1
|
Takahashi M, Veale R. Pathways for Naturalistic Looking Behavior in Primate I: Behavioral Characteristics and Brainstem Circuits. Neuroscience 2023; 532:133-163. [PMID: 37776945 DOI: 10.1016/j.neuroscience.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/09/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Organisms control their visual worlds by moving their eyes, heads, and bodies. This control of "gaze" or "looking" is key to survival and intelligence, but our investigation of the underlying neural mechanisms in natural conditions is hindered by technical limitations. Recent advances have enabled measurement of both brain and behavior in freely moving animals in complex environments, expanding on historical head-fixed laboratory investigations. We juxtapose looking behavior as traditionally measured in the laboratory against looking behavior in naturalistic conditions, finding that behavior changes when animals are free to move or when stimuli have depth or sound. We specifically focus on the brainstem circuits driving gaze shifts and gaze stabilization. The overarching goal of this review is to reconcile historical understanding of the differential neural circuits for different "classes" of gaze shift with two inconvenient truths. (1) "classes" of gaze behavior are artificial. (2) The neural circuits historically identified to control each "class" of behavior do not operate in isolation during natural behavior. Instead, multiple pathways combine adaptively and non-linearly depending on individual experience. While the neural circuits for reflexive and voluntary gaze behaviors traverse somewhat independent brainstem and spinal cord circuits, both can be modulated by feedback, meaning that most gaze behaviors are learned rather than hardcoded. Despite this flexibility, there are broadly enumerable neural pathways commonly adopted among primate gaze systems. Parallel pathways which carry simultaneous evolutionary and homeostatic drives converge in superior colliculus, a layered midbrain structure which integrates and relays these volitional signals to brainstem gaze-control circuits.
Collapse
Affiliation(s)
- Mayu Takahashi
- Department of Systems Neurophysiology, Graduate School of Medical and Dental, Sciences, Tokyo Medical and Dental University, Japan.
| | - Richard Veale
- Department of Neurobiology, Graduate School of Medicine, Kyoto University, Japan
| |
Collapse
|
2
|
Warren S, May PJ. Brainstem sources of input to the central mesencephalic reticular formation in the macaque. Exp Brain Res 2023:10.1007/s00221-023-06641-6. [PMID: 37474798 DOI: 10.1007/s00221-023-06641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/15/2023] [Indexed: 07/22/2023]
Abstract
Physiological studies indicate that the central mesencephalic reticular formation (cMRF) plays a role in gaze changes, including control of disjunctive saccades. Neuroanatomical studies have demonstrated strong interconnections with the superior colliculus, along with projections to extraocular motor nuclei, the preganglionic nucleus of Edinger-Westphal, the paramedian pontine reticular formation, nucleus raphe interpositus, medullary reticular formation and cervical spinal cord, as might be expected for a structure that is intimately involved in gaze control. However, the sources of input to this midbrain structure have not been described in detail. In the present study, the brainstem cells of origin supplying the cMRF were labeled by retrograde transport of tracer (wheat germ agglutinin conjugated horseradish peroxidase) in macaque monkeys. Within the diencephalon, labeled neurons were noted in the ventromedial nucleus of the hypothalamus, pregeniculate nucleus and habenula. In the midbrain, labeled cells were found in the substantia nigra pars reticulata, medial pretectal nucleus, superior colliculus, tectal longitudinal column, periaqueductal gray, supraoculomotor area, and contralateral cMRF. In the pons they were located in the paralemniscal zone, parabrachial nucleus, locus coeruleus, nucleus prepositus hypoglossi and the paramedian pontine reticular formation. Finally, in the medulla they were observed in the medullary reticular formation. The fact that this list of input sources is very similar to those of the superior colliculus supports the view that the cMRF represents an important gaze control center.
Collapse
Affiliation(s)
- Susan Warren
- Department of Advanced Biomedical Education, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Paul J May
- Department of Advanced Biomedical Education, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
3
|
May PJ, Billig I, Gamlin PD, Quinet J. Central mesencephalic reticular formation control of the near response: lens accommodation circuits. J Neurophysiol 2019; 121:1692-1703. [PMID: 30840529 DOI: 10.1152/jn.00846.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To view a nearby target, the three components of the near response are brought into play: 1) the eyes are converged through contraction of the medial rectus muscles to direct both foveae at the target, 2) the ciliary muscle contracts to allow the lens to thicken, increasing its refractive power to focus the near target on the retina, and 3) the pupil constricts to increase depth of field. In this study, we utilized retrograde transsynaptic transport of the N2c strain of rabies virus injected into the ciliary body of one eye of macaque monkeys to identify premotor neurons that control lens accommodation. We previously used this approach to label a premotor population located in the supraoculomotor area. In the present report, we describe a set of neurons located bilaterally in the central mesencephalic reticular formation that are labeled in the same time frame as the supraoculomotor area population, indicating their premotor character. The labeled premotor neurons are mostly multipolar cells, with long, very sparsely branched dendrites. They form a band that stretches across the core of the midbrain reticular formation. This population appears to be continuous with the premotor near-response neurons located in the supraoculomotor area at the level of the caudal central subdivision of the oculomotor nucleus. The central mesencephalic reticular formation has previously been associated with horizontal saccadic eye movements, so these premotor cells might be involved in controlling lens accommodation during disjunctive saccades. Alternatively, they may represent a population that controls vergence velocity. NEW & NOTEWORTHY This report uses transsynaptic transport of rabies virus to provide new evidence that the central mesencephalic reticular formation (cMRF) contains premotor neurons controlling lens accommodation. When combined with other recent reports that the cMRF also contains premotor neurons supplying medial rectus motoneurons, these results indicate that this portion of the reticular formation plays an important role in directing the near response and disjunctive saccades when viewers look between targets located at different distances.
Collapse
Affiliation(s)
- Paul J May
- Department of Neurobiology and Anatomical Sciences, Department of Ophthalmology, and Department of Neurology, University of Mississippi Medical Center , Jackson, Mississippi
| | - Isabelle Billig
- Systems Neuroscience Center, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Paul D Gamlin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham , Birmingham, Alabama
| | - Julie Quinet
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
4
|
Wang N, Perkins E, Zhou L, Warren S, May PJ. Reticular Formation Connections Underlying Horizontal Gaze: The Central Mesencephalic Reticular Formation (cMRF) as a Conduit for the Collicular Saccade Signal. Front Neuroanat 2017; 11:36. [PMID: 28487639 PMCID: PMC5403835 DOI: 10.3389/fnana.2017.00036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/05/2017] [Indexed: 11/26/2022] Open
Abstract
The central mesencephalic reticular formation (cMRF) occupies much of the core of the midbrain tegmentum. Physiological studies indicate that it is involved in controlling gaze changes, particularly horizontal saccades. Anatomically, it receives input from the ipsilateral superior colliculus (SC) and it has downstream projections to the brainstem, including the horizontal gaze center located in the paramedian pontine reticular formation (PPRF). Consequently, it has been hypothesized that the cMRF plays a role in the spatiotemporal transformation needed to convert spatially coded collicular saccade signals into the temporally coded signals utilized by the premotor neurons of the horizontal gaze center. In this study, we used neuroanatomical tracers to examine the patterns of connectivity of the cMRF in macaque monkeys in order to determine whether the circuit organization supports this hypothesis. Since stimulation of the cMRF produces contraversive horizontal saccades and stimulation of the horizontal gaze center produces ipsiversive saccades, this would require an excitatory cMRF projection to the contralateral PPRF. Injections of anterograde tracers into the cMRF did produce labeled terminals within the PPRF. However, the terminations were denser ipsilaterally. Since the PPRF located contralateral to the movement direction is generally considered to be silent during a horizontal saccade, we then tested the hypothesis that this ipsilateral reticuloreticular pathway might be inhibitory. The ultrastructure of ipsilateral terminals was heterogeneous, with some displaying more extensive postsynaptic densities than others. Postembedding immunohistochemistry for gamma-aminobutyric acid (GABA) indicated that only a portion (35%) of these cMRF terminals are GABAergic. Dual tracer experiments were undertaken to determine whether the SC provides input to cMRF reticuloreticular neurons projecting to the ipsilateral pons. Retrogradely labeled reticuloreticular neurons were predominantly distributed in the ipsilateral cMRF. Anterogradely labeled tectal terminals were observed in close association with a portion of these retrogradely labeled reticuloreticular neurons. Taken together, these results suggest that the SC does have connections with reticuloreticular neurons in the cMRF. However, the predominantly excitatory nature of the ipsilateral reticuloreticular projection argues against the hypothesis that this cMRF pathway is solely responsible for producing a spatiotemporal transformation of the collicular saccade signal.
Collapse
Affiliation(s)
- Niping Wang
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical CenterJackson, MS, USA.,Department of Periodontics and Preventive Sciences, University of Mississippi Medical CenterJackson, MS, USA
| | - Eddie Perkins
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical CenterJackson, MS, USA.,Department of Neurosurgery, University of Mississippi Medical CenterJackson, MS, USA
| | - Lan Zhou
- Department of Internal Medicine, G.V. Montgomery Veterans Administration Medical CenterJackson, MS, USA
| | - Susan Warren
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical CenterJackson, MS, USA
| | - Paul J May
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical CenterJackson, MS, USA.,Department of Neurology, University of Mississippi Medical CenterJackson, MS, USA.,Department of Ophthalmology, University of Mississippi Medical CenterJackson, MS, USA
| |
Collapse
|
5
|
Bohlen MO, Warren S, May PJ. A central mesencephalic reticular formation projection to medial rectus motoneurons supplying singly and multiply innervated extraocular muscle fibers. J Comp Neurol 2017; 525:2000-2018. [PMID: 28177529 DOI: 10.1002/cne.24187] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 12/20/2022]
Abstract
We recently demonstrated a bilateral projection to the supraoculomotor area from the central mesencephalic reticular formation (cMRF), a region implicated in horizontal gaze changes. C-group motoneurons, which supply multiply innervated fibers in the medial rectus muscle, are located within the primate supraoculomotor area, but their inputs and function are poorly understood. Here, we tested whether C-group motoneurons in Macaca fascicularis monkeys receive a direct cMRF input by injecting this portion of the reticular formation with anterograde tracers in combination with injection of retrograde tracer into the medial rectus muscle. The results indicate that the cMRF provides a dense, bilateral projection to the region of the medial rectus C-group motoneurons. Numerous close associations between labeled terminals and each multiply innervated fiber motoneuron were present. Within the oculomotor nucleus, a much sparser ipsilateral projection onto some of the A- and B- group medial rectus motoneurons that supply singly innervated fibers was observed. Ultrastructural analysis demonstrated a direct synaptic linkage between anterogradely labeled reticular terminals and retrogradely labeled medial rectus motoneurons in all three groups. These findings reinforce the notion that the cMRF is a critical hub for oculomotility by proving that it contains premotor neurons supplying horizontal extraocular muscle motoneurons. The differences between the cMRF input patterns for C-group versus A- and B-group motoneurons suggest the C-group motoneurons serve a different oculomotor role than the others. The similar patterns of cMRF input to C-group motoneurons and preganglionic Edinger-Westphal motoneurons suggest that medial rectus C-group motoneurons may play a role in accommodation-related vergence.
Collapse
Affiliation(s)
- Martin O Bohlen
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, Mississippi
| | - Susan Warren
- Department of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - Paul J May
- Department of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Ophthalmology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
6
|
May PJ, Warren S, Bohlen MO, Barnerssoi M, Horn AKE. A central mesencephalic reticular formation projection to the Edinger-Westphal nuclei. Brain Struct Funct 2015; 221:4073-4089. [PMID: 26615603 DOI: 10.1007/s00429-015-1147-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/12/2015] [Indexed: 11/30/2022]
Abstract
The central mesencephalic reticular formation, a region associated with horizontal gaze control, has recently been shown to project to the supraoculomotor area in primates. The Edinger-Westphal nucleus is found within the supraoculomotor area. It has two functionally and anatomically distinct divisions: (1) the preganglionic division, which contains motoneurons that control both the actions of the ciliary muscle, which focuses the lens, and the sphincter pupillae muscle, which constricts the iris, and (2) the centrally projecting division, which contains peptidergic neurons that play a role in food and fluid intake, and in stress responses. In this study, we used neuroanatomical tracers in conjunction with immunohistochemistry in Macaca fascicularis monkeys to examine whether either of these Edinger-Westphal divisions receives synaptic input from the central mesencephalic reticular formation. Anterogradely labeled reticular axons were observed making numerous boutonal associations with the cholinergic, preganglionic motoneurons of the Edinger-Westphal nucleus. These associations were confirmed to be synaptic contacts through the use of confocal and electron microscopic analysis. The latter indicated that these terminals generally contained pleomorphic vesicles and displayed symmetric, synaptic densities. Examination of urocortin-1-positive cells in the same cases revealed fewer examples of unambiguous synaptic relationships, suggesting the centrally projecting Edinger-Westphal nucleus is not the primary target of the projection from the central mesencephalic reticular formation. We conclude from these data that the central mesencephalic reticular formation must play a here-to-for unexpected role in control of the near triad (vergence, lens accommodation and pupillary constriction), which is used to examine objects in near space.
Collapse
Affiliation(s)
- Paul J May
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Department of Ophthalmology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Susan Warren
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Martin O Bohlen
- Department of Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Miriam Barnerssoi
- Institute of Anatomy and Cell Biology I, Ludwig-Maximilians University, Pettenkoferstrasse 11, 80336, Munich, Germany
| | - Anja K E Horn
- Institute of Anatomy and Cell Biology I, Ludwig-Maximilians University, Pettenkoferstrasse 11, 80336, Munich, Germany.
| |
Collapse
|
7
|
Bohlen MO, Warren S, May PJ. A central mesencephalic reticular formation projection to the supraoculomotor area in macaque monkeys. Brain Struct Funct 2015; 221:2209-29. [PMID: 25859632 DOI: 10.1007/s00429-015-1039-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/02/2015] [Indexed: 11/26/2022]
Abstract
The central mesencephalic reticular formation is physiologically implicated in oculomotor function and anatomically interwoven with many parts of the oculomotor system's premotor circuitry. This study in Macaca fascicularis monkeys investigates the pattern of central mesencephalic reticular formation projections to the area in and around the extraocular motor nuclei, with special emphasis on the supraoculomotor area. It also examines the location of the cells responsible for this projection. Injections of biotinylated dextran amine were stereotaxically placed within the central mesencephalic reticular formation to anterogradely label axons and terminals. These revealed bilateral terminal fields in the supraoculomotor area. In addition, dense terminations were found in both the preganglionic Edinger-Westphal nuclei. The dense terminations just dorsal to the oculomotor nucleus overlap with the location of the C-group medial rectus motoneurons projecting to multiply innervated muscle fibers suggesting they may be targeted. Minor terminal fields were observed bilaterally within the borders of the oculomotor and abducens nuclei. Injections including the supraoculomotor area and oculomotor nucleus retrogradely labeled a tight band of neurons crossing the central third of the central mesencephalic reticular formation at all rostrocaudal levels, indicating a subregion of the nucleus provides this projection. Thus, these experiments reveal that a subregion of the central mesencephalic reticular formation may directly project to motoneurons in the oculomotor and abducens nuclei, as well as to preganglionic neurons controlling the tone of intraocular muscles. This pattern of projections suggests an as yet undetermined role in regulating the near triad.
Collapse
Affiliation(s)
- Martin O Bohlen
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Susan Warren
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Paul J May
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
- Department of Ophthalmology, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
8
|
Wang N, Perkins E, Zhou L, Warren S, May PJ. Anatomical evidence that the superior colliculus controls saccades through central mesencephalic reticular formation gating of omnipause neuron activity. J Neurosci 2013; 33:16285-96. [PMID: 24107960 PMCID: PMC3792464 DOI: 10.1523/jneurosci.2726-11.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/16/2013] [Accepted: 08/29/2013] [Indexed: 11/21/2022] Open
Abstract
Omnipause neurons (OPNs) within the nucleus raphe interpositus (RIP) help gate the transition between fixation and saccadic eye movements by monosynaptically suppressing activity in premotor burst neurons during fixation, and releasing them during saccades. Premotor neuron activity is initiated by excitatory input from the superior colliculus (SC), but how the tectum's saccade-related activity turns off OPNs is not known. Since the central mesencephalic reticular formation (cMRF) is a major SC target, we explored whether this nucleus has the appropriate connections to support tectal gating of OPN activity. In dual-tracer experiments undertaken in macaque monkeys (Macaca fascicularis), cMRF neurons labeled retrogradely from injections into RIP had numerous anterogradely labeled terminals closely associated with them following SC injections. This suggested the presence of an SC-cMRF-RIP pathway. Furthermore, anterograde tracers injected into the cMRF of other macaques labeled axonal terminals in RIP, confirming this cMRF projection. To determine whether the cMRF projections gate OPN activity, postembedding electron microscopic immunochemistry was performed on anterogradely labeled cMRF terminals with antibody to GABA or glycine. Of the terminals analyzed, 51.4% were GABA positive, 35.5% were GABA negative, and most contacted glycinergic cells. In summary, a trans-cMRF pathway connecting the SC to the RIP is present. This pathway contains inhibitory elements that could help gate omnipause activity and allow other tectal drives to induce the bursts of firing in premotor neurons that are necessary for saccades. The non-GABAergic cMRF terminals may derive from fixation units in the cMRF.
Collapse
Affiliation(s)
- Niping Wang
- Departments of Neurobiology and Anatomical Sciences
- Periodontics and Preventive Sciences
| | - Eddie Perkins
- Departments of Neurobiology and Anatomical Sciences
- Neurosurgery
| | | | - Susan Warren
- Departments of Neurobiology and Anatomical Sciences
| | - Paul J. May
- Departments of Neurobiology and Anatomical Sciences
- Neurology, and
- Ophthalmology, University of Mississippi Medical Center, Jackson, Mississippi 39216
| |
Collapse
|
9
|
Vestibular responses in the macaque pedunculopontine nucleus and central mesencephalic reticular formation. Neuroscience 2012; 223:183-99. [PMID: 22864184 DOI: 10.1016/j.neuroscience.2012.07.054] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 07/24/2012] [Accepted: 07/26/2012] [Indexed: 11/22/2022]
Abstract
The pedunculopontine nucleus (PPN) and central mesencephalic reticular formation (cMRF) both send projections and receive input from areas with known vestibular responses. Noting their connections with the basal ganglia, the locomotor disturbances that occur following lesions of the PPN or cMRF, and the encouraging results of PPN deep brain stimulation in Parkinson's disease patients, both the PPN and cMRF have been linked to motor control. In order to determine the existence of and characterize vestibular responses in the PPN and cMRF, we recorded single neurons from both structures during vertical and horizontal rotation, translation, and visual pursuit stimuli. The majority of PPN cells (72.5%) were vestibular-only (VO) cells that responded exclusively to rotation and translation stimuli but not visual pursuit. Visual pursuit responses were much more prevalent in the cMRF (57.1%) though close to half of cMRF cells were VO cells (41.1%). Directional preferences also differed between the PPN, which was preferentially modulated during nose-down pitch, and cMRF, which was preferentially modulated during ipsilateral yaw rotation. Finally, amplitude responses were similar between the PPN and cMRF during rotation and pursuit stimuli, but PPN responses to translation were of higher amplitude than cMRF responses. Taken together with their connections to the vestibular circuit, these results implicate the PPN and cMRF in the processing of vestibular stimuli and suggest important roles for both in responding to motion perturbations like falls and turns.
Collapse
|
10
|
Shin JW, Geerling JC, Stein MK, Miller RL, Loewy AD. FoxP2 brainstem neurons project to sodium appetite regulatory sites. J Chem Neuroanat 2011; 42:1-23. [PMID: 21605659 PMCID: PMC3148274 DOI: 10.1016/j.jchemneu.2011.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/06/2011] [Accepted: 05/07/2011] [Indexed: 02/07/2023]
Abstract
The transcription factor Forkhead box protein 2 (FoxP2) is expressed in two cell groups of the brainstem that have been implicated in sodium appetite regulation: the pre-locus coeruleus (pre-LC) and parabrachial nucleus--external lateral-inner subdivision (PBel-inner). Because the connections of these two groups are unknown, neuroanatomical tracing methods were used to define their central projections. The pre-LC outputs were first analyzed using an anterograde axonal tracer--Phaseolus vulgaris leucoagglutinin (PHAL) to construct a brain map. Next, we examined whether the FoxP2 immunoreactive (FoxP2+) neurons of the pre-LC contribute to these projections using a retrograde neuronal tracer--cholera toxin β-subunit (CTb). CTb was injected into selected brain regions identified in the anterograde tracing study. One week later the rats were killed, and brainstem sections were processed by a double immunohistochemical procedure to determine whether the FoxP2+ neurons in the pre-LC and/or PBel-inner contained CTb. FoxP2+ pre-LC neurons project to: (1) ventral pallidum; (2) substantia innominata and bed nucleus of the stria terminalis; (3) paraventricular, central medial, parafascicular, and subparafascicular parvicellular thalamic nuclei; (4) paraventricular (PVH), lateral, perifornical, dorsomedial (DMH), and parasubthalamic hypothalamic nuclei; and (5) ventral tegmental area (VTA), periaqueductal gray matter (PAG), dorsal and central linear raphe nuclei. FoxP2+ PBel-inner neurons project to the PVH and DMH, with weaker connections to the LHA, VTA, and PAG. Both the pre-LC and PBel-inner project to central sites implicated in sodium appetite, and related issues, including foraging behavior, hedonic responses to salt intake, sodium balance, and cardiovascular regulation, are discussed.
Collapse
Affiliation(s)
| | - Joel C. Geerling
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew K. Stein
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rebecca L. Miller
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Arthur D. Loewy
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
11
|
Abstract
Accurate diagnosis of abnormal eye movements depends upon knowledge of the purpose, properties, and neural substrate of distinct functional classes of eye movement. Here, we summarize current concepts of the anatomy of eye movement control. Our approach is bottom-up, starting with the extraocular muscles and their innervation by the cranial nerves. Second, we summarize the neural circuits in the pons underlying horizontal gaze control, and the midbrain connections that coordinate vertical and torsional movements. Third, the role of the cerebellum in governing and optimizing eye movements is presented. Fourth, each area of cerebral cortex contributing to eye movements is discussed. Last, descending projections from cerebral cortex, including basal ganglionic circuits that govern different components of gaze, and the superior colliculus, are summarized. At each stage of this review, the anatomical scheme is used to predict the effects of lesions on the control of eye movements, providing clinical-anatomical correlation.
Collapse
|
12
|
Projections from the brain to the spinal cord in the mouse. Brain Struct Funct 2010; 215:159-86. [DOI: 10.1007/s00429-010-0281-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 09/23/2010] [Indexed: 12/20/2022]
|
13
|
Wang N, Warren S, May PJ. The macaque midbrain reticular formation sends side-specific feedback to the superior colliculus. Exp Brain Res 2010; 201:701-17. [PMID: 19940983 PMCID: PMC2840059 DOI: 10.1007/s00221-009-2090-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 11/04/2009] [Indexed: 10/20/2022]
Abstract
The central mesencephalic reticular formation (cMRF) likely plays a role in gaze control, as cMRF neurons receive tectal input and provide a bilateral projection back to the superior colliculus (SC). We examined the important question of whether this feedback is excitatory or inhibitory. Biotinylated dextran amine (BDA) was injected into the cMRF of M. fascicularis monkeys to anterogradely label reticulotectal terminals and retrogradely label tectoreticular neurons. BDA labeled profiles in the ipsi- and contralateral intermediate gray layer (SGI) were examined electron microscopically. Postembedding GABA immunochemistry was used to identify putative inhibitory profiles. Nearly all (94.7%) of the ipsilateral BDA labeled terminals were GABA positive, but profiles postsynaptic to these labeled terminals were exclusively GABA negative. In addition, BDA labeled terminals were observed to contact BDA labeled dendrites, indicating the presence of a monosynaptic feedback loop connecting the cMRF and ipsilateral SC. In contrast, within the contralateral SGI, half of the BDA labeled terminals were GABA positive, while more than a third were GABA negative. All the postsynaptic profiles were GABA negative. These results indicate the cMRF provides inhibitory feedback to the ipsilateral side of the SC, but it has more complex effects on the contralateral side. The ipsilateral projection may help tune the "winner-take-all" mechanism that produces a unified saccade signal, while the contralateral projections may contribute to the coordination of activity between the two colliculi.
Collapse
Affiliation(s)
- Niping Wang
- Department of Anatomy, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - Susan Warren
- Department of Anatomy, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - Paul J. May
- Department of Anatomy, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
- Department of Ophthalmology, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
14
|
Perkins E, Warren S, May PJ. The mesencephalic reticular formation as a conduit for primate collicular gaze control: tectal inputs to neurons targeting the spinal cord and medulla. Anat Rec (Hoboken) 2009; 292:1162-81. [PMID: 19645020 DOI: 10.1002/ar.20935] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The superior colliculus (SC), which directs orienting movements of both the eyes and head, is reciprocally connected to the mesencephalic reticular formation (MRF), suggesting the latter is involved in gaze control. The MRF has been provisionally subdivided to include a rostral portion, which subserves vertical gaze, and a caudal portion, which subserves horizontal gaze. Both regions contain cells projecting downstream that may provide a conduit for tectal signals targeting the gaze control centers which direct head movements. We determined the distribution of cells targeting the cervical spinal cord and rostral medullary reticular formation (MdRF), and investigated whether these MRF neurons receive input from the SC by the use of dual tracer techniques in Macaca fascicularis monkeys. Either biotinylated dextran amine or Phaseolus vulgaris leucoagglutinin was injected into the SC. Wheat germ agglutinin conjugated horseradish peroxidase was placed into the ipsilateral cervical spinal cord or medial MdRF to retrogradely label MRF neurons. A small number of medially located cells in the rostral and caudal MRF were labeled following spinal cord injections, and greater numbers were labeled in the same region following MdRF injections. In both cases, anterogradely labeled tectoreticular terminals were observed in close association with retrogradely labeled neurons. These close associations between tectoreticular terminals and neurons with descending projections suggest the presence of a trans-MRF pathway that provides a conduit for tectal control over head orienting movements. The medial location of these reticulospinal and reticuloreticular neurons suggests this MRF region may be specialized for head movement control.
Collapse
Affiliation(s)
- Eddie Perkins
- Department of Anatomy, University of Mississippi Medical Center, Jackson, Mississippi 39216-4405, USA
| | | | | |
Collapse
|
15
|
Stecina K, Slawinska U, Jankowska E. Ipsilateral actions from the feline red nucleus on hindlimb motoneurones. J Physiol 2008; 586:5865-84. [PMID: 18936076 DOI: 10.1113/jphysiol.2008.163998] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The main aim of the study was to investigate whether neurones in the ipsilateral red nucleus (NR) affect hindlimb motoneurones. Intracellular records from motoneurones revealed that both EPSPs and IPSPs were evoked in them via ipsilaterally located premotor interneurones by stimulation of the ipsilateral NR in deeply anaesthetized cats in which only ipsilaterally descending tract fibres were left intact. When only contralaterally descending tract fibres were left intact, EPSPs mediated by excitatory commissural interneurones were evoked by NR stimuli alone while IPSPs mediated by inhibitory commissural interneurones required joint stimulation of the ipsilateral NR and of the medial longitudinal fascicle (MLF, i.e. reticulospinal tract fibres). Control experiments led to the conclusion that if any inadvertently coactivated axons of neurones from the contralateral NR contributed to these PSPs, their effect was minor. Another aim of the study was to investigate whether ipsilateral actions of NR neurones, pyramidal tract (PT) neurones and reticulospinal tract neurones descending in the MLF on hindlimb motoneurones are evoked via common spinal relay neurones. Mutual facilitation of these synaptic actions as well as of synaptic actions from the contralateral NR and contralateral PT neurones showed that they are to a great extent mediated via the same spinal neurones. A more effective activation of these neurones by not only ipsilateral corticospinal and reticulospinal but also rubrospinal tract neurones may thus contribute to the recovery of motor functions after injuries of the contralateral corticospinal tract neurones. No evidence was found for mediation of early PT actions via NR neurones.
Collapse
Affiliation(s)
- K Stecina
- Department of Physiology, Medicinaregatan 11, Box 432, 405 30 Göteborg, Sweden
| | | | | |
Collapse
|
16
|
The feedback circuit connecting the central mesencephalic reticular formation and the superior colliculus in the macaque monkey: tectal connections. Exp Brain Res 2008; 189:485-96. [PMID: 18553075 DOI: 10.1007/s00221-008-1444-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 05/25/2008] [Indexed: 12/18/2022]
Abstract
The connectional and physiological characteristics of the central mesencephalic reticular formation (cMRF) indicate that it participates in gaze control. The cMRF receives projections from the ipsilateral superior colliculus (SC) via collaterals of predorsal bundle axons. These collaterals target cMRF neurons, which in turn project back upon the SC. In the present study, we examined the pattern of connections made by the cMRF reticulotectal projection by injecting the bidirectional neuroanatomical tracer, biotinylated dextran amine (BDA), into the cMRF of macaque monkeys. Anterogradely labeled reticulotectal terminals were found bilaterally in the SC, with an ipsilateral predominance, and were concentrated in the intermediate gray layer (SGI). BDA also retrogradely labeled SC neurons projecting to the cMRF. These labeled tectoreticular cells were located mainly in SGI. Injection site specific differences in the SC labeling pattern were evident, suggesting the lateral cMRF is more heavily connected to the upper sublamina of SGI, whereas the medial cMRF is more heavily connected with the lower sublamina. In view of the known downstream connections of the cMRF and these SC sublaminae, this organization intimates that the cMRF may contain subdivisions specialized to modulate the eye and the head components of gaze changes. In addition, reticulotectal terminals were observed to have close associations with retrogradely labeled tectoreticular cells in the ipsilateral SC, indicating possible synaptic contacts. Thus, the cMRF's reciprocal connections with the SC suggest this structure plays a role in defining the gaze-related bursting behavior of collicular output neurons.
Collapse
|
17
|
Gandhi NJ, Barton EJ, Sparks DL. Coordination of eye and head components of movements evoked by stimulation of the paramedian pontine reticular formation. Exp Brain Res 2008; 189:35-47. [PMID: 18458891 DOI: 10.1007/s00221-008-1401-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 04/19/2008] [Indexed: 10/22/2022]
Abstract
Constant frequency microstimulation of the paramedian pontine reticular formation (PPRF) in head-restrained monkeys evokes a constant velocity eye movement. Since the PPRF receives significant projections from structures that control coordinated eye-head movements, we asked whether stimulation of the pontine reticular formation in the head-unrestrained animal generates a combined eye-head movement or only an eye movement. Microstimulation of most sites yielded a constant-velocity gaze shift executed as a coordinated eye-head movement, although eye-only movements were evoked from some sites. The eye and head contributions to the stimulation-evoked movements varied across stimulation sites and were drastically different from the lawful relationship observed for visually-guided gaze shifts. These results indicate that the microstimulation activated elements that issued movement commands to the extraocular and, for most sites, neck motoneurons. In addition, the stimulation-evoked changes in gaze were similar in the head-restrained and head-unrestrained conditions despite the assortment of eye and head contributions, suggesting that the vestibulo-ocular reflex (VOR) gain must be near unity during the coordinated eye-head movements evoked by stimulation of the PPRF. These findings contrast the attenuation of VOR gain associated with visually-guided gaze shifts and suggest that the vestibulo-ocular pathway processes volitional and PPRF stimulation-evoked gaze shifts differently.
Collapse
Affiliation(s)
- Neeraj J Gandhi
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|