Abstract
BACKGROUND
The cultured adult newt ventricular myocyte has been shown to undergo mitosis and cytokinesis in a fully differentiated state. Insight into its proliferation and cellular changes during the repair process involves obtaining a better understanding of the nuclear pattern (mononucleated, binucleated, or multinucleated) resulting from mitotic events. Mitosis is easily observable in cultured newt cardiac myocytes using phase-contrast microscopy.
METHODS
From days 8-19 in culture, the process of mitosis in mononucleated and binucleated newt ventricular myocytes was recorded and timed by using time-lapse video microscopy. Cultured cardiac myocytes were double-stained for myosin and F-actin by using fluorescein isothiocyanate (FITC)-labeled MF20 and rhodamine phalloidin.
RESULTS
Mitotic, mononucleated myocytes produced mononucleated daughter cells in 80% of the cases, whereas 20% were single, binucleated myocytes, In binucleated myocytes, only 32% underwent complete cytokinesis to produce two binucleated daughter cells, whereas 68% resulted in variably nucleated myocytes. Mononucleated and binucleated myocytes undergoing mitosis had similar time intervals for the period from nuclear breakdown (prometaphase) to the start of anaphase (108.7 minutes and 94.5 minutes, respectively), but the period between anaphase and midbody formation was significantly shorter in binucleated than in mononucleated myocytes (43.5 minutes and 69.3 minutes, respectively). The myofibrillae were not as well organized in binucleated myocytes as those observed in mononucleated myocytes.
CONCLUSIONS
Mitosis in vitro appears to proceed more rapidly in binucleated newt cardiac myocytes, which have more poorly organized myofibrillae than mononucleated myocytes. Mitosis of cultured binucleated myocytes commonly results in variably nucleated daughter cells, whereas mononucleated myocytes produce predominantly mononucleated daughter cells.
Collapse