; this is particularly challenging for low storage modulus (G') materials like silicones, especially at higher resolutions (under 10 µm). Here we report the development of a precise (< 10 µm) 3D printable polymer, with which we 3D print micromoulds which are filled with standard silicones like polydimethylsiloxane (PDMS) and left to cure at room temperature. The proof of concept is demonstrated using a simple water soluble polymer as the mould material. The approach enables micrometre scale silicone structures to be prototyped with ease, away from the cleanroom.
Collapse
Affiliation(s)
- Saja Aabith
- Nanoengineered Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W 7TS, UK
| | - Richard Caulfield
- Nanoengineered Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W 7TS, UK
- UCL Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
| | - Omid Akhlaghi
- Nanoengineered Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W 7TS, UK
| | - Anastasia Papadopoulou
- Nanoengineered Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W 7TS, UK
| | - Shervanthi Homer-Vanniasinkam
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W 7TS, UK
- Leeds Vascular Institute, Leeds General Infirmary, Great George Street, Leeds LS1 3EX, UK
| | - Manish K. Tiwari
- Nanoengineered Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W 7TS, UK
| |
Collapse
|
3
|
Numerical study of starch-gluten dough: Deformation and extrusion. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Xu K, Li D, Shang E, Liu Y. A Heating-Assisted Direct Ink Writing Method for Preparation of PDMS Cellular Structure with High Manufacturing Fidelity. Polymers (Basel) 2022; 14:polym14071323. [PMID: 35406197 PMCID: PMC9002618 DOI: 10.3390/polym14071323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 01/27/2023] Open
Abstract
In response to the fact that most of the current research on silicone 3D printing suffers from structure collapse and dimensional mismatch, this paper proposes a heating-assisted direct writing printing method for commercial silicone rubber materials for preparing silicone foam with enhanced fidelity. In the experimental processes, the effects of substrate temperature, printing pressure, and printing speed on the filament width were investigated using a controlled variable method. The results showed the following: (1) the diameter of silicone rubber filaments was positively correlated with the printing pressure and substrate temperature, but negatively correlated with the printing speed; (2) the filament collapse of the large filament spaced foams was significantly improved by the addition of the thermal field, which, in turn, improved the mechanical properties and manufacturing stability of the silicon foams. The heating-assisted direct writing process in this paper can facilitate the development of the field of microelectronics and the direct printing of biomaterials.
Collapse
Affiliation(s)
- Kang Xu
- School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China; (K.X.); (D.L.); (E.S.)
- Jiangsu Key Lab of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China
| | - Dongya Li
- School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China; (K.X.); (D.L.); (E.S.)
- Jiangsu Key Lab of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China
| | - Erwei Shang
- School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China; (K.X.); (D.L.); (E.S.)
- Jiangsu Key Lab of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China
| | - Yu Liu
- School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China; (K.X.); (D.L.); (E.S.)
- Jiangsu Key Lab of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence:
| |
Collapse
|
5
|
Zhang L, Zhang Y, Gong M, Liu M, Lin X, Wang D, Hu P. Bioinspired toughening of soft elastomer via embedded three‐dimensional printing. J Appl Polym Sci 2022. [DOI: 10.1002/app.52273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Liang Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing China
| | - Yaxin Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing China
| | - Min Gong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing China
| | - Meiling Liu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing China
- School of Chemical Engineering Harbin Institute of Petroleum Harbin City China
| | - Xiang Lin
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing China
| | - Dongrui Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing China
| | - Penghao Hu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing China
| |
Collapse
|