1
|
Xiao Y, Wang X, He Z, Lv Y, Zhang C, Hu X. Assessing the phylogenetic relationship among varieties of Toona ciliata (Meliaceae) in sympatry with chloroplast genomes. Ecol Evol 2023; 13:e10828. [PMID: 38094154 PMCID: PMC10716671 DOI: 10.1002/ece3.10828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 07/03/2024] Open
Abstract
Toona ciliata is an endangered species due to over-cutting and low natural regeneration in China. Its genetic conservation is of an increasing concern. However, several varieties are recognized according to the leaf and flower traits, which complicates genetic conservation of T. ciliata. Here, we sequenced the whole chloroplast genome sequences of three samples for each of four varieties (T. ciliata var. ciliata, T. ciliata var. yunnanensis, T. ciliata var. pubescens, and T. ciliata var. henryi) in sympatry and assessed their phylogenetic relationship at a fine spatial scale. The four varieties had genome sizes ranged from 159,546 to 159,617 bp and had small variations in genome structure. Phylogenomic analysis indicated that the four varieties were genetically well-mixed in branch groups. Genetic diversity from the whole chloroplast genome sequences of 12 samples was low among varieties (average π = 0.0003). Besides, we investigated genetic variation of 58 samples of the four varieties in sympatry using two markers (psaA and trnL-trnF) and showed that genetic differentiation was generally insignificant among varieties (Ф st = 0%-5%). Purifying selection occurred in all protein-coding genes except for the ycf2 gene that was under weak positive selection. Most amino acid sites in all protein-coding genes were under purifying selection except for a few sites that were under positive selection. The chloroplast genome-based phylogeny did not support the morphology-based classification. The overall results implicated that a conservation strategy based on the T. ciliata complex rather than on intraspecific taxon was more appropriate.
Collapse
Affiliation(s)
- Yu Xiao
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmGuangzhouChina
| | - Xi Wang
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmGuangzhouChina
| | - Zi‐Han He
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmGuangzhouChina
| | - Yan‐Wen Lv
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmGuangzhouChina
| | - Chun‐Hua Zhang
- Institute of Highland Forest Science, Chinese Academy of ForestryKunmingChina
| | - Xin‐Sheng Hu
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmGuangzhouChina
| |
Collapse
|
2
|
Tan F, Li W, Feng H, Huang Y, Banerjee AK. Interspecific variation and phylogenetic relationship between mangrove and non-mangrove species of a same family (Meliaceae)-insights from comparative analysis of complete chloroplast genome. PeerJ 2023; 11:e15527. [PMID: 37397021 PMCID: PMC10309054 DOI: 10.7717/peerj.15527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/19/2023] [Indexed: 07/04/2023] Open
Abstract
The mahogany family, Meliaceae, contains 58 genera with only one mangrove genus: Xylocarpus. Two of the three species of the genus Xylocarpus are true mangroves (X. granatum and X. moluccensis), and one is a non-mangrove (X. rumphii). In order to resolve the phylogenetic relationship between the mangrove and non-mangrove species, we sequenced chloroplast genomes of these Xylocarpus species along with two non-mangrove species of the Meliaceae family (Carapa guianensis and Swietenia macrophylla) and compared the genome features and variations across the five species. The five Meliaceae species shared 130 genes (85 protein-coding genes, 37 tRNA, and eight rRNA) with identical direction and order, with a few variations in genes and intergenic spacers. The repetitive sequences identified in the rpl22 gene region only occurred in Xylocarpus, while the repetitive sequences in accD were found in X. moluccensis and X. rumphii. The TrnH-GUG and rpl32 gene regions and four non-coding gene regions showed high variabilities between X. granatum and the two non-mangrove species (S. macrophylla and C. guianensis). In addition, among the Xylocarpus species, only two genes (accD and clpP) showed positive selection. Carapa guianensis and S. macrophylla owned unique RNA editing sites. The above genes played an important role in acclimation to different stress factors like heat, low temperature, high UV light, and high salinity. Phylogenetic analysis with 22 species in the order Sapindales supported previous studies, which revealed that the non-mangrove species X. rumphii is closer to X. moluccensis than X. granatum. Overall, our results provided important insights into the variation of genetic structure and adaptation mechanism at interspecific (three Xylocarpus species) and intergeneric (mangrove and non-mangrove genera) levels.
Collapse
Affiliation(s)
- Fengxiao Tan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, China
| | - Weixi Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hui Feng
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yelin Huang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | | |
Collapse
|
3
|
Joyce EM, Appelhans MS, Buerki S, Cheek M, de Vos JM, Pirani JR, Zuntini AR, Bachelier JB, Bayly MJ, Callmander MW, Devecchi MF, Pell SK, Groppo M, Lowry PP, Mitchell J, Siniscalchi CM, Munzinger J, Orel HK, Pannell CM, Nauheimer L, Sauquet H, Weeks A, Muellner-Riehl AN, Leitch IJ, Maurin O, Forest F, Nargar K, Thiele KR, Baker WJ, Crayn DM. Phylogenomic analyses of Sapindales support new family relationships, rapid Mid-Cretaceous Hothouse diversification, and heterogeneous histories of gene duplication. FRONTIERS IN PLANT SCIENCE 2023; 14:1063174. [PMID: 36959945 PMCID: PMC10028101 DOI: 10.3389/fpls.2023.1063174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Sapindales is an angiosperm order of high economic and ecological value comprising nine families, c. 479 genera, and c. 6570 species. However, family and subfamily relationships in Sapindales remain unclear, making reconstruction of the order's spatio-temporal and morphological evolution difficult. In this study, we used Angiosperms353 target capture data to generate the most densely sampled phylogenetic trees of Sapindales to date, with 448 samples and c. 85% of genera represented. The percentage of paralogous loci and allele divergence was characterized across the phylogeny, which was time-calibrated using 29 rigorously assessed fossil calibrations. All families were supported as monophyletic. Two core family clades subdivide the order, the first comprising Kirkiaceae, Burseraceae, and Anacardiaceae, the second comprising Simaroubaceae, Meliaceae, and Rutaceae. Kirkiaceae is sister to Burseraceae and Anacardiaceae, and, contrary to current understanding, Simaroubaceae is sister to Meliaceae and Rutaceae. Sapindaceae is placed with Nitrariaceae and Biebersteiniaceae as sister to the core Sapindales families, but the relationships between these families remain unclear, likely due to their rapid and ancient diversification. Sapindales families emerged in rapid succession, coincident with the climatic change of the Mid-Cretaceous Hothouse event. Subfamily and tribal relationships within the major families need revision, particularly in Sapindaceae, Rutaceae and Meliaceae. Much of the difficulty in reconstructing relationships at this level may be caused by the prevalence of paralogous loci, particularly in Meliaceae and Rutaceae, that are likely indicative of ancient gene duplication events such as hybridization and polyploidization playing a role in the evolutionary history of these families. This study provides key insights into factors that may affect phylogenetic reconstructions in Sapindales across multiple scales, and provides a state-of-the-art phylogenetic framework for further research.
Collapse
Affiliation(s)
- Elizabeth M. Joyce
- Systematics, Biodiversity and Evolution of Plants, Ludwig-Maximilians-Universität München, Munich, Germany
- College of Science and Engineering, James Cook University, Cairns, QLD, Australia
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
| | - Marc S. Appelhans
- Department of Systematics, Biodiversity and Evolution of Plants, University of Göttingen, Goettingen, Germany
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Sven Buerki
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| | - Martin Cheek
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Jurriaan M. de Vos
- Department of Environmental Sciences, University Basel, Basel, Switzerland
| | - José R. Pirani
- Departamento de Botaênica, Universidade de Saão Paulo, Herbário SPF, Saão Paulo, Brazil
| | | | | | - Michael J. Bayly
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | | | - Marcelo F. Devecchi
- Departamento de Botaênica, Universidade de Saão Paulo, Herbário SPF, Saão Paulo, Brazil
| | - Susan K. Pell
- United States Botanic Garden, Washington, DC, United States
| | - Milton Groppo
- Departamento de Botaênica, Universidade de Saão Paulo, Herbário SPF, Saão Paulo, Brazil
| | - Porter P. Lowry
- Missouri Botanical Garden, St. Louis, MO, United States
- Institut de Systématique, Évolution, et Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, École Pratique des Hautes Études, Université des Antilles, Paris, France
| | - John Mitchell
- New York Botanical Garden, New York, NY, United States
| | - Carolina M. Siniscalchi
- Department of Biological Sciences, Harned Hall, Mississippi State University, Mississippi State, MS, United States
| | - Jérôme Munzinger
- AMAP, Université Montpellier, Institut de Recherche pour le Développement (IRD), Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Centre National de la Recherche Scientifique (CNRS), Institut national de la recherche agronomique (INRAE), Montpellier, France
| | - Harvey K. Orel
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Caroline M. Pannell
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Department of Biology, Oxford University, Oxford, United Kingdom
- Marine Laboratory, Queen’s University Belfast, Portaferry, United Kingdom
| | - Lars Nauheimer
- College of Science and Engineering, James Cook University, Cairns, QLD, Australia
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
| | - Hervé Sauquet
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW, Australia
| | - Andrea Weeks
- Department of Biology, George Mason University, Fairfax, VA, United States
| | - Alexandra N. Muellner-Riehl
- Department of Molecular Evolution and Plant Systematics & Herbarium, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | | | | | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Katharina Nargar
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
- National Research Collections Australia, Commonwealth Industrial and Scientific Research Organization (CSIRO), Canberra, ACT, Australia
| | - Kevin R. Thiele
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | | | - Darren M. Crayn
- College of Science and Engineering, James Cook University, Cairns, QLD, Australia
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
4
|
El Ottra JHL, de Albuquerque Melo-de-Pinna GF, Demarco D, Pirani JR, Ronse De Craene LP. Gynoecium structure in Sapindales and a case study of Trichilia pallens (Meliaceae). JOURNAL OF PLANT RESEARCH 2022; 135:157-190. [PMID: 35201522 DOI: 10.1007/s10265-022-01375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Sapindales is a monophyletic order within the malvid clade of rosids. It represents an interesting group to address questions on floral structure and evolution due to a wide variation in reproductive traits. This review covers a detailed overview of gynoecium features, as well as a new structural study based on Trichilia pallens (Meliaceae), to provide characters to support systematic relationships and to recognize patterns of variations in gynoecium features in Sapindales. Several unique and shared characteristics are identified. Anacrostylous and basistylous carpels may have evolved multiple times in Sapindales, while ventrally bulging carpels are found in pseudomonomerous Anacardiaceae. Different from previous studies, similar gynoecium features, including degree of syncarpy, ontogenetic patterns, and PTTT structure, favors a closer phylogenetic proximity between Rutaceae and Simaroubaceae, or Rutaceae and Meliaceae. An apomorphic tendency for the order is that the floral apex is integrated in the syncarpous or apocarpous gynoecium, but with different length and shape among families. Nitrariaceae shares similar stigmatic features and PTTT structure with many Sapindaceae. As the current position of both families in Sapindales is uncertain, floral features should be investigated more extensively in future studies. Two different types of gynophore were identified in the order: either derived from intercalary growth below the gynoecium as a floral internode, or by extension of the base of the ovary locules as part of the gynoecium. Sapindales share a combination of gynoecial characters but variation is mostly caused by different degrees of development of the synascidiate part relative to the symplicate part of carpels, or the latter part is absent. Postgenital fusion of the upper part of the styles leads to a common stigma, while stylar lobes may be separate. Due to a wide variation in these features, a new terminology regarding fusion is proposed to describe the gynoecium of the order.
Collapse
Affiliation(s)
- Juliana Hanna Leite El Ottra
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, São Paulo, SP, 05508-090, Brazil.
- Universidade Aberta Do Brasil, Universidade Federal Do ABC, Av. Dos Estados, 5001, Santo André, SP, 09210-580, Brazil.
| | | | - Diego Demarco
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, São Paulo, SP, 05508-090, Brazil
| | - José Rubens Pirani
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, São Paulo, SP, 05508-090, Brazil
| | | |
Collapse
|
5
|
Yang J, Hu G, Hu G. Comparative genomics and phylogenetic relationships of two endemic and endangered species (Handeliodendron bodinieri and Eurycorymbus cavaleriei) of two monotypic genera within Sapindales. BMC Genomics 2022; 23:27. [PMID: 34991482 PMCID: PMC8734052 DOI: 10.1186/s12864-021-08259-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Handeliodendron Rehder and Eurycorymbus Hand.-Mazz. are the monotypic genera in the Sapindaceae family. The phylogenetic relationship of these endangered species Handeliodendron bodinieri (Lévl.) Rehd. and Eurycorymbus cavaleriei (Lévl.) Rehd. et Hand.-Mazz. with other members of Sapindaceae s.l. is not well resolved. A previous study concluded that the genus Aesculus might be paraphyletic because Handeliodendron was nested within it based on small DNA fragments. Thus, their chloroplast genomic information and comparative genomic analysis with other Sapindaceae species are necessary and crucial to understand the circumscription and plastome evolution of this family. RESULTS The chloroplast genome sizes of Handeliodendron bodinieri and Eurycorymbus cavaleriei are 151,271 and 158,690 bp, respectively. Results showed that a total of 114 unique genes were annotated in H. bodinieri and E. cavaleriei, and the ycf1 gene contained abundant SSRs in both genomes. Comparative analysis revealed that gene content, PCGs, and total GC content were remarkably similar or identical within 13 genera from Sapindaceae, and the chloroplast genome size of four genera was generally smaller within the family, including Acer, Dipteronia, Aesculus, and Handeliodendron. IR boundaries of the H. bodinieri showed a significant contraction, whereas it presented a notable expansion in E. cavaleriei cp genome. Ycf1, ndhC-trnV-UAC, and rpl32-trnL-UAG-ccsA were remarkably divergent regions in the Sapindaceae species. Analysis of selection pressure showed that there are a few positively selected genes. Phylogenetic analysis based on different datasets, including whole chloroplast genome sequences, coding sequences, large single-copy, small single-copy, and inverted repeat regions, consistently demonstrated that H. bodinieri was sister to the clade consisting of Aesculus chinensis and A. wangii and strongly support Eurycorymbus cavaleriei as sister to Dodonaea viscosa. CONCLUSION This study revealed that the cp genome size of the Hippocastanoideae was generally smaller compared to the other subfamilies within Sapindaceae, and three highly divergent regions could be used as the specific DNA barcodes within Sapindaceae. Phylogenetic results strongly support that the subdivision of four subfamilies within Sapindaceae, and Handeliodendron is not nested within the genus Aesculus.
Collapse
Affiliation(s)
- Jiaxin Yang
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Guoxiong Hu
- College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China.
| | - Guangwan Hu
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China. .,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
6
|
Liu C, Yang J, Jin L, Wang S, Yang Z, Ji Y. Plastome phylogenomics of the East Asian endemic genus Dobinea. PLANT DIVERSITY 2021; 43:35-42. [PMID: 33778223 PMCID: PMC7987559 DOI: 10.1016/j.pld.2020.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 06/02/2023]
Abstract
Dobinea is a dioecious genus endemic to East Asia that consists of two extant species: Dobinea delavayi and Dobinea vulgaris. Although the genus is morphologically distinct, its phylogenetic position remains controversial. In this study, we investigated the phylogenetic relationships between Dobinea and related taxa by sequencing the whole plastome DNA sequences for both extant species of Dobinea and comparing them to published plastomes within Sapindales. The complete plastomes of D. vulgaris and D. delavayi were 160,683 and 160, 154 base pairs (bp) in length, including a pair of inverted repeat regions (IRs, 26,889 and 26,759 bp) divided by the large single-copy region (LSC, 87,962 and 87,555 bp) and small single-copy region (SSC, 18,943 and 19,081 bp), and identically encoded 113 unique genes (79 protein-coding genes, 30 tRNAs, and 4 rRNA genes). Plastid phylogenomic analyses showed that Dobinea was a well-supported monophyletic unit and sister to the clade including tribes Anacardieae and Rhoideae, which suggests that Dobinea is a member of Anacardiaceae. In addition, molecular dating inferred D. delavayi and D. vulgaris diverged approximately 10.76 Ma, suggesting the divergence between these two species may have been driven by the intensification of the Asian summer monsoon and the establishment of distinct monsoon regimes in East Asia.
Collapse
Affiliation(s)
- Changkun Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jin Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- School of Life Science, Yunnan University, Kunming, 650091, China
| | - Lei Jin
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shuying Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- School of Life Science, Yunnan University, Kunming, 650091, China
| | - Zhenyan Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yunheng Ji
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
7
|
Shi C, Han K, Li L, Seim I, Lee SMY, Xu X, Yang H, Fan G, Liu X. Complete Chloroplast Genomes of 14 Mangroves: Phylogenetic and Comparative Genomic Analyses. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8731857. [PMID: 32462024 PMCID: PMC7225854 DOI: 10.1155/2020/8731857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/20/2020] [Accepted: 04/02/2020] [Indexed: 11/17/2022]
Abstract
Mangroves are a group of plant species that occupy the coastal intertidal zone and are major components of this ecologically important ecosystem. Mangroves belong to about twenty diverse families. Here, we sequenced and assembled chloroplast genomes of 14 mangrove species from eight families spanning five rosid orders and one asterid order: Fabales (Pongamia pinnata), Lamiales (Avicennia marina), Malpighiales (Excoecaria agallocha, Bruguiera sexangula, Kandelia obovata, Rhizophora stylosa, and Ceriops tagal), Malvales (Hibiscus tiliaceus, Heritiera littoralis, and Thespesia populnea), Myrtales (Laguncularia racemosa, Sonneratia ovata, and Pemphis acidula), and Sapindales (Xylocarpus moluccensis). These chloroplast genomes range from 149 kb to 168 kb in length. A conserved structure of two inverted repeats (IRa and IRb, ~25.8 kb), one large single-copy region (LSC, ~89.0 kb), and one short single-copy region (SSC, ~18.9 kb) as well as ~130 genes (85 protein-coding, 37 tRNAs, and 8 rRNAs) was observed. We found the lowest divergence in the IR regions among the four regions. We also identified simple sequence repeats (SSRs), which were found to be variable in numbers. Most chloroplast genes are highly conserved, with only four genes under positive selection or relaxed pressure. Combined with publicly available chloroplast genomes, we carried out phylogenetic analysis and confirmed the previously reported phylogeny within rosids, including the positioning of obscure families in Malpighiales. Our study reports 14 mangrove chloroplast genomes and illustrates their genome features and evolution.
Collapse
Affiliation(s)
- Chengcheng Shi
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Kai Han
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Liangwei Li
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Inge Seim
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing 210046, China
- Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Woolloongabba 4102, Australia
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xun Xu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Huanming Yang
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
8
|
Wang L, He N, Li Y, Fang Y, Zhang F. Complete Chloroplast Genome Sequence of Chinese Lacquer Tree ( Toxicodendron vernicifluum, Anacardiaceae) and Its Phylogenetic Significance. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9014873. [PMID: 32071921 PMCID: PMC7011389 DOI: 10.1155/2020/9014873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/11/2019] [Accepted: 11/25/2019] [Indexed: 11/29/2022]
Abstract
Chinese lacquer tree (Toxicodendron vernicifluum) is an important commercial arbor species widely cultivated in East Asia for producing highly durable lacquer. Here, we sequenced and analyzed the complete chloroplast (cp) genome of T. vernicifluum and reconstructed the phylogeny of Sapindales based on 52 cp genomes of six families. The plastome of T. vernicifluum is 159,571 bp in length, including a pair of inverted repeats (IRs) of 26,511 bp, separated by a large single-copy (LSC) region of 87,475 bp and a small single-copy (SSC) region of 19,074 bp. A total of 126 genes were identified, of which 81 are protein-coding genes, 37 are transfer RNA genes, and eight are ribosomal RNA genes. Forty-nine mononucleotide microsatellites, one dinucleotide microsatellite, two complex microsatellites, and 49 long repeats were determined. Structural differences such as inversion variation in LSC and gene loss in IR were detected across cp genomes of the six genera in Anacardiaceae. Phylogenetic analyses revealed that the genus Toxicodendron is closely related to Pistacia and Rhus. The phylogenetic relationships of the six families in Sapindales were well resolved. Overall, this study providing complete cp genome resources will be beneficial for determining potential molecular markers and evolutionary patterns of T. vernicifluum and its closely related species.
Collapse
Affiliation(s)
- Lu Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Na He
- Xi'an Raw Lacquer and Research Institute, Xi'an 710061, China
| | - Yao Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Yanming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Feilong Zhang
- Xi'an Raw Lacquer and Research Institute, Xi'an 710061, China
| |
Collapse
|
9
|
Lin N, Zhang X, Deng T, Zhang J, Meng A, Wang H, Sun H, Sun Y. Plastome sequencing of Myripnois dioica and comparison within Asteraceae. PLANT DIVERSITY 2019; 41:315-322. [PMID: 31934676 PMCID: PMC6951274 DOI: 10.1016/j.pld.2019.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
Myripnois is a monotypic shrub genus in the daisy family constricted to northern China. Although wild populations of Myripnois dioica are relatively rare, this plant may potentially be cultured as a fine ornamental. In the present study, we sequenced the complete plastome of M. dioica, generating the first plastome sequences of the subfamily Pertyoideae. The plastome of M. dioica has a typical quadripartite circular structure. A large ∼20-kb and a small ∼3-kb inversion were detected in the large single copy (LSC) region and shared by other Asteraceae species. Plastome phylogenomic analyses based on 78 Asteraceae species and three outgroups revealed four groups, corresponding to four Asteraceae subfamilies: Asteroideae, Cichorioideae, Pertyoideae and Carduoideae. Among these four subfamilies, Pertyoideae is sister to Asteroideae + Cichorioideae; Carduoideae is the most basal clade. In addition, we characterized 13 simple sequence repeats (SSRs) that may be useful in future studies on population genetics.
Collapse
Affiliation(s)
- Nan Lin
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Xu Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Deng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Jianwen Zhang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Aiping Meng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Hang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Yanxia Sun
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| |
Collapse
|