1
|
Nixon TRW, Hayes MJ, Snead D, Snead MP. Ultrastructural investigation of the posterior hyaloid membrane in posterior vitreous detachment. Eye (Lond) 2024:10.1038/s41433-024-03407-4. [PMID: 39468267 DOI: 10.1038/s41433-024-03407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/11/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Separation of the posterior hyaloid membrane (PHM) from the retina in posterior vitreous detachment (PVD) is a fundamental, but poorly understood, process underlying vitreoretinal disorders including retinal detachment and macular hole. We performed electron microscopy studies of the PHM after PVD to investigate its ultrastructure, associated cellular structures and relationship to the internal limiting membrane (ILM). METHODS Post-mortem human eyes were collected from recently deceased patients over 70 years of age. A posterior scleral button was trephined to identify PVD status, and the PHM and vitreous prepared for analysis with transmission and scanning electron microscopy. RESULTS Twelve eyes from six patients were collected. Seven eyes had PVD; five eyes had attached vitreous. PHM was isolated from seven of seven eyes with PVD. The PHM in eyes with PVD is a laminar lacy sheet, distinct from the disorganised fibres of vitreous gel. Eyes without PVD had vitreous encased in internal limiting membrane which had separated en bloc from the retina. Cells embedded in the PHM (laminocytes) were identified in five of seven eyes with PVD, with strands stretching into the membrane. CONCLUSIONS PHM isolated from eyes with PVD is distinct from artefactual separation of the ILM from the retina during dissection. PHM is ultrastructurally distinct from vitreous gel and is a separate entity. The en face appearance of PHM is similar to that of ILM, suggesting that in PVD, PHM forms from separation of an inner layer of ILM. Laminocytes may play a role in the pathogenesis of vitreoretinal disease.
Collapse
Affiliation(s)
- Thomas R W Nixon
- Vitreoretinal Research Group, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
- School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Matthew J Hayes
- University College London Institute of Ophthalmology, London, UK
| | - David Snead
- Department of Pathology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Martin P Snead
- Vitreoretinal Research Group, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK.
- School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
2
|
Shim B, Ciryam P, Tosun C, Serra R, Tsymbalyuk N, Keledjian K, Gerzanich V, Simard JM. RiboTag RNA Sequencing Identifies Local Translation of HSP70 In Astrocyte Endfeet After Cerebral Ischemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617236. [PMID: 39416227 PMCID: PMC11482819 DOI: 10.1101/2024.10.08.617236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Brain ischemia causes disruption in cerebral blood flow and blood-brain barrier (BBB) integrity which are normally maintained by the astrocyte endfeet. Emerging evidence points to dysregulation of the astrocyte translatome during ischemia, but its effects on the endfoot translatome are unknown. In this study, we aimed to investigate the early effects of ischemia on the astrocyte endfoot translatome in a rodent model of cerebral ischemia-reperfusion. To do so, we immunoprecipitated astrocyte-specific tagged ribosomes (RiboTag IP) from mechanically isolated brain microvessels. In mice subjected to middle cerebral artery occlusion and reperfusion and contralateral controls, we sequenced ribosome-bound RNAs from perivascular astrocyte endfeet and identified 205 genes that were differentially expressed in the translatome after ischemia. Pathways associated with the differential expressions included proteostasis, inflammation, cell cycle, and metabolism. Transcription factors whose targets were enriched amongst upregulated translating genes included HSF1, the master regulator of the heat shock response. The most highly upregulated genes in the translatome were HSF1-dependent Hspa1a and Hspa1b , which encode the inducible HSP70. We found that HSP70 is upregulated in astrocyte endfeet after ischemia, coinciding with an increase in ubiquitination across the proteome. These findings suggest a robust proteostasis response to proteotoxic stress in the endfoot translatome after ischemia. Modulating proteostasis in endfeet may be a strategy to preserve endfeet function and BBB integrity after ischemic stroke.
Collapse
|
3
|
Lee LE, Yoon T, Chung J, Ha JW, Park YB, Lee SW. Serum Glial Fibrillary Acidic Protein Can Predict Cross-Sectional Vasculitis Activity by Reflecting Renal Involvement in Patients with Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1639. [PMID: 39459426 PMCID: PMC11509228 DOI: 10.3390/medicina60101639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Glial fibrillary acidic protein (GFAP) is a type III intermediate filament protein primarily produced by cells in the central nervous system (CNS) and other major organs such as the kidneys. This study investigated whether serum GFAP could be used to estimate cross-sectional vasculitis activity presented via the Birmingham vasculitis activity score (BVAS) in patients with antineutrophil cytoplasmic antibody-associated vasculitis (AAV). Materials and Methods: This study included 74 patients with AAV. Clinical and laboratory data at diagnosis including BVAS and C-reactive protein (CRP) were reviewed. During follow-up, all-cause mortality and end-stage kidney disease (ESKD) were considered poor outcomes. Serum GFAP was measured from sera collected and stored at diagnosis. Results: The median age of the 74 patients was 63.5 years. Serum GFAP was inversely correlated with the cross-sectional BVAS (r = -0.373) and CRP (r = -0.320). It was also significantly correlated with general (r = -0.237) and renal (r = -0.335) manifestations among BVAS systemic items, and furthermore, among minor items of renal manifestation, correlating with sum scores for proteinuria (r = -0.409) and haematuria (r = -0.305). Additionally, compared with patients with serum GFAP > 194.9 pg/mL, those with serum GFAP ≤ 194.9 pg/mL showed a higher risk for progression to ESKD (relative risk 3.150) and a significantly lower cumulative ESKD-free survival rate. Conclusions: This study demonstrated the clinical potential of serum GFAP at diagnosis for predicting not only cross-sectional vasculitis activity through the anticipation of the extent of renal involvement but also future progression to ESKD in patients with AAV.
Collapse
Affiliation(s)
- Lucy Eunju Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (L.E.L.); (J.C.); (J.W.H.); (Y.-B.P.)
| | - Taejun Yoon
- Department of Medical Science, BK21 Plus Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Jihye Chung
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (L.E.L.); (J.C.); (J.W.H.); (Y.-B.P.)
| | - Jang Woo Ha
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (L.E.L.); (J.C.); (J.W.H.); (Y.-B.P.)
| | - Yong-Beom Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (L.E.L.); (J.C.); (J.W.H.); (Y.-B.P.)
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sang-Won Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (L.E.L.); (J.C.); (J.W.H.); (Y.-B.P.)
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Beard K, Yang Z, Haber M, Flamholz M, Diaz-Arrastia R, Sandsmark D, Meaney DF, Issadore D. Extracellular vesicles as distinct biomarker reservoirs for mild traumatic brain injury diagnosis. Brain Commun 2021; 3:fcab151. [PMID: 34622206 PMCID: PMC8491985 DOI: 10.1093/braincomms/fcab151] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 01/08/2023] Open
Abstract
Mild traumatic brain injury does not currently have a clear molecular diagnostic panel to either confirm the injury or to guide its treatment. Current biomarkers for traumatic brain injury rely mainly on detecting circulating proteins in blood that are associated with degenerating neurons, which are less common in mild traumatic brain injury, or with broad inflammatory cascades which are produced in multiple tissues and are thus not brain specific. To address this issue, we conducted an observational cohort study designed to measure a protein panel in two compartments—plasma and brain-derived extracellular vesicles—with the following hypotheses: (i) each compartment provides independent diagnostic information and (ii) algorithmically combining these compartments accurately classifies clinical mild traumatic brain injury. We evaluated this hypothesis using plasma samples from mild (Glasgow coma scale scores 13–15) traumatic brain injury patients (n = 47) and healthy and orthopaedic control subjects (n = 46) to evaluate biomarkers in brain-derived extracellular vesicles and plasma. We used our Track Etched Magnetic Nanopore technology to isolate brain-derived extracellular vesicles from plasma based on their expression of GluR2, combined with the ultrasensitive digital enzyme-linked immunosorbent assay technique, Single-Molecule Array. We quantified extracellular vesicle-packaged and plasma levels of biomarkers associated with two categories of traumatic brain injury pathology: neurodegeneration and neuronal/glial damage (ubiquitin C-terminal hydrolase L1, glial fibrillary acid protein, neurofilament light and Tau) and inflammation (interleukin-6, interleukin-10 and tumour necrosis factor alpha). We found that GluR2+ extracellular vesicles have distinct biomarker distributions than those present in the plasma. As a proof of concept, we showed that using a panel of biomarkers comprised of both plasma and GluR2+ extracellular vesicles, injured patients could be accurately classified versus non-injured patients.
Collapse
Affiliation(s)
- Kryshawna Beard
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zijian Yang
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Margalit Haber
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Miranda Flamholz
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danielle Sandsmark
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Touahri Y, Dixit R, Kofoed RH, Mikloska K, Park E, Raeisossadati R, Markham-Coultes K, David LA, Rijal H, Zhao J, Lynch M, Hynynen K, Aubert I, Schuurmans C. Focused ultrasound as a novel strategy for noninvasive gene delivery to retinal Müller glia. Theranostics 2020; 10:2982-2999. [PMID: 32194850 PMCID: PMC7053200 DOI: 10.7150/thno.42611] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Müller glia are specialized retinal cells with stem cell properties in fish and frogs but not in mammals. Current efforts to develop gene therapies to activate mammalian Müller glia for retinal repair will require safe and effective delivery strategies for recombinant adeno-associated viruses (AAVs), vectors of choice for clinical translation. Intravitreal and subretinal injections are currently used for AAV gene delivery in the eye, but less invasive methods efficiently targeting Müller glia have yet to be developed. Methods: As gene delivery strategies have been more extensively studied in the brain, to validate our vectors, we initially compared the glial tropism of AAV-PHP.eB, an AAV9 that crosses the blood-brain and blood-retinal barriers, for its ability to drive fluorescent protein expression in glial cells in both the brain and retina. We then tested the glial transduction of AAV2/8-GFAP-mCherry, a virus that does not cross blood-brain and blood-retinal barriers, for its effectiveness in transducing Müller glia in murine retinal explants ex vivo. For in vivo assays we used larger rat eyes, performing invasive intravitreal injections, and non-invasive intravenous delivery using focused ultrasound (FUS) (pressure amplitude: 0.360 - 0.84 MPa) and microbubbles (Definity, 0.2 ml/kg). Results: We showed that AAV-PHP.eB carrying a ubiquitous promoter (CAG) and green fluorescent protein (GFP) reporter, readily crossed the blood-brain and blood-retinal barriers after intravenous delivery in mice. However, murine Müller glia did not express GFP, suggesting that they were not transduced by AAV-PHP.eB. We thus tested an AAV2/8 variant, which was selected based on its safety record in multiple clinical trials, adding a glial fibrillary acidic protein (GFAP) promoter and mCherry (red fluorescent protein) reporter. We confirmed the glial specificity of AAV2/8-GFAP-mCherry, showing effective expression of mCherry in astrocytes after intracranial injection in the mouse brain, and of Müller glia in murine retinal explants. For in vivo experiments we switched to rats because of their larger size, injecting AAV2/8-GFAP-mCherry intravitreally, an invasive procedure, demonstrating passage across the inner limiting membrane, leading to Müller glia transduction. We then tested an alternative non-invasive delivery approach targeting a different barrier - the inner blood-retinal-barrier, applying focused ultrasound (FUS) to the retina after intravenous injection of AAV2/8 and microbubbles in rats, using magnetic resonance imaging (MRI) for FUS targeting. FUS permeabilized the rat blood-retinal-barrier and allowed the passage of macromolecules to the retina (Evans blue, IgG, IgM), with minimal extravasation of platelets and red blood cells. Intravenous injection of microbubbles and AAV2/8-GFAP-mCherry followed by FUS resulted in mCherry expression in rat Müller glia. However, systemic delivery of AAV2/8 also had off-target effects, transducing several murine peripheral organs, particularly the liver. Conclusions: Retinal permeabilisation via FUS in the presence of microbubbles is effective for delivering AAV2/8 across the inner blood-retinal-barrier, targeting Müller glia, which is less invasive than intravitreal injections that bypass the inner limiting membrane. However, implementing FUS in the clinic will require a comprehensive consideration of any off-target tropism of the AAV in peripheral organs, combined ideally, with the development of Müller glia-specific promoters.
Collapse
Affiliation(s)
- Yacine Touahri
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Rajiv Dixit
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Rikke Hahn Kofoed
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Kristina Mikloska
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - EunJee Park
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Reza Raeisossadati
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Kelly Markham-Coultes
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Luke Ajay David
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Hibo Rijal
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Jiayi Zhao
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Madelaine Lynch
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Isabelle Aubert
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Developmental Exposure of Mice to T-2 Toxin Increases Astrocytes and Hippocampal Neural Stem Cells Expressing Metallothionein. Neurotox Res 2018; 35:668-683. [DOI: 10.1007/s12640-018-9981-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022]
|
7
|
Yun BH, Lee SM, Cho HY, Kim JY, Son GH, Kim YH, Park YW, Lim BJ, Kwon JY. Expression of nephrin in the human placenta and fetal membranes. Mol Med Rep 2015; 12:5116-20. [PMID: 26151763 DOI: 10.3892/mmr.2015.4044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 11/20/2014] [Indexed: 11/05/2022] Open
Abstract
Nephrin is the signature molecule in the podocyte of the glomerulus that forms the renal slit diaphragm, the main functional unit of the glomerulus. The present study focused on the expression of nephrin in the human placenta, which may also have a role in filtration and the maintenance of homeostasis in the kidneys. A total of nine placentas from normal healthy pregnant females at full term were investigated. Reverse transcription-quantitative polymerase chain reaction, western blotting and immunofluorescence were performed. The expression of nephrin mRNA was relatively increased in the chorion compared with that in the villi and the amnion. The nephrin gene was detected in the villous cytotrophoblast cells and the endothelium of the intravillous vessels. It was also present in the chorionic and amniotic membranous lining, with its distribution being particularly dense in the amniocytes. The identification of nephrin in the human placenta, particularly at the maternal‑fetal interface, provides a novel insight into the molecular basis of the selective permeability of the placental barrier, which requires further elucidation.
Collapse
Affiliation(s)
- Bo Hyon Yun
- Division of Maternal‑Fetal Medicine, Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 120‑752, Republic of Korea
| | - Seung Mi Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 110‑799, Republic of Korea
| | - Hee Young Cho
- Division of Maternal‑Fetal Medicine, Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 120‑752, Republic of Korea
| | - Ji Young Kim
- Department of Dermatology, Yonsei University College of Medicine, Seoul 120‑752, Republic of Korea
| | - Ga Hyun Son
- Department of Obstetrics and Gynecology, Kangnam Sacred Heart Hospital, Hallym University Medical Center, Seoul 150‑719, Republic of Korea
| | - Young Han Kim
- Division of Maternal‑Fetal Medicine, Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 120‑752, Republic of Korea
| | - Yong Won Park
- Division of Maternal‑Fetal Medicine, Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 120‑752, Republic of Korea
| | - Beom Jin Lim
- Department of Pathology, Gangnam Severance Hospital, Yonsei University Health System, Seoul 135‑720, Republic of Korea
| | - Ja Young Kwon
- Division of Maternal‑Fetal Medicine, Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 120‑752, Republic of Korea
| |
Collapse
|
8
|
S100B and Glial Fibrillary Acidic Protein as Indexes to Monitor Damage Severity in an In Vitro Model of Traumatic Brain Injury. Neurochem Res 2015; 40:991-9. [PMID: 25898931 DOI: 10.1007/s11064-015-1554-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/05/2015] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) is a leading and rising cause of death and disability worldwide. There is great interest in S100B and Glial Fibrillary Acid Protein (GFAP) as candidate biomarkers of TBI for diagnosis, triage, prognostication and drug development. However, conflicting results especially on S100B hamper their routine application in clinical practice. To try to address this question, we mimicked TBI damage utilizing a well-validated, simplified in vitro model of graded stretch injury induced in rat organotypic hippocampal slice cultures (OHSC). Different severities of trauma, from mild to severe, have been tested by using an equi-biaxial stretch of the OHSCs at a specified Lagrangian strain of 0 (controls), 5, 10, 20 and 50 %. OHSC were analysed at 3, 6, 18, 24, 48 and 96 h post-injury. Cell death, gene expressions and release into the culture medium of S100B and GFAP were determined at each time point. Gene expression and release of S100B slightly increased only in 20 and 50 % stretched OHSC. GFAP over-expression occurred in 10, 20 and 50 % and was inversely correlated with time post-injury. GFAP release significantly increased with time at any level of injury (p < 0.01 with respect to controls). Consequently, the total amount of GFAP released showed a strong linear relationship with the severity of injury (R(2) = 0.7662; p < 0.001). Under these experimental conditions, S100B seems to be useful in diagnosing only moderate to severe TBI-like injuries. Differently, GFAP demonstrates adequate biomarker requisites since its cellular release is affected by all grades of injury severity.
Collapse
|
9
|
Petzold A. Glial fibrillary acidic protein is a body fluid biomarker for glial pathology in human disease. Brain Res 2015; 1600:17-31. [DOI: 10.1016/j.brainres.2014.12.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/01/2014] [Indexed: 12/20/2022]
|
10
|
Nogueira-Paiva NC, Fonseca KDS, Vieira PMDA, Diniz LF, Caldas IS, Moura SALD, Veloso VM, Guedes PMDM, Tafuri WL, Bahia MT, Carneiro CM. Myenteric plexus is differentially affected by infection with distinct Trypanosoma cruzi strains in Beagle dogs. Mem Inst Oswaldo Cruz 2014; 109:51-60. [PMID: 24271001 PMCID: PMC4005521 DOI: 10.1590/0074-0276130216] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 08/21/2013] [Indexed: 11/22/2022] Open
Abstract
Chagasic megaoesophagus and megacolon are characterised by motor abnormalities related to enteric nervous system lesions and their development seems to be related to geographic distribution of distinct Trypanosoma cruzi subpopulations. Beagle dogs were infected with Y or Berenice-78 (Be-78) T. cruzi strains and necropsied during the acute or chronic phase of experimental disease for post mortem histopathological evaluation of the oesophagus and colon. Both strains infected the oesophagus and colon and caused an inflammatory response during the acute phase. In the chronic phase, inflammatory process was observed exclusively in the Be-78 infected animals, possibly due to a parasitism persistent only in this group. Myenteric denervation occurred during the acute phase of infection for both strains, but persisted chronically only in Be-78 infected animals. Glial cell involvement occurred earlier in animals infected with the Y strain, while animals infected with the Be-78 strain showed reduced glial fibrillary acidic protein immunoreactive area of enteric glial cells in the chronic phase. These results suggest that although both strains cause lesions in the digestive tract, the Y strain is associated with early control of the lesion, while the Be-78 strain results in progressive gut lesions in this model.
Collapse
Affiliation(s)
| | - Kátia da Silva Fonseca
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto
| | - Paula Melo de Abreu Vieira
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto
| | - Lívia Figueiredo Diniz
- Laboratório de Doença de Chagas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto
| | - Ivo Santana Caldas
- Laboratório de Doença de Chagas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto
| | | | - Vanja Maria Veloso
- Departamento de Farmácia, Escola de Farmácia, Universidade Federal de Ouro Preto
| | | | - Washington Luiz Tafuri
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto
| | - Maria Terezinha Bahia
- Laboratório de Doença de Chagas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto
| | - Cláudia Martins Carneiro
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto
| |
Collapse
|
11
|
Şovrea AS, Boşca AB. Astrocytes reassessment - an evolving concept part one: embryology, biology, morphology and reactivity. J Mol Psychiatry 2013; 1:18. [PMID: 26019866 PMCID: PMC4445578 DOI: 10.1186/2049-9256-1-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/05/2013] [Indexed: 01/10/2023] Open
Abstract
The goal of this review is to integrate - in its two parts - the considerable amount of information that has accumulated during these recent years over the morphology, biology and functions of astrocytes - first part - and to illustrate the active role of these cells in pathophysiological processes implicated in various psychiatric and neurologic disorders – second part.
Collapse
Affiliation(s)
- Alina Simona Şovrea
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adina Bianca Boşca
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
12
|
Haidet-Phillips AM, Gross SK, Williams T, Tuteja A, Sherman A, Ko M, Jeong YH, Wong PC, Maragakis NJ. Altered astrocytic expression of TDP-43 does not influence motor neuron survival. Exp Neurol 2013; 250:250-9. [PMID: 24120466 DOI: 10.1016/j.expneurol.2013.10.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/25/2013] [Accepted: 10/02/2013] [Indexed: 12/12/2022]
Abstract
The role of glia as a contributing factor to motor neuron (MN) death in amyotrophic lateral sclerosis (ALS) is becoming increasingly appreciated. However, most studies implicating astrocytes have focused solely on models of ALS caused by superoxide dismutase 1 (SOD1) mutations. The goal of our study was to determine whether astrocytes contribute to wild-type MN death in the case of ALS caused by mutations in tar-DNA binding protein 43 (TDP-43). Since it is currently unknown how TDP-43 mutations cause disease, we derived astrocytes for study from both gain and loss of function mouse models of TDP-43. Astrocytes overexpressing mutant TDP-43(A315T) as well as astrocytes lacking TDP-43 were morphologically indistinguishable from wild-type astrocytes in vitro. Furthermore, astrocytes with these TDP-43 alterations did not cause the death of wild-type MNs in co-culture. To investigate the in vivo effects of TDP-43 alterations in astrocytes, glial-restricted precursors were transplanted to the wild-type rat spinal cord where they differentiated into astrocytes and interacted with host MNs. Astrocytes with TDP-43 alterations did not cause host wild-type MN damage although they were capable of engrafting and interacting with host MNs with the same efficiency as wild-type astrocytes. These data indicate that astrocytes do not adopt the same toxic phenotype as mutant SOD1 astrocytes when TDP-43 is mutated or expression levels are modified. Our study reinforces the heterogeneity in ALS disease mechanisms and highlights the potential for future screening subsets of ALS patients prior to treatment with cell type-directed therapies.
Collapse
Affiliation(s)
- Amanda M Haidet-Phillips
- Department of Neurology, Johns Hopkins University School of Medicine, Rangos 248, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lourhmati A, Buniatian GH, Paul C, Verleysdonk S, Buecheler R, Buadze M, Proksch B, Schwab M, Gleiter CH, Danielyan L. Age-dependent astroglial vulnerability to hypoxia and glutamate: the role for erythropoietin. PLoS One 2013; 8:e77182. [PMID: 24124607 PMCID: PMC3790708 DOI: 10.1371/journal.pone.0077182] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 09/02/2013] [Indexed: 12/13/2022] Open
Abstract
Extracellular accumulation of toxic concentrations of glutamate (Glu) is a hallmark of many neurodegenerative diseases, often accompanied by hypoxia and impaired metabolism of this neuromediator. To address the question whether the multifunctional neuroprotective action of erythropoietin (EPO) extends to the regulation of extracellular Glu-level and is age-related, young and culture-aged rat astroglial primary cells (APC) were simultaneously treated with 1mM Glu and/or human recombinant EPO under normoxic and hypoxic conditions (NC and HC). EPO increased the Glu uptake by astrocytes under both NC and especially upon HC in culture-aged APC (by 60%). Moreover, treatment with EPO up-regulated the activity of glutamine synthetase (GS), the expression of glutamate-aspartate transporter (GLAST) and the level of EPO mRNA. EPO alleviated the Glu- and hypoxia-induced LDH release from astrocytes. These protective EPO effects were concentration-dependent and they were strongly intensified with age in culture. More than a 4-fold increase in apoptosis and a 2-fold decrease in GS enzyme activity was observed in APC transfected with EPO receptor (EPOR)-siRNA. Our in vivo data show decreased expression of EPO and a strong increase of EPOR in brain homogenates of APP/PS1 mice and their wild type controls during aging. Comparison of APP/PS1 and age-matched WT control mice revealed a stronger expression of EPOR but a weaker one of EPO in the Alzheimer's disease (AD) model mice. Here we show for the first time the direct correlation between the extent of differentiation (age) of astrocytes and the efficacy of EPO in balancing extracellular glutamate clearance and metabolism in an in-vitro model of hypoxia and Glu-induced astroglial injury. The clinical relevance of EPO and EPOR as markers of brain cells vulnerability during aging and neurodegeneration is evidenced by remarkable changes in their expression levels in a transgenic model of AD and their WT controls.
Collapse
Affiliation(s)
- Ali Lourhmati
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Gayane H. Buniatian
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tuebingen, Tuebingen, Germany
- H. Buniatyan Institute of Biochemistry, National Academy of Sciences, Yerevan, Armenia
| | - Christina Paul
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tuebingen, Tuebingen, Germany
| | | | - Reinhild Buecheler
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Marine Buadze
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Barbara Proksch
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Matthias Schwab
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tuebingen, Tuebingen, Germany
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tübingen, Stuttgart, Stuttgart, Germany
| | - Christoph H. Gleiter
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Lusine Danielyan
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tuebingen, Tuebingen, Germany
| |
Collapse
|
14
|
Expression of ALS-linked TDP-43 mutant in astrocytes causes non-cell-autonomous motor neuron death in rats. EMBO J 2013; 32:1917-26. [PMID: 23714777 DOI: 10.1038/emboj.2013.122] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/06/2013] [Indexed: 12/12/2022] Open
Abstract
Mutation of Tar DNA-binding protein 43 (TDP-43) is linked to amyotrophic lateral sclerosis. Although astrocytes have important roles in neuron function and survival, their potential contribution to TDP-43 pathogenesis is unclear. Here, we created novel lines of transgenic rats that express a mutant form of human TDP-43 (M337V substitution) restricted to astrocytes. Selective expression of mutant TDP-43 in astrocytes caused a progressive loss of motor neurons and the denervation atrophy of skeletal muscles, resulting in progressive paralysis. The spinal cord of transgenic rats also exhibited a progressive depletion of the astroglial glutamate transporters GLT-1 and GLAST. Astrocytic expression of mutant TDP-43 led to activation of astrocytes and microglia, with an induction of the neurotoxic factor Lcn2 in reactive astrocytes that was independent of TDP-43 expression. These results indicate that mutant TDP-43 in astrocytes is sufficient to cause non-cell-autonomous death of motor neurons. This motor neuron death likely involves deficiency in neuroprotective genes and induction of neurotoxic genes in astrocytes.
Collapse
|
15
|
Magara J, Nozawa-Inoue K, Suzuki A, Kawano Y, Ono K, Nomura S, Maeda T. Alterations in intermediate filaments expression in disc cells from the rat temporomandibular joint following exposure to continuous compressive force. J Anat 2012; 220:612-21. [PMID: 22458657 DOI: 10.1111/j.1469-7580.2012.01501.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The articular disc in the temporomandibular joint (TMJ) that serves in load relief and stabilizing in jaw movements is a dense collagenous tissue consisting of extracellular matrices and disc cells. The various morphological configurations of the disc cells have given us diverse names, such as fibroblasts, chondrocyte-like cells and fibrochondrocytes; however, the characteristics of these cells have remained to be elucidated in detail. The disc cells have been reported to exhibit heterogeneous immunoreaction patterns for intermediate filaments including glial fibrillary acidic protein (GFAP), nestin and vimentin in the adult rat TMJ. Because these intermediate filaments accumulate in the disc cells as tooth eruption proceeds during postnatal development, it might be surmised that the expression of these intermediate filaments in the disc cells closely relates to mechanical stress. The present study was therefore undertaken to examine the effect of a continuous compressive force on the immunoexpression of these intermediate filaments and an additional intermediate filament - muscle-specific desmin - in the disc cells of the TMJ disc using a rat experimental model. The rats wore an appliance that exerts a continuous compressive load on the TMJ. The experimental period with the appliance was 5 days as determined by previous studies, after which some experimental animals were allowed to survive another 5 days after removal of the appliance. Histological observations demonstrated that the compressive force provoked a remarkable acellular region and a decrease in the thickness of the condylar cartilage of the mandible, and a sparse collagen fiber distribution in the articular disc. The articular disc showed a significant increase in the number of desmin-positive cells as compared with the controls. In contrast, immunopositive cells for GFAP, nestin and vimentin remained unchanged in number as well as intensity. At 5 days after removal of the appliance, both the disc and cartilage exhibited immunohistological and histological features in a recovery process. These findings indicate that the mature articular cells are capable of producing desmin instead of the other intermediate filaments against mechanical stress. The desmin-positive disc cells lacked α-smooth muscle actin (α-SMA) in this study, even though desmin usually co-exists with α-SMA in the vascular smooth muscle cells or pericytes. Because the precursor of a pericyte has such an immunoexpression pattern during angiogenesis, there is a further possibility that the formation of new vessels commenced in response to the extraordinary compressive force.
Collapse
Affiliation(s)
- Jin Magara
- Division of Oral Anatomy, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Chen S, He FF, Wang H, Fang Z, Shao N, Tian XJ, Liu JS, Zhu ZH, Wang YM, Wang S, Huang K, Zhang C. Calcium entry via TRPC6 mediates albumin overload-induced endoplasmic reticulum stress and apoptosis in podocytes. Cell Calcium 2011; 50:523-9. [PMID: 21959089 DOI: 10.1016/j.ceca.2011.08.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/28/2011] [Accepted: 08/29/2011] [Indexed: 01/29/2023]
Abstract
Albumin, which is the most abundant component of urine proteins, exerts injurious effects on renal cells in chronic kidney diseases. However, the toxicity of albumin to podocytes is not well elucidated. Here, we show that a high concentration of albumin triggers intracellular calcium ([Ca(2+)](i)) increase through mechanisms involving the intracellular calcium store release and extracellular calcium influx in conditionally immortalized podocytes. The canonical transient receptor potential-6 (TRPC6) channel, which is associated with a subset of familial forms of focal segmental glomerulosclerosis (FSGS) and several acquired proteinuric kidney diseases, was shown to be one of the important Ca(2+) permeable ion channels in podocytes. Therefore we explored the role of TRPC6 on albumin-induced functional and structural changes in podocytes. It was found that albumin-induced increase in [Ca(2+)](i) was blocked by TRPC6 siRNA or SKF-96365, a blocker of TRP cation channels. Long-term albumin exposure caused an up-regulation of TRPC6 expression in podocytes, which was inhibited by TRPC6 siRNA. Additionally, the inhibition of TRPC6 prevented the F-actin cytoskeleton disruption that is induced by albumin overload. Moreover, albumin overload induced expression of the endoplasmic reticulum (ER) stress protein GRP78, led to caspase-12 activation and ultimately podocyte apoptosis, all of which were abolished by the knockdown of TRPC6 using TRPC6 siRNA. These results support the view that albumin overload may induce ER stress and the subsequent apoptosis in podocytes via TRPC6-mediated Ca(2+) entry.
Collapse
Affiliation(s)
- Shan Chen
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Michael GJ, Esmailzadeh S, Moran LB, Christian L, Pearce RKB, Graeber MB. Up-regulation of metallothionein gene expression in parkinsonian astrocytes. Neurogenetics 2011; 12:295-305. [PMID: 21800131 DOI: 10.1007/s10048-011-0294-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 07/12/2011] [Indexed: 10/17/2022]
Abstract
The role of glial cells in Parkinson's disease (PD) is unclear. We have previously reported a striking up-regulation of DnaJB6 heat shock protein in PD substantia nigra astrocytes. Whole genome transcriptome analysis also indicated increased expression of metallothionein genes in substantia nigra and cortex of sporadic PD cases. Metallothioneins are metal-binding proteins in the CNS that are released by astrocytes and associated with neuroprotection. Metallothionein expression was investigated in 18 PD cases and 15 non-PD controls using quantitative real-time polymerase chain reaction (qRT-PCR), in situ hybridisation (ISH) and immunocytochemistry (ICC). We observed a strong increase in the expression of metallothioneins MT1E, MT1F, MT1G, MT1H, MT1M, MT1X and MT2A in both PD nigra and frontal cortex. Expression of LRP2 (megalin), the neuronal metallothionein receptor was also significantly increased. qRT-PCR confirmed metallothionein up-regulation. Astrocytes were found to be the main source of metallothioneins 1 and 2 based on ISH results, and this finding was confirmed by ICC. Our findings demonstrate metallothionein expression by reactive astrocytes in PD nigra and support a neuroprotective role for these cells. The traditional view that nigral astrocytes are non-reactive in PD is clearly incorrect. However, it is possible that astrocytes are themselves affected by the disease process which may explain their comparatively modest and previously overlooked response.
Collapse
Affiliation(s)
- Gregory J Michael
- Centre for Neuroscience and Trauma, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London E1 2AT, UK
| | | | | | | | | | | |
Collapse
|
18
|
Miyako H, Suzuki A, Nozawa-Inoue K, Magara J, Kawano Y, Ono K, Maeda T. Phenotypes of articular disc cells in the rat temporomandibular joint as demonstrated by immunohistochemistry for nestin and GFAP. J Anat 2011; 219:472-80. [PMID: 21679183 DOI: 10.1111/j.1469-7580.2011.01404.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The articular disc is a dense collagenous tissue containing disc cells that are phenotypically described as chondrocyte-like cells or fibrochondrocytes. Despite the possible existence of these phenotypes in systemic joints, little is known about the detailed classification of the articular disc cells in the temporomandibular joint. In this immunocytochemical study we examined the localization and distribution patterns of nestin and glial fibrillary acidic protein (GFAP) in the articular disc of the rat temporomandibular joint at postnatal day 1, and weeks 1, 2, 4 and 8, based on the status of tooth eruption and occlusion. Nestin and GFAP are intermediate filament proteins whose expression patterns are closely related to cell differentiation and cell migration. Both types of immunopositive cell greatly increased postnatally to a stable level after postnatal week 4, but they showed different distribution patterns and cell morphologies. Nestin-reactive disc cells, which were characterized by a meagre cytoplasm and thin cytoplasmic processes, were scattered in the articular disc, whereas GFAP-positive cells, characterized by broader processes, existed exclusively in the deeper area. In mature discs, the major proportion of articular disc cells exhibited GFAP immunoreactivity. Furthermore, a double-immunostaining demonstrated that the nestin-negative cells, consisting of GFAP-positive and -negative cells, exhibited immunoreactions for heat shock protein 25. These findings indicate that the articular disc cells comprise at least three types in the rat temporomandibular joint and suggest that their expressions closely relate to mechanical loading forces within the joint, including occlusal force, as observed through postnatal development.
Collapse
Affiliation(s)
- Hitoshi Miyako
- Division of Oral Anatomy, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Kirik OV, Korzhevskii DE. Expression of neural stem cell marker nestin in the kidney of rats and humans. Bull Exp Biol Med 2009; 147:539-41. [PMID: 19704967 DOI: 10.1007/s10517-009-0541-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Nestin is present in podocytes of the renal corpuscle in rats and humans. Specific differences manifested in more intensive and widespread expression of nestin by endothelial cells of blood vessels in human kidney.
Collapse
Affiliation(s)
- O V Kirik
- Department of General and Special Morphology, Institute of Experimental Medicine, Russian Academy of Medical Sciences, Moscow
| | | |
Collapse
|
20
|
Impaired synthesis of erythropoietin, glutamine synthetase and metallothionein in the skin of NOD/SCID/gamma(c)(null) and Foxn1 nu/nu mice with misbalanced production of MHC class II complex. Neurochem Res 2009; 35:899-908. [PMID: 19826948 DOI: 10.1007/s11064-009-0074-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2009] [Indexed: 10/20/2022]
Abstract
Most skin pathologies are characterized by unbalanced synthesis of major histocompatability complex II (MHC-II) proteins. Healthy skin keratinocytes simultaneously produce large amounts of MHC-II and regeneration-supporting proteins, e.g. erythropoietin (EPO), EPO receptor (EPOR), glutamine synthetase (GS) and metallothionein (MT). To investigate the level of regeneration-supporting proteins in the skin during misbalanced production of MHC-II, skin sections from nonobese diabetic/severe combined immunodeficient (NOD/SCID)/gamma (c) (null) and or Foxn1 nu/nu mice which are a priory known to under- and over-express MHC II, respectively, were used. Double immunofluorescence analysis of NOD/SCID/gamma (c) (null) skin sections showed striking decrease in expression of MHC-II, EPO, GS and MT. In Foxn1 nu/nu mouse skin, GS was strongly expressed in epidermis and in hair follicles (HF), which lacked EPO. In nude mouse skin EPO and MHC-II were over-expressed in dermal fibroblasts and they were completely absent from cortex, channel, medulla and keratinocytes surrounding the HF, suggest a role for EPO in health and pathology of hair follicle. The level of expression of EPO and GS in both mutant mice was confirmed by results of Western blot analyses. Strong immunoresponsiveness of EPOR in the hair channels of NOD/SCID/gamma (c) (null) mouse skin suggests increased requirements of skin cells for EPO and possible benefits of exogenous EPO application during disorders of immune system accompanied by loss MHC-II in skin cells.
Collapse
|
21
|
Danielyan L, Zellmer S, Sickinger S, Tolstonog GV, Salvetter J, Lourhmati A, Reissig DD, Gleiter CH, Gebhardt R, Buniatian GH. Keratinocytes as depository of ammonium-inducible glutamine synthetase: age- and anatomy-dependent distribution in human and rat skin. PLoS One 2009; 4:e4416. [PMID: 19204801 PMCID: PMC2637544 DOI: 10.1371/journal.pone.0004416] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 12/23/2008] [Indexed: 02/02/2023] Open
Abstract
In inner organs, glutamine contributes to proliferation, detoxification and establishment of a mechanical barrier, i.e., functions essential for skin, as well. However, the age-dependent and regional peculiarities of distribution of glutamine synthetase (GS), an enzyme responsible for generation of glutamine, and factors regulating its enzymatic activity in mammalian skin remain undisclosed. To explore this, GS localization was investigated using immunohistochemistry and double-labeling of young and adult human and rat skin sections as well as skin cells in culture. In human and rat skin GS was almost completely co-localized with astrocyte-specific proteins (e.g. GFAP). While GS staining was pronounced in all layers of the epidermis of young human skin, staining was reduced and more differentiated among different layers with age. In stratum basale and in stratum spinosum GS was co-localized with the adherens junction component beta-catenin. Inhibition of, glycogen synthase kinase 3beta in cultured keratinocytes and HaCaT cells, however, did not support a direct role of beta-catenin in regulation of GS. Enzymatic and reverse transcriptase polymerase chain reaction studies revealed an unusual mode of regulation of this enzyme in keratinocytes, i.e., GS activity, but not expression, was enhanced about 8-10 fold when the cells were exposed to ammonium ions. Prominent posttranscriptional up-regulation of GS activity in keratinocytes by ammonium ions in conjunction with widespread distribution of GS immunoreactivity throughout the epidermis allows considering the skin as a large reservoir of latent GS. Such a depository of glutamine-generating enzyme seems essential for continuous renewal of epidermal permeability barrier and during pathological processes accompanied by hyperammonemia.
Collapse
Affiliation(s)
- Lusine Danielyan
- Department of Clinical Pharmacology, University Hospital of Tübingen, Tübingen, Germany
| | - Sebastian Zellmer
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Stefan Sickinger
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Genrich V. Tolstonog
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany
| | | | - Ali Lourhmati
- Department of Clinical Pharmacology, University Hospital of Tübingen, Tübingen, Germany
| | | | - Cristoph H. Gleiter
- Department of Clinical Pharmacology, University Hospital of Tübingen, Tübingen, Germany
| | - Rolf Gebhardt
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | | |
Collapse
|
22
|
Abstract
Neurons have long held the spotlight as the central players of the nervous system, but we must remember that we have equal numbers of astrocytes and neurons in the brain. Are these cells only filling up the space and passively nurturing the neurons, or do they also contribute to information transfer and processing? After several years of intense research since the pioneer discovery of astrocytic calcium waves and glutamate release onto neurons in vitro, the neuronal-glial studies have answered many questions thanks to technological advances. However, the definitive in vivo role of astrocytes remains to be addressed. In addition, it is becoming clear that diverse populations of astrocytes coexist with different molecular identities and specialized functions adjusted to their microenvironment, but do they all belong to the umbrella family of astrocytes? One population of astrocytes takes on a new function by displaying both support cell and stem cell characteristics in the neurogenic niches. Here, we define characteristics that classify a cell as an astrocyte under physiological conditions. We will also discuss the well-established and emerging functions of astrocytes with an emphasis on their roles on neuronal activity and as neural stem cells in adult neurogenic zones.
Collapse
|
23
|
Rouleau C, Mersel M, de Weille J, Rakotoarivelo C, Fabre C, Privat A, Langley K, Petite D. A human spinal cord cell promotes motoneuron survival and maturation in vitro. J Neurosci Res 2008; 87:50-60. [PMID: 18752296 DOI: 10.1002/jnr.21835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Primary cultures of motoneurons represent a good experimental model for studying mechanisms underlying certain spinal cord pathologies, such as amyotrophic lateral sclerosis and spinal bulbar muscular atrophy (Kennedy's disease). However, a major problem with such culture systems is the relatively short cell survival times, which limits the extent of motoneuronal maturation. In spite of supplementing culture media with various growth factors, it remains difficult to maintain motoneurons viable longer than 10 days in vitro. This study employs a new approach, in which rat motoneurons are plated on a layer of cultured cells derived from newborn human spinal cord. For all culture periods, more motoneurons remain viable in such cocultures compared with control monocultures. Moreover, although no motoneurons survive in control cultures after 22 days, viable motoneurons were observed in cocultures even after 7 weeks. Although no significant difference in neurite length was observed between 8-day mono- and cocultures, after 22 and 50 days in coculture motoneurons had a very mature morphology. They extended extremely robust, very long neurites, which formed impressive branched networks. Data obtained using a system in which the spinal cord cultures were separated from motoneurons by a porous polycarbonate filter suggest that soluble factors released from the supporting cells are in part responsible for the beneficial effects on motoneurons. Several approaches, including immunocytochemistry, immunoblotting, and electron microscopy, indicated that these supporting cells, capable of extending motoneuron survival and enhancing neurite growth, had an undifferentiated or poorly differentiated, possibly mesenchymal phenotype.
Collapse
|
24
|
da Silveira ABM, Lemos EM, Adad SJ, Correa-Oliveira R, Furness JB, D'Avila Reis D. Megacolon in Chagas disease: a study of inflammatory cells, enteric nerves, and glial cells. Hum Pathol 2007; 38:1256-64. [PMID: 17490721 DOI: 10.1016/j.humpath.2007.01.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 01/12/2007] [Accepted: 01/19/2007] [Indexed: 11/22/2022]
Abstract
After acute infestation with the Chagas disease parasite, Trypanosoma cruzi, some patients who are serologically positive develop chronic megacolon and megaesophagus, whereas others are symptom-free. Chagas disease with gastrointestinal involvement involves an inflammatory invasion of the enteric plexuses and degeneration of enteric neurons. It is known that glial cells can be involved in enteric inflammatory responses. The aims were to determine the nature of any difference in lymphocytic invasion, enteric neurons, and enteric glial cells in seropositive individuals with and without megacolon. We have compared colonic tissue from serologically positive individuals with and without symptoms and from seronegative controls. Subjects with megacolon had significantly more CD-57 natural killer cells and TIA-1 cytotoxic lymphocytes within enteric ganglia, but numbers of CD-3 and CD-20 immunoreactive cells were not significantly elevated. The innervation of the muscle was substantially reduced to about 20% in megacolon, but asymptomatic seropositive subjects were not different to seronegative controls. Glial cell loss occurred equally in symptomatic and unaffected seropositive subjects, although the proportion with glial fibrillary acidic protein was greater in seropositive, nonsymptomatic subjects. Development of megacolon after acute infection with T cruzi is associated with maintained invasion of enteric ganglia with cytotoxic T cells and loss of muscle innervation, but changes in glial cell numbers are not associated with progression of enteric neuropathy.
Collapse
Affiliation(s)
- Alexandre Barcelos Morais da Silveira
- Department of Morphology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, CEP: 31270-901 Pampulha, Belo Horizonte, Minas Gerais, Brazil.
| | | | | | | | | | | |
Collapse
|
25
|
Danielyan L, Tolstonog G, Traub P, Salvetter J, Gleiter CH, Reisig D, Gebhardt R, Buniatian GH. Colocalization of glial fibrillary acidic protein, metallothionein, and MHC II in human, rat, NOD/SCID, and nude mouse skin keratinocytes and fibroblasts. J Invest Dermatol 2006; 127:555-63. [PMID: 17008879 DOI: 10.1038/sj.jid.5700575] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The expression of glial fibrillary acidic protein (GFAP) by perivascular cells of many mammalian organs suggests an as yet unknown function of this intermediate filament protein in the maintenance of homeostasis and vascular permeability at the blood-tissue interface. Although a similar situation may exist at the air-tissue interface, the cellular distribution of GFAP in skin tissue has never been demonstrated. To approach this issue, we have employed immunofluorescence and Western blotting techniques to detect GFAP in skin sections of young and adult humans, normal rodents, and two types of mutant mice, as well as in rat lung sections, and in cultured human keratinocytes and fibroblasts. Colocalization with antigens known to be associated with GFAP in other tissues was also tested. Epidermal and hair follicle keratinocytes and dermal fibroblasts showed distinct staining for GFAP as well as colocalization with alpha-actin, metallothionein, and antigens of the class-II major histocompatibility complex (MHC II). GFAP was also identified in rat alveolar fibroblasts which, in common with keratinocytes, form part of the air-tissue interface. GFAP was upregulated together with MHC II in nude mice but was barely detectable in the skin of non-obese diabetic severe combined immunodeficiency mice, suggesting a possible involvement in antigen-presenting functions. The intriguing distribution of a common set of antigens both in certain cells of the integumentary system and at the blood-tissue interfaces of internal organs suggests the involvement of these proteins in universal mechanisms controlling tissue homeostasis and protection.
Collapse
Affiliation(s)
- Lusine Danielyan
- Department of Clinical Pharmacology, University Hospital, Tuebingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kimelberg HK. The problem of astrocyte identity. Neurochem Int 2004; 45:191-202. [PMID: 15145537 DOI: 10.1016/j.neuint.2003.08.015] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2003] [Revised: 08/27/2003] [Accepted: 08/27/2003] [Indexed: 10/26/2022]
Abstract
Astrocytes were the original neuroglia of Ramón y Cajal but after 100 years there is no satisfactory definition of what should comprise this class of cells. This essay takes a historical and philosophical approach to the question of astrocytic identity. The classic approach of identification by morphology and location are too limited to determine new members of the astrocyte population. I also critically evaluate the use of protein markers measured by immunoreactivity, as well as the newer technique of marking living cells by using promoters for these same proteins to drive reporter genes. These two latter approaches have yielded an expanded population of astrocytes with diverse functions, but also mark cells that traditionally would not be defined as astrocytes. Thus we need a combination of measures to define an astrocyte but it is not clear what this combination should be. The molecular approach, especially promoter driven fluorescent reporter genes, does have the advantage of pre marking living astrocytes for electrophysiological or imaging recordings. However, lack of sufficient understanding of the behavior of the inserted constructs has led to unclear results. This approach will no doubt be perfected with time but at present an acceptable, practical definition of what constitutes the class of astrocytes remains elusive.
Collapse
Affiliation(s)
- Harold K Kimelberg
- Neural and Vascular Biology Theme, Ordway Research Institute Inc., Center for Medical Science, 150 New Scotland Avenue, Albany, NY 12208, USA.
| |
Collapse
|
27
|
Buniatian GH. Stages of activation of hepatic stellate cells: effects of ellagic acid, an inhibiter of liver fibrosis, on their differentiation in culture. Cell Prolif 2004; 36:307-19. [PMID: 14710849 PMCID: PMC6496808 DOI: 10.1046/j.1365-2184.2003.00287.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED To further explore that hepatic stellate cell (HSC) activation results in physiological protection against environmental insult, the profile of differentiation of HSC has been examined upon treatment with ellagic acid (EA), a plant-derived antioxidant that shows multiple protective effects during liver disease. Sparse rat liver cell cultures were grown in media containing EA (3, 6, 30 and 100 microg/ml) and, as controls, without EA, and inspected until day 7 in culture. The cells were double-labelled with antibodies against glial fibrillary acidic protein (GFAP) and smooth muscle alpha-actin (SMAA), marker proteins of quiescent and activated HSC, respectively. In EA-free culture conditions, the quiescent (SMAA-/GFAP+) HSC transiently acquired a semi-activated (SMAA+/GFAP+), phenotype and were further transformed into activated (SMAA+/GFAP-), pleomorphic HSC. Up to a concentration of 30 microg/ml, EA induced an early synthesis of SMAA in all HSC and inhibited their morphologic differentiation and individual growth throughout the culture period. At a concentration of 6 microg/ml, EA supported the semi-activated (SMAA+/GFAP+) phenotype of HSC throughout the culture period, whereas treatment with high EA concentrations (30 microg/ml) resulted in an early loss of GFAP expression. IN CONCLUSION (i) the uniform response of HSC to EA by mild activation adds functional significance to cellular features preceding the transformation of HSC to myofibroblasts; (ii) the high sensitivity of HSC to EA treatment suggests their involvement in any mechanisms of protection by this antioxidant; (iii) the maintenance of HSC morphology might be one of the factors playing a role in the prevention or slowing down of liver fibrosis; (iv) because the effects of EA are concentration- and time-dependent, an arbitrary usage of this antioxidant is a matter of potential concern; (v) the various patterns of HSC activation observed might correspond to distinct activities of these cells, which, in turn, might lead to different outcomes of liver fibrosis.
Collapse
Affiliation(s)
- G H Buniatian
- Max-Planck-Institut für Zellbiologie, Ladenburg, Germany.
| |
Collapse
|