1
|
Xavier A, Gowda V. Characterization of SSR markers from draft genome assembly and genotypic data in Hedychium spicatum (Zingiberaceae). Data Brief 2024; 55:110568. [PMID: 39183967 PMCID: PMC11342904 DOI: 10.1016/j.dib.2024.110568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/24/2024] [Indexed: 08/27/2024] Open
Abstract
The plant family Zingiberaceae consists of many medicinally important tropical herbs. Here, we provide a contig level genome assembly for Hedychium spicatum, one of the medicinally utilized species in this family. We used genome assembly to identify candidate Simple Sequence Repeat (SSR) markers in the nuclear, chloroplast and mitochondrial compartments. We identified a total of 60,695 SSRs, which consisted of di-, tri-, tetra-, penta- and complex repeat types, and primers were designed for 14,851 SSR loci from both coding and non-coding parts of the genome. A total of 62 sets of candidate SSR primers were tested, out of which a final set of 20 SSR markers were characterized and they met the criteria of amplification success and retention of the repeat motif and homology. Out of these 20 markers, we genotyped 11 markers by amplifying and sizing 99 accessions of H. spicatum from 13 different geographic locations. The 11 markers were also characterised for four congeneric species, H. ellipticum, H. gomezianum, H. venustum, and H. yunnanense. All 11 SSR markers were found to be polymorphic and showed cross-species amplification. The total number of alleles per locus varied from 5 to 25. SSR markers continue to be a valuable tool for researchers because of their cost-effectiveness and simplicity. The cross-species amplification and variability of the SSR markers generated here further extend the utility of the markers to other Hedychium spp. The markers presented in this dataset can be used for a variety of studies, such as population genetics of invasive Hedychium species, QTL mapping, DNA fingerprinting, parentage analysis and genetic diversity assessments.
Collapse
Affiliation(s)
- Aleena Xavier
- Tropical Ecology and Evolution (TrEE) Lab, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal (IISER Bhopal), Madhya Pradesh 462066, India
| | - Vinita Gowda
- Tropical Ecology and Evolution (TrEE) Lab, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal (IISER Bhopal), Madhya Pradesh 462066, India
| |
Collapse
|
2
|
Xavier A, Yadav R, Gowda V. Evolutionary patterns of variations in chromosome counts and genome sizes show positive correlations with taxonomic diversity in tropical gingers. AMERICAN JOURNAL OF BOTANY 2024; 111:e16334. [PMID: 38825815 DOI: 10.1002/ajb2.16334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 06/04/2024]
Abstract
PREMISE Cytogenetic traits such as an organism's chromosome number and genome size are taxonomically critical as they are instrumental in defining angiosperm diversity. Variations in these traits can be traced to evolutionary processes such as polyploidization, although geographic variations across cytogenetic traits remain underexplored. In the pantropical monocot family Zingiberaceae (~1500 species), cytogenetic traits have been well documented; however, the role of these traits in shaping taxonomic diversity and biogeographic patterns of gingers is not known. METHODS A time-calibrated Bayesian phylogenetic tree was constructed for 290 taxa covering three of the four subfamilies in Zingiberaceae. We tested models of chromosome number and genome size evolution within the family and whether lineage age, taxonomic diversity, and distributional range explain the variations in the cytogenetic traits. Tests were carried out at two taxonomic ranks: within Zingiberaceae and within genus Hedychium using correlations, generalized linear models and phylogenetic least square models. RESULTS The most frequent changes in chromosome number within Zingiberaceae were noted to be demi-polyploidization and polyploidization (~57% of the time), followed by ascending dysploidy (~27%). The subfamily Zingiberoideae showed descending dysploidy at its base, while Alpinioideae showed polyploidization at its internal nodes. Although chromosome counts and genome sizes did not corroborate with each other, suggesting that they are not equivalent; higher chromosome number variations and higher genome size variations were associated with higher taxonomic diversity and wider biogeographic distribution. CONCLUSIONS Within Zingiberaceae, multiple incidences of polyploidization were discovered, and cytogenetic events appear to have reduced the genome sizes and increased taxonomic diversity, distributional ranges and invasiveness.
Collapse
Affiliation(s)
- Aleena Xavier
- Tropical Ecology and Evolution (TrEE) Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, 462066, Madhya Pradesh, India
| | - Ritu Yadav
- Tropical Ecology and Evolution (TrEE) Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, 462066, Madhya Pradesh, India
| | - Vinita Gowda
- Tropical Ecology and Evolution (TrEE) Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
3
|
Ashokan A, Leong-Škorničková J, Suksathan P, Newman M, Kress WJ, Gowda V. Floral evolution and pollinator diversification in Hedychium: Revisiting Darwin's predictions using an integrative taxonomic approach. AMERICAN JOURNAL OF BOTANY 2022; 109:1410-1427. [PMID: 35862825 DOI: 10.1002/ajb2.16039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Hedychium J. Koenig (Zingiberaceae) is endemic to the Indo-Malayan Realm and is known for its colorful and fragrant flowers. Historically, two different pollination syndromes characterize Hedychium: diurnal or bird pollination, and nocturnal or moth pollination. In this study, we aim to understand the evolution of nocturnal and diurnal flowers, and to test its putative association with lineage diversification in Hedychium. METHODS A molecular tree of Hedychium was used as a scaffold upon which we estimated ancestral character states, phylogenetic signals, and correlations for certain categorical and continuous floral traits. Furthermore, we used phylomorphospace and trait-dependent diversification rate estimation analyses to understand phenotypic evolution and associated lineage diversification in Hedychium. RESULTS Although floral color and size lacked any association with specific pollinators, white or pale flowers were most common in the early branching clades when compared to bright-colored flowers, which were more widely represented in the most-derived clade IV. Five categorical and two continuous characters were identified to have informative evolutionary patterns, which also emphasized that ecology may have played a critical role in the diversification of Hedychium. CONCLUSIONS From our phylogenetic analyses and ecological observations, we conclude that specializations in pollinator interactions are rare in the hyperdiverse clade IV, thus challenging the role of both moth-specialization and bird-specialization as central factors in the diversification of Hedychium. However, our results also suggest that clade III (predominantly island clade) may show specializations, and future studies should investigate ecological and pollinator interactions, along with inclusion of new traits such as floral fragrance and anthesis time.
Collapse
Affiliation(s)
- Ajith Ashokan
- Tropical Ecology and Evolution (TrEE) Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, 462066, India
| | - Jana Leong-Škorničková
- Research & Conservation branch, Singapore Botanic Gardens, 1 Cluny Road, 259569, Singapore
| | - Piyakaset Suksathan
- Herbarium (QBG), Queen Sirikit Botanic Garden, P. O. Box 7, Mae Rim, Chiang Mai, 50180, Thailand
| | - Mark Newman
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, Scotland, United Kingdom
| | - W John Kress
- Department of Botany, MRC-166, National Museum of Natural History, Smithsonian Institution, P. O. Box 37012, Washington, DC, 20013-7012, United States
| | - Vinita Gowda
- Tropical Ecology and Evolution (TrEE) Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
4
|
Warlarphih D, Suchiang W, Susngi AM, Lamo JM. Genetic diversity and species relationship of Hedychium J. Köenig as revealed by DAMD and ISJ markers. THE NUCLEUS 2022. [DOI: 10.1007/s13237-022-00401-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
5
|
Kovács OT, Tóth E, Ozohanics O, Soltész-Katona E, Marton N, Buzás EI, Hunyady L, Drahos L, Turu G, Nagy G. Proteomic Changes of Osteoclast Differentiation in Rheumatoid and Psoriatic Arthritis Reveal Functional Differences. Front Immunol 2022; 13:892970. [PMID: 35860269 PMCID: PMC9289121 DOI: 10.3389/fimmu.2022.892970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundOsteoclasts play a crucial role in the maintenance, repair, and remodeling of bones of the adult vertebral skeleton due to their bone resorption capability. Rheumatoid arthritis (RA) and psoriatic arthritis (PsA) are associated with increased activity of osteoclasts.ObjectivesOur study aimed to investigate the dynamic proteomic changes during osteoclast differentiation in healthy donors, in RA, and PsA.MethodsBlood samples of healthy donors, RA, and PsA patients were collected, and monocytes were isolated and differentiated into osteoclasts in vitro using macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor κB ligand (RANK-L). Mass spectrometry-based proteomics was used to analyze proteins from cell lysates. The expression changes were analyzed with Gene Set Enrichment Analysis (GSEA).ResultsThe analysis of the proteomic changes revealed that during the differentiation of the human osteoclasts, expression of the proteins involved in metabolic activity, secretory function, and cell polarity is increased; by contrast, signaling pathways involved in the immune functions are downregulated. Interestingly, the differences between cells of healthy donors and RA/PsA patients are most pronounced after the final steps of differentiation to osteoclasts. In addition, both in RA and PsA the differentiation is characterized by decreased metabolic activity, associated with various immune pathway activities; furthermore by accelerated cytokine production in RA.ConclusionsOur results shed light on the characteristic proteomic changes during human osteoclast differentiation and expression differences in RA and PsA, which reveal important pathophysiological insights in both diseases.
Collapse
Affiliation(s)
- Orsolya Tünde Kovács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Eszter Tóth
- Institute of Organic Chemistry, Eötvös Loránd Research Network, Research Centre for Natural Sciences, Budapest, Hungary
| | - Olivér Ozohanics
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Eszter Soltész-Katona
- Department of Physiology, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary
| | - Nikolett Marton
- Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Edit Irén Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Immune-Proteogenomics Research Group, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University (HCEMM-SU) Extracellular Vesicles Research Group, Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary
- Institute of Enzymology, Eötvös Loránd Research Network, Research Centre for Natural Sciences, Budapest, Hungary
| | - László Drahos
- Institute of Organic Chemistry, Eötvös Loránd Research Network, Research Centre for Natural Sciences, Budapest, Hungary
| | - Gábor Turu
- Department of Physiology, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary
- *Correspondence: Gábor Turu,
| | - György Nagy
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- Department of Rheumatology and Clinical Immunology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
- Heart and Vascular Centre, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Ashokan A, Xavier A, Suksathan P, Ardiyani M, Leong-Škorničková J, Newman M, Kress WJ, Gowda V. Himalayan orogeny and monsoon intensification explain species diversification in an endemic ginger (Hedychium: Zingiberaceae) from the Indo-Malayan Realm. Mol Phylogenet Evol 2022; 170:107440. [PMID: 35192919 DOI: 10.1016/j.ympev.2022.107440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/26/2022]
Abstract
The Indo-Malayan Realm is a biogeographic realm that extends from the Indian Subcontinent to the islands of Southeast Asia (Malay Archipelago). Despite being megadiverse, evolutionary hypotheses explaining taxonomic diversity in this region have been rare. Here, we investigate the role of geoclimatic events such as Himalayan orogeny and monsoon intensification in the diversification of the ginger-lilies (Hedychium J.Koenig: Zingiberaceae). We first built a comprehensive, time-calibrated phylogeny of Hedychium with 75% taxonomic and geographic sampling. We found that Hedychium is a very young lineage that originated in Northern Indo-Burma, in the Late Miocene (c. 10.6 Ma). This was followed by a late Neogene and early Quaternary diversification, with multiple dispersal events to Southern Indo-Burma, Himalayas, Peninsular India, and the Malay Archipelago. The most speciose clade IV i.e., the predominantly Indo-Burmese clade also showed a higher diversification rate, suggesting its recent rapid radiation. Our divergence dating and GeoHiSSE results demonstrate that the diversification of Hedychium was shaped by both the intensifications in the Himalayan uplift as well as the Asian monsoon. Ancestral character-state reconstructions identified the occurrence of vegetative dormancy in both clades I and II, whereas the strictly epiphytic growth behavior, island dwarfism, lack of dormancy, and a distinct environmental niche were observed only in the predominantly island clade i.e., clade III. Finally, we show that the occurrence of epiphytism in clade III corresponds with submergence due to sea-level changes, suggesting it to be an adaptive trait. Our study highlights the role of recent geoclimatic events and environmental factors in the diversification of plants within the Indo-Malayan Realm and the need for collaborative work to understand biogeographic patterns within this understudied region. This study opens new perspectives for future biogeographic studies in this region and provides a framework to explain the taxonomic hyperdiversity of the Indo-Malayan Realm.
Collapse
Affiliation(s)
- Ajith Ashokan
- Tropical Ecology and Evolution (TrEE) Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh 462066, India.
| | - Aleena Xavier
- Tropical Ecology and Evolution (TrEE) Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh 462066, India
| | - Piyakaset Suksathan
- Herbarium (QBG), Queen Sirikit Botanic Garden, P.O. Box 7, Mae Rim, Chiang Mai 50180, Thailand
| | - Marlina Ardiyani
- Herbarium Bogoriense, Research Center for Biology, Indonesian Institute of Sciences/Lembaga Ilmu Pengetahuan Indonesia (LIPI), Cibinong Science Center, Jl Raya Bogor Km. 46, Cibinong 16912, Indonesia
| | - Jana Leong-Škorničková
- Research & Conservation Branch, Singapore Botanic Gardens, 1 Cluny Road, 259569, Singapore
| | - Mark Newman
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, United Kingdom
| | - W John Kress
- Department of Botany, MRC-166, National Museum of Natural History, Smithsonian Institution, P. O. Box 37012, Washington, DC 20013-7012, United States
| | - Vinita Gowda
- Tropical Ecology and Evolution (TrEE) Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh 462066, India.
| |
Collapse
|
7
|
Soltis PS, Nelson G, Zare A, Meineke EK. Plants meet machines: Prospects in machine learning for plant biology. APPLICATIONS IN PLANT SCIENCES 2020; 8:e11371. [PMCID: PMC7328654 DOI: 10.1002/aps3.11371] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 05/17/2023]
Affiliation(s)
- Pamela S. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFlorida32611USA
| | - Gil Nelson
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFlorida32611USA
| | - Alina Zare
- Department of Electrical and Computer EngineeringUniversity of FloridaGainesvilleFlorida32611USA
| | - Emily K. Meineke
- Department of Entomology and NematologyUniversity of California, DavisDavisCalifornia95616USA
| |
Collapse
|
8
|
Champ J, Mora‐Fallas A, Goëau H, Mata‐Montero E, Bonnet P, Joly A. Instance segmentation for the fine detection of crop and weed plants by precision agricultural robots. APPLICATIONS IN PLANT SCIENCES 2020; 8:e11373. [PMID: 32765972 PMCID: PMC7394709 DOI: 10.1002/aps3.11373] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/03/2020] [Indexed: 05/13/2023]
Abstract
PREMISE Weed removal in agriculture is typically achieved using herbicides. The use of autonomous robots to reduce weeds is a promising alternative solution, although their implementation requires the precise detection and identification of crops and weeds to allow an efficient action. METHODS We trained and evaluated an instance segmentation convolutional neural network aimed at segmenting and identifying each plant specimen visible in images produced by agricultural robots. The resulting data set comprised field images on which the outlines of 2489 specimens from two crop species and four weed species were manually drawn. We adjusted the hyperparameters of a mask region-based convolutional neural network (R-CNN) to this specific task and evaluated the resulting trained model. RESULTS The probability of detection using the model was quite good but varied significantly depending on the species and size of the plants. In practice, between 10% and 60% of weeds could be removed without too high of a risk of confusion with crop plants. Furthermore, we show that the segmentation of each plant enabled the determination of precise action points such as the barycenter of the plant surface. DISCUSSION Instance segmentation opens many possibilities for optimized weed removal actions. Weed electrification, for instance, could benefit from the targeted adjustment of the voltage, frequency, and location of the electrode to the plant. The results of this work will enable the evaluation of this type of weeding approach in the coming months.
Collapse
Affiliation(s)
- Julien Champ
- Institut national de recherche en informatique et en automatique (INRIA) Sophia‐Antipolis, ZENITH teamLaboratory of InformaticsRobotics and Microelectronics–Joint Research Unit34095MontpellierCEDEX 5France
| | - Adan Mora‐Fallas
- School of ComputingCosta Rica Institute of TechnologyCartagoCosta Rica
| | - Hervé Goëau
- AMAPUniversity of MontpellierCIRADCNRSINRAEIRDMontpellierFrance
- CIRADUMR AMAPMontpellierFrance
| | - Erick Mata‐Montero
- Institut national de recherche en informatique et en automatique (INRIA) Sophia‐Antipolis, ZENITH teamLaboratory of InformaticsRobotics and Microelectronics–Joint Research Unit34095MontpellierCEDEX 5France
- School of ComputingCosta Rica Institute of TechnologyCartagoCosta Rica
| | - Pierre Bonnet
- AMAPUniversity of MontpellierCIRADCNRSINRAEIRDMontpellierFrance
- CIRADUMR AMAPMontpellierFrance
| | - Alexis Joly
- Institut national de recherche en informatique et en automatique (INRIA) Sophia‐Antipolis, ZENITH teamLaboratory of InformaticsRobotics and Microelectronics–Joint Research Unit34095MontpellierCEDEX 5France
| |
Collapse
|