1
|
Liu W, Wang Q, Luo H, Luo B, Zhao F, Kang Y, Zhang Y, Shao L. Nanographene Oxide Promotes Angiogenesis by Regulating Osteoclast Differentiation and Platelet-Derived Growth Factor Secretion. ACS NANO 2024; 18:22390-22403. [PMID: 39105734 DOI: 10.1021/acsnano.4c06979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
An imbalanced system of angiogenesis-osteoblasts-osteoclasts is regarded as the main factor in bone remodeling dysfunction diseases or osseointegration loss. Osteoclast precursors are the key cells that accelerate bone-specific angiogenesis and maintain normal osteoblast and osteoclast function. Graphene oxide is an effective scaffold surface modification agent with broad application prospects in bone tissue engineering. However, the effect of graphene oxide on the interaction between osteoclasts and angiogenesis has not yet been elucidated. In this study, a rat calvarial defect model was established and treated with an electrochemically derived nanographene oxide (ENGO) hydrogel. Higher angiogenesis and platelet-derived growth factor (PDGF) B in preosteoclasts were observed in the ENGO group compared with that in the control group. Moreover, in vitro experiments demonstrate the efficacy of ENGO in substantially reducing the expression of the receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclast-associated markers and inhibiting bone resorption activity. Additionally, ENGO enhances the secretion of the osteoclast-derived coupling factor PDGF-BB and promotes angiogenesis. Our investigation revealed the crucial role of isocitrate dehydrogenase 1 (IDH1) in the ENGO-mediated regulation of osteoclast differentiation and PDGF-BB secretion. The decreased expression of IDH1 reduces the level of histone lysine demethylase 7A (KDM7A) and subsequently increases the H3K9me2 level in the cathepsin K promoter region. In summary, we found that ENGO promotes angiogenesis by inhibiting the maturity of RANKL-induced osteoclasts and enhancing PDGF-BB secretion. These results indicate that ENGO holds promise for the application in fostering osteoclast-endothelial cell crosstalk, providing an effective strategy for treating bone resorption and osteoclast-related bone loss diseases.
Collapse
Affiliation(s)
- Wenjing Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Qinying Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Haiyun Luo
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Bichong Luo
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Fujian Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Yiyuan Kang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Yanli Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Longquan Shao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
2
|
Kylmäoja E, Abushahba F, Holopainen J, Ritala M, Tuukkanen J. Monocyte Differentiation on Atomic Layer-Deposited (ALD) Hydroxyapatite Coating on Titanium Substrate. Molecules 2023; 28:molecules28083611. [PMID: 37110845 PMCID: PMC10143381 DOI: 10.3390/molecules28083611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Hydroxyapatite (HA; Ca10(PO4)6(OH)2) coating of bone implants has many beneficial properties as it improves osseointegration and eventually becomes degraded and replaced with new bone. We prepared HA coating on a titanium substrate with atomic layer deposition (ALD) and compared monocyte differentiation and material resorption between ALD-HA and bone. After stimulation with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-B ligand (RANKL), human peripheral blood monocytes differentiated into resorbing osteoclasts on bovine bone, but non-resorbing foreign body cells were observed on ALD-HA. The analysis of the topography of ALD-HA and bone showed no differences in wettability (water contact angle on ALD-HA 86.2° vs. 86.7° on the bone), but the surface roughness of ALD-HA (Ra 0.713 µm) was significantly lower compared to bone (Ra 2.30 µm). The cellular reaction observed on ALD-HA might be a consequence of the topographical properties of the coating. The absence of resorptive osteoclasts on ALD-HA might indicate inhibition of their differentiation or the need to modify the coating to induce osteoclast differentiation.
Collapse
Affiliation(s)
- Elina Kylmäoja
- Department of Anatomy and Cell Biology, Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
| | - Faleh Abushahba
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
| | - Jani Holopainen
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Mikko Ritala
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Juha Tuukkanen
- Department of Anatomy and Cell Biology, Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
| |
Collapse
|
3
|
Omi M, Mishina Y. Roles of osteoclasts in alveolar bone remodeling. Genesis 2022; 60:e23490. [PMID: 35757898 PMCID: PMC9786271 DOI: 10.1002/dvg.23490] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022]
Abstract
Osteoclasts are large multinucleated cells from hematopoietic origin and are responsible for bone resorption. A balance between osteoclastic bone resorption and osteoblastic bone formation is critical to maintain bone homeostasis. The alveolar bone, also called the alveolar process, is the part of the jawbone that holds the teeth and supports oral functions. It differs from other skeletal bones in several aspects: its embryonic cellular origin, the form of ossification, and the presence of teeth and periodontal tissues; hence, understanding the unique characteristic of the alveolar bone remodeling is important to maintain oral homeostasis. Excessive osteoclastic bone resorption is one of the prominent features of bone diseases in the jaw such as periodontitis. Therefore, inhibiting osteoclast formation and bone resorptive process has been the target of therapeutic intervention. Understanding the mechanisms of osteoclastic bone resorption is critical for the effective treatment of bone diseases in the jaw. In this review, we discuss basic principles of alveolar bone remodeling with a specific focus on the osteoclastic bone resorptive process and its unique functions in the alveolar bone. Lastly, we provide perspectives on osteoclast-targeted therapies and regenerative approaches associated with bone diseases in the jaw.
Collapse
Affiliation(s)
- Maiko Omi
- Department of Biologic and Materials Sciences & ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMichiganUSA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMichiganUSA
| |
Collapse
|
4
|
Titanium nanotopography induces osteocyte lacunar-canalicular networks to strengthen osseointegration. Acta Biomater 2022; 151:613-627. [PMID: 35995407 DOI: 10.1016/j.actbio.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022]
Abstract
Osteocyte network architecture is closely associated with bone turnover. The cellular mechanosensing system regulates osteocyte dendrite formation by enhancing focal adhesion. Therefore, titanium surface nanotopography might affect osteocyte network architecture and improve the peri-implant bone tissue quality, leading to strengthened osseointegration of bone-anchored implants. We aimed to investigate the effects of titanium nanosurfaces on the development of osteocyte lacunar-canalicular networks and osseointegration of dental implants. Alkaline etching created titanium nanosurfaces with anisotropically patterned dense nanospikes, superhydrophilicity, and hydroxyl groups. MLO-Y4 mouse osteocyte-like cells cultured on titanium nanosurfaces developed neuron-like dendrites with increased focal adhesion assembly and gap junctions. Maturation was promoted in osteocytes cultured on titanium nanosurfaces compared to cells cultured on machined or acid-etched micro-roughened titanium surfaces. Osteocytes cultured in type I three-dimensional collagen gels for seven days on nano-roughened titanium surfaces displayed well-developed interconnectivity with highly developed dendrites and gap junctions compared to the poor interconnectivity observed on the other titanium surfaces. Even if superhydrophilicity and hydroxyl groups were maintained, the loss of anisotropy-patterned nanospikes reduced expression of gap junction in osteocytes cultured on alkaline-etched titanium nanosurfaces. Four weeks after placing the titanium nanosurface implants in the upper jawbone of wild-type rats, osteocytes with numerous dendrites were found directly attached to the implant surface, forming well-developed lacunar-canalicular networks around the nano-roughened titanium implants. The osseointegration strength of the nano-roughened titanium implants was significantly higher than that of the micro-roughened titanium implants. These data indicate that titanium nanosurfaces promote osteocyte lacunar-canalicular network development via nanotopographical cues and strengthen osseointegration. STATEMENT OF SIGNIFICANCE: The clinical stability of bone-anchoring implant devices is influenced by the bone quality. The osteocyte network potentially affects bone quality and is established by the three-dimensional (3D) connection of neuron-like dendrites of well-matured osteocytes within the bone matrix. No biomaterials are known to regulate formation of the osteocyte network. The present study provides the first demonstration that titanium nanosurfaces with nanospikes created by alkali-etching treatment enhance the 3D formation of osteocyte networks by promoting osteocyte dendrite formation and maturation by nanotopographic cues, leading to strengthened osseointegration of titanium implants. Osteocytes attached to the titanium nanosurfaces via numerous cellular projections. The success of osteocyte regulation by nanotechnology paves the way for development of epoch-making technologies to control bone quality.
Collapse
|
5
|
Suzue M, Kuroshima S, Uto Y, Uchida Y, Sawase T. Controlled mechanical early loads improve bone quality and quantity around implants: An in vivo experimental study. Clin Oral Implants Res 2022; 33:1049-1067. [PMID: 35950682 DOI: 10.1111/clr.13989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/08/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES This study aimed to investigate the effects of early loads on bone quality and quantity around implants and to compare the effects of early loads on bone quality and quantity with the effects of conventional loads. MATERIALS AND METHODS Grade IV-titanium implants with buttress threads were placed in rat maxillary bone 4 weeks after extraction of first molars. A controlled mechanical load (10 N, 3 Hz, 1,800 cycles, 2 days/week) was started via the implants 1 and 3 weeks after implant placement for 2 weeks (early and conventional loads, respectively). Bone quality, defined as distribution of bone cells, types and orientation of collagen fibers, and production of semaphorin3A, its receptor neuropilin-1, and sclerostin, were quantitatively evaluated. RESULTS Early loads substantially and positively affected bone quality by changing the preferential alignment of collagen fibers with increased production of type I and III collagens, semaphorin3A, and neuropilin-1, increased osteoblast numbers, decreased production of sclerostin, and decreased osteoclast numbers both inside and outside the implant threads, when compared with non-loaded conditions. Conventional loads changed bone quality around implants slightly. Interestingly, early loads had significantly stronger effects on bone quality and quantity based on the evaluation parameters than conventional loads. CONCLUSIONS This is the first report to provide scientific evidence for load initiation time based on both bone quality and quantity around implants. These new findings show that implants with buttress threads transmitted early loads optimally to bone tissue by improving bone quality and quantity inside and outside the implant threads.
Collapse
Affiliation(s)
- Masayoshi Suzue
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shinichiro Kuroshima
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yusuke Uto
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yusuke Uchida
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takashi Sawase
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
6
|
Kylmäoja E, Holopainen J, Abushahba F, Ritala M, Tuukkanen J. Osteoblast Attachment on Titanium Coated with Hydroxyapatite by Atomic Layer Deposition. Biomolecules 2022; 12:biom12050654. [PMID: 35625580 PMCID: PMC9138598 DOI: 10.3390/biom12050654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Background: The increasing demand for bone implants with improved osseointegration properties has prompted researchers to develop various coating types for metal implants. Atomic layer deposition (ALD) is a method for producing nanoscale coatings conformally on complex three-dimensional surfaces. We have prepared hydroxyapatite (HA) coating on titanium (Ti) substrate with the ALD method and analyzed the biocompatibility of this coating in terms of cell adhesion and viability. Methods: HA coatings were prepared on Ti substrates by depositing CaCO3 films by ALD and converting them to HA by wet treatment in dilute phosphate solution. MC3T3-E1 preosteoblasts were cultured on ALD-HA, glass slides and bovine bone slices. ALD-HA and glass slides were either coated or non-coated with fibronectin. After 48h culture, cells were imaged with scanning electron microscopy (SEM) and analyzed by vinculin antibody staining for focal adhesion localization. An 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) test was performed to study cell viability. Results: Vinculin staining revealed similar focal adhesion-like structures on ALD-HA as on glass slides and bone, albeit on ALD-HA and bone the structures were thinner compared to glass slides. This might be due to thin and broad focal adhesions on complex three-dimensional surfaces of ALD-HA and bone. The MTT test showed comparable cell viability on ALD-HA, glass slides and bone. Conclusion: ALD-HA coating was shown to be biocompatible in regard to cell adhesion and viability. This leads to new opportunities in developing improved implant coatings for better osseointegration and implant survival.
Collapse
Affiliation(s)
- Elina Kylmäoja
- Department of Anatomy and Cell Biology, Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland;
- Correspondence:
| | - Jani Holopainen
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland; (J.H.); (M.R.)
| | - Faleh Abushahba
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
| | - Mikko Ritala
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland; (J.H.); (M.R.)
| | - Juha Tuukkanen
- Department of Anatomy and Cell Biology, Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland;
| |
Collapse
|
7
|
Omidi M, Ahmad Agha N, Müller A, Feyerabend F, Helmholz H, Willumeit-Römer R, Schlüter H, Luthringer-Feyerabend BJC. Investigation of the impact of magnesium versus titanium implants on protein composition in osteoblast by label free quantification. Metallomics 2021; 12:916-934. [PMID: 32352129 DOI: 10.1039/d0mt00028k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metallic implant biomaterials predominate in orthopaedic surgery. Compared to titanium-based permanent implants, magnesium-based ones offer new possibilities as they possess mechanical properties closer to the ones of bones and they are biodegradable. Furthermore, magnesium is more and more considered to be "bioactive" i.e., able to elicit a specific tissue response or to strengthen the intimate contact between the implant and the osseous tissue. Indeed, several studies demonstrated the overall beneficial effect of magnesium-based materials on bone tissue (in vivo and in vitro). Here, the direct effects of titanium and magnesium on osteoblasts were measured on proteomes levels in order to highlight metal-specific and relevant proteins. Out of 2100 identified proteins, only 10 and 81 differentially regulated proteins, compare to the control, were isolated for titanium and magnesium samples, respectively. Selected ones according to their relationship to bone tissue were further discussed. Most of them were involved in extracellular matrix maturation and remodelling (two having a negative effect on mineralisation). A fine-tuned balanced between osteoblast maturation, differentiation and viability was observed.
Collapse
Affiliation(s)
- M Omidi
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - N Ahmad Agha
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), 21502 Geesthacht, Germany.
| | - A Müller
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), 21502 Geesthacht, Germany.
| | - F Feyerabend
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), 21502 Geesthacht, Germany.
| | - H Helmholz
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), 21502 Geesthacht, Germany.
| | - R Willumeit-Römer
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), 21502 Geesthacht, Germany.
| | - H Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - B J C Luthringer-Feyerabend
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), 21502 Geesthacht, Germany.
| |
Collapse
|
8
|
Kawamura A, Akiba Y, Nagasawa M, Takashima M, Arai Y, Uoshima K. Bone heating and implant removal using a high-frequency electrosurgical device: An in vivo experimental study. Clin Oral Implants Res 2021; 32:989-997. [PMID: 34107095 DOI: 10.1111/clr.13793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 01/27/2021] [Accepted: 03/16/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Failed implant removal using a high-frequency electrosurgical device (HFED) has been reported to be less invasive than other surgical techniques. We sought to clarify the mechanism of removal torque reduction in an implant by heating with HFED. MATERIALS AND METHODS Sixty-eight Wistar rats received titanium implants on the maxillary bone 4 weeks after extraction of the first and second molars. The control group was sacrificed 6 weeks after implant installation. In the experimental group, the implant was heated by HFED for 10 s using three different power outputs, and samples were collected at 3, 7, and 14 days after heating. Removal torque measurement and histological analysis were performed in the control and experimental groups. Implant surfaces were observed using an electron-probe microanalyzer (EPMA). Data were analyzed using Mann-Whitney U test at a significance level of 5%. RESULTS The removal torque could not be measured in the control group due to fracture of the implant. After heating, the removal torque was measurable without fracture and decreased significantly at 14 days as compared with that at 3 days (p < .05). Heating with "min" power output resulted in a significantly smaller blank lacunae area and fewer osteoclasts at 14 days after heating (p < .05). EPMA revealed bone matrix adherence to outer surface of heated implant. CONCLUSIONS After heating, an enlarged area of blank lacunae around the implant and an increased number of osteoclasts into the bone marrow cavity were observed, which may have contributed to the reduction in removal torque.
Collapse
Affiliation(s)
- Atsushi Kawamura
- Oral Implant and Temporomandibular Joint Clinic, Medical and Dental Hospital, Niigata University, Niigata, Japan
| | - Yosuke Akiba
- Divisions of Bio-prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masako Nagasawa
- Divisions of Bio-prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Makiko Takashima
- Oral Implant and Temporomandibular Joint Clinic, Medical and Dental Hospital, Niigata University, Niigata, Japan
| | - Yoshiaki Arai
- Oral Implant and Temporomandibular Joint Clinic, Medical and Dental Hospital, Niigata University, Niigata, Japan
| | - Katsumi Uoshima
- Divisions of Bio-prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
9
|
Wheelis SE, Biguetti CC, Natarajan S, Arteaga A, Allami JE, Chandrashekar BL, Garlet G, Rodrigues DC. Cellular and Molecular Dynamics during Early Oral Osseointegration: A Comprehensive Characterization in the Lewis Rat. ACS Biomater Sci Eng 2021; 7:2392-2407. [PMID: 33625829 PMCID: PMC8796703 DOI: 10.1021/acsbiomaterials.0c01420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE There is a need to improve the predictability of osseointegration in implant dentistry. Current literature uses a variety of in vivo titanium (Ti) implantation models to investigate failure modes and test new materials and surfaces. However, these models produce a variety of results, making comparison across studies difficult. The purpose of this study is to validate an oral osseointegration in the Lewis rat to provide a reproducible baseline to track the inflammatory response and healing of Ti implants. METHODS Ti screws (0.76 mm Ø × 2 mm length) were implanted into the maxillary diastema of 52 adult male Lewis rats. Peri-implant tissues were evaluated 2, 7, 14, and 30 days after implantation (n = 13). Seven of the 13 samples underwent microtomographic analysis, histology, histomorphometry, and immunohistochemistry to track healing parameters. The remaining six samples underwent quantitative polymerase chain reaction (qPCR) to evaluate gene expression of inflammation and bone remodeling markers over time. RESULTS This model achieved a 78.5% success rate. Successful implants had a bone to implant contact (BIC)% of 68.86 ± 3.15 at 30 days on average. Histologically, healing was similar to other rodent models: hematoma and acute inflammation at 2 days, initial bone formation at 7, advanced bone formation and remodeling at 14, and bone maturation at 30. qPCR indicated the highest expression of bone remodeling and inflammatory markers 2-7 days, before slowly declining to nonsurgery control levels at 14-30 days. CONCLUSION This model combines cost-effectiveness and simplicity of a rodent model, while maximizing BIC, making it an excellent candidate for evaluation of new surfaces.
Collapse
Affiliation(s)
| | | | - Shruti Natarajan
- Department of Biological Sciences, University of Texas at Dallas
- Texas A&M College of Dentistry
| | | | | | | | - Gustavo Garlet
- Bauru School of Dentistry, Department of Biological Sciences, University of São Paulo São Paulo, Brazil
| | | |
Collapse
|
10
|
Multifunctional natural polymer-based metallic implant surface modifications. Biointerphases 2021; 16:020803. [PMID: 33906356 DOI: 10.1116/6.0000876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
High energy traumas could cause critical damage to bone, which will require permanent implants to recover while functionally integrating with the host bone. Critical sized bone defects necessitate the use of bioactive metallic implants. Because of bioinertness, various methods involving surface modifications such as surface treatments, the development of novel alloys, bioceramic/bioglass coatings, and biofunctional molecule grafting have been utilized to effectively integrate metallic implants with a living bone. However, the applications of these methods demonstrated a need for an interphase layer improving bone-making to overcome two major risk factors: aseptic loosening and peri-implantitis. To accomplish a biologically functional bridge with the host to prevent loosening, regenerative cues, osteoimmunomodulatory modifications, and electrochemically resistant layers against corrosion appeared as imperative reinforcements. In addition, interphases carrying antibacterial cargo were proven to be successful against peri-implantitis. In the literature, metallic implant coatings employing natural polymers as the main matrix were presented as bioactive interphases, enabling rapid, robust, and functional osseointegration with the host bone. However, a comprehensive review of natural polymer coatings, bridging and grafting on metallic implants, and their activities has not been reported. In this review, state-of-the-art studies on multifunctional natural polymer-based implant coatings effectively utilized as a bone tissue engineering (BTE) modality are depicted. Protein-based, polysaccharide-based coatings and their combinations to achieve better osseointegration via the formation of an extracellular matrix-like (ECM-like) interphase with gap filling and corrosion resistance abilities are discussed in detail. The hypotheses and results of these studies are examined and criticized, and the potential future prospects of multifunctional coatings are also proposed as final remarks.
Collapse
|
11
|
Nienkemper M, Willmann JH, Drescher D. Long-term stability behavior of paramedian palatal mini-implants: A repeated cross-sectional study. Am J Orthod Dentofacial Orthop 2020; 157:165-171. [PMID: 32005467 DOI: 10.1016/j.ajodo.2019.01.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 01/01/2019] [Accepted: 01/01/2019] [Indexed: 11/28/2022]
Abstract
INTRODUCTION The initial stability of orthodontic mini-implants is well investigated over a period of 6 weeks. There is no clinical data available dealing with the long-term stability. The aim of this study was the assessment of long-term stability of paramedian palatal mini-implants in humans. METHODS Stability of 20 implants was measured after removal of the orthodontic appliance (sliding mechanics for sagittal molar movement 200 cN each side) before explantation (T4) using resonance frequency analysis (RFA). Data were compared with a matched group of 21 mini-implants assessing the stability immediately after insertion, and after 2, 4, and 6 weeks (T0-T3). The mini-implants used in this study were machined self-drilling titanium implants (2.0 × 9.0 mm). Gingival thickness at the insertion site was 1-2 mm. RESULTS The implant stability quotient (ISQ) values before removal of the implant at T4 were 25.2 ± 2.9 after 1.7 ± 0.2 years and did not show a statistically significant change over time compared with the initial healing group (T0-T3). CONCLUSIONS Comparing the stability of mini-implants just after completion of the healing period and at the end of their respective usage period revealed no significant difference. An increase of secondary stability could not be detected. The level of stability seemed to be appropriate for orthodontic anchorage.
Collapse
Affiliation(s)
- Manuel Nienkemper
- Private practice, Düsseldorf, Germany; Department of Orthodontics, Heinrich Heine University, Düsseldorf, Germany
| | - Jan H Willmann
- Department of Orthodontics, Heinrich Heine University, Düsseldorf, Germany.
| | - Dieter Drescher
- Department of Orthodontics, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
12
|
Arakeeb MAA, Zaky AA, Harhash TAH, Salem WS, El-Mofty M. Effect of Combined Application of Growth Factors and Diode Laser Bio-Stimulation on the Osseo Integration of Dental Implants. Open Access Maced J Med Sci 2019; 7:2520-2527. [PMID: 31666858 PMCID: PMC6814472 DOI: 10.3889/oamjms.2019.672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND: The success of implants is associated first with their osseointegration, and later on with their survival rate. In recent years, many efforts have been exerted to develop implant design, geometry, materials and techniques to enhance the osseointegration process and also to increase the success rate of implant procedures. New techniques, like leukocyte and platelet-rich fibrin (L-PRF) and low-level laser treatment (LLLT), have been developed to enhance the osseointegration around dental implants. AIM: This study aims at accelerating bone osseointegration process around dental implant using new techniques to increase the success rate, to allow immediate or early loading of a dental implant, and to make a comparison between the various new techniques in dental implant procedures to figure out which technique will achieve the best results. METHODS: The study was conducted on a random sample of 40 male patients. Dental implants were placed in the posterior areas of the lower jaw. Patients were divided randomly into 4 groups; control group, LLLT group, L-PRF group and L-PRF plus LLLT group. They were assessed using cone-beam computed tomography (CBCT). RESULTS: The results showed significant differences between all groups over different measured times. All the groups showed improvement in comparison with Normal group, where L-PRF group showed the best result followed by (L-PRF+LLLT) group, while the LLLT group showed the least improvement in comparison with bothL-PRF group and (L-PRF+LLLT) group. CONCLUSION: The study demonstrates that L-PRF gives a better performance in the osseointegration around dental implants than LLLT.
Collapse
Affiliation(s)
| | - Ahmed Abbas Zaky
- Department of Medical Applications of Laser, NILES, Cairo University, Cairo, Egypt
| | | | - Walid S Salem
- Oral and Maxillofacial Radiology Department, College of Dentistry, Beni Suef University, Egypt, Beni Suef, Egypt
| | | |
Collapse
|
13
|
Takemura Y, Moriyama Y, Ayukawa Y, Kurata K, Rakhmatia YD, Koyano K. Mechanical loading induced osteocyte apoptosis and connexin 43 expression in three-dimensional cell culture and dental implant model. J Biomed Mater Res A 2019; 107:815-827. [DOI: 10.1002/jbm.a.36597] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/06/2018] [Accepted: 12/18/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Yoko Takemura
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Yasuko Moriyama
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Yasunori Ayukawa
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Kosaku Kurata
- Department of Mechanical Engineering, Faculty of Engineering; Kyushu University; Fukuoka Japan
| | - Yunia D. Rakhmatia
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Kiyoshi Koyano
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science; Kyushu University; Fukuoka Japan
| |
Collapse
|
14
|
Farkasdi S, Pammer D, Rácz R, Hriczó-Koperdák G, Szabó BT, Dobó-Nagy C, Kerémi B, Blazsek J, Cuisinier F, Wu G, Varga G. Development of a quantitative preclinical screening model for implant osseointegration in rat tail vertebra. Clin Oral Investig 2018; 23:2959-2973. [PMID: 30374828 PMCID: PMC7398390 DOI: 10.1007/s00784-018-2661-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/25/2018] [Indexed: 11/24/2022]
Abstract
Objectives Functional tooth replacement and bone regeneration are parts of the daily practice in modern dentistry, but well-reproducible and relatively inexpensive experimental models are still missing. We aimed to develop a new small animal model to monitor osseointegration utilizing the combination of multiple evaluation protocols. Material and methods After cutting the tail between the C4 and C5 vertebrae in Wistar rats, costume made, parallel walled, non-threaded implants were placed into the center of the tail parallel with its longitudinal axis using a surgical guide. Osseointegration of the titanium implants was followed between 4 and 16 weeks after surgery applying axial extraction force, and resonance frequency analysis as functional tests, and histomorphometry and micro-CT as structural evaluations. Results In functional tests, we observed that both methods are suitable for the detection of the time-dependent increase in osseointegration, but the sensitivity of the pull-out technique (an approximately five times increase with rather low standard error) was much higher than that of the resonance frequency analysis. In structural evaluations, changes in the detected bone implant contact values measured by histomorphometry (yielding 1.5 times increase, with low variations of data) were more reliable than micro-CT based evaluations to screen the developments of contact between bone and implant. Conclusion Our results provide evidence that the caudal vertebrae osseointegration model is useful for the preclinical evaluation of implant integration into the bone. Clinical relevance The combination of the biomechanical and structural tests offers a well-reproducible small animal system that can be suitable for studying the integration of various implant materials and surface treatments.
Collapse
Affiliation(s)
- Sándor Farkasdi
- Department of Oral Biology, Semmelweis University, Nagyvárad tér 4., Budapest, 1089, Hungary
| | - Dávid Pammer
- Department of Materials Science and Engineering, Budapest University of Technology and Economics, Budapest, Hungary
| | - Róbert Rácz
- Department of Oral Biology, Semmelweis University, Nagyvárad tér 4., Budapest, 1089, Hungary
| | - Gergely Hriczó-Koperdák
- Department of Oral Biology, Semmelweis University, Nagyvárad tér 4., Budapest, 1089, Hungary
| | - Bence Tamás Szabó
- Department of Oral Diagnostics, Semmelweis University, Budapest, Hungary
| | - Csaba Dobó-Nagy
- Department of Oral Diagnostics, Semmelweis University, Budapest, Hungary
| | - Beáta Kerémi
- Department of Oral Biology, Semmelweis University, Nagyvárad tér 4., Budapest, 1089, Hungary
| | - József Blazsek
- Department of Oral Biology, Semmelweis University, Nagyvárad tér 4., Budapest, 1089, Hungary
| | - Frederic Cuisinier
- Laboratoire Bioingénierie et Nanosciences EA4203, Université Montpellier, Montpellier, France
| | - Gang Wu
- Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije University Amsterdam and University of Amsterdam, Amsterdam, The Netherlands
| | - Gábor Varga
- Department of Oral Biology, Semmelweis University, Nagyvárad tér 4., Budapest, 1089, Hungary.
| |
Collapse
|
15
|
Histochemical examination on the peri-implant bone with early occlusal loading after the immediate placement into extraction sockets. Histochem Cell Biol 2018; 149:433-447. [DOI: 10.1007/s00418-018-1644-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2018] [Indexed: 01/20/2023]
|
16
|
Uto Y, Kuroshima S, Nakano T, Ishimoto T, Inaba N, Uchida Y, Sawase T. Effects of mechanical repetitive load on bone quality around implants in rat maxillae. PLoS One 2017; 12:e0189893. [PMID: 29244883 PMCID: PMC5731745 DOI: 10.1371/journal.pone.0189893] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/04/2017] [Indexed: 12/04/2022] Open
Abstract
Greater understanding and acceptance of the new concept "bone quality", which was proposed by the National Institutes of Health and is based on bone cells and collagen fibers, are required. The novel protein Semaphorin3A (Sema3A) is associated with osteoprotection by regulating bone cells. The aims of this study were to investigate the effects of mechanical loads on Sema3A production and bone quality based on bone cells and collagen fibers around implants in rat maxillae. Grade IV-titanium threaded implants were placed at 4 weeks post-extraction in maxillary first molars. Implants received mechanical loads (10 N, 3 Hz for 1800 cycles, 2 days/week) for 5 weeks from 3 weeks post-implant placement to minimize the effects of wound healing processes by implant placement. Bone structures, bone mineral density (BMD), Sema3A production and bone quality based on bone cells and collagen fibers were analyzed using microcomputed tomography, histomorphometry, immunohistomorphometry, polarized light microscopy and birefringence measurement system inside of the first and second thread (designated as thread A and B, respectively), as mechanical stresses are concentrated and differently distributed on the first two threads from the implant neck. Mechanical load significantly increased BMD, but not bone volume around implants. Inside thread B, but not thread A, mechanical load significantly accelerated Sema3A production with increased number of osteoblasts and osteocytes, and enhanced production of both type I and III collagen. Moreover, mechanical load also significantly induced preferential alignment of collagen fibers in the lower flank of thread B. These data demonstrate that mechanical load has different effects on Sema3A production and bone quality based on bone cells and collagen fibers between the inside threads of A and B. Mechanical load-induced Sema3A production may be differentially regulated by the type of bone structure or distinct stress distribution, resulting in control of bone quality around implants in jaw bones.
Collapse
Affiliation(s)
- Yusuke Uto
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shinichiro Kuroshima
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Yamadaoka, Suita-city, Osaka, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Yamadaoka, Suita-city, Osaka, Japan
| | - Nao Inaba
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yusuke Uchida
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takashi Sawase
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
17
|
Topographical and elemental changes of retrieved stainless steel and titanium mini-implants after orthodontic treatment. J World Fed Orthod 2017. [DOI: 10.1016/j.ejwf.2017.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Zhou W, Kuderer S, Liu Z, Ulm C, Rausch-Fan X, Tangl S. Peri-implant bone remodeling at the interface of three different implant types: a histomorphometric study in mini-pigs. Clin Oral Implants Res 2017; 28:1443-1449. [DOI: 10.1111/clr.13009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2017] [Indexed: 12/01/2022]
Affiliation(s)
- Wenjuan Zhou
- Department of Implant Dentistry; Yantai Stomatological Hospital; Binzhou Medical University; Yantai China
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research; Department of Oral Surgery; University Clinic of Dentistry; Medical University of Vienna; Vienna Austria
- Competence Center for Periodontal Research; Division of Conservative Dentistry and Periodontology; University Clinic of Dentistry; Medical University of Vienna; Vienna Austria
| | - Sonja Kuderer
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research; Department of Oral Surgery; University Clinic of Dentistry; Medical University of Vienna; Vienna Austria
- Austrian Cluster for Tissue Regeneration; Vienna Austria
| | - Zhonghao Liu
- Department of Implant Dentistry; Yantai Stomatological Hospital; Binzhou Medical University; Yantai China
| | - Christian Ulm
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research; Department of Oral Surgery; University Clinic of Dentistry; Medical University of Vienna; Vienna Austria
- Austrian Cluster for Tissue Regeneration; Vienna Austria
| | - Xiaohui Rausch-Fan
- Competence Center for Periodontal Research; Division of Conservative Dentistry and Periodontology; University Clinic of Dentistry; Medical University of Vienna; Vienna Austria
| | - Stefan Tangl
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research; Department of Oral Surgery; University Clinic of Dentistry; Medical University of Vienna; Vienna Austria
- Austrian Cluster for Tissue Regeneration; Vienna Austria
| |
Collapse
|
19
|
RETRACTED: Scanning electron microscopy study of new bone formation following small and large defects preserved with xenografts supplemented with pamidronate—A pilot study in Fox-Hound dogs at 4 and 8 weeks. Ann Anat 2017; 209:61-68. [DOI: 10.1016/j.aanat.2016.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/24/2016] [Accepted: 09/19/2016] [Indexed: 11/24/2022]
|
20
|
Doh RM, Kim S, Keum KC, Kim JW, Shim JS, Jung HS, Park KM, Chung MK. Postoperative irradiation after implant placement: A pilot study for prosthetic reconstruction. J Adv Prosthodont 2016; 8:363-371. [PMID: 27826386 PMCID: PMC5099128 DOI: 10.4047/jap.2016.8.5.363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/08/2016] [Accepted: 08/08/2016] [Indexed: 11/23/2022] Open
Abstract
PURPOSE On maxillofacial tumor patients, oral implant placement prior to postoperative radiotherapy can shorten the period of prosthetic reconstruction. There is still lack of research on effects of post-implant radiotherapy such as healing process or loading time, which is important for prosthodontic treatment planning. Therefore, this study evaluated the effects of post-implant local irradiation on the osseointegration of implants during different healing stages. MATERIALS AND METHODS Custom-made implants were placed bilaterally on maxillary posterior edentulous area 4 weeks after extraction of the maxillary first molars in Forty-eight Sprague-Dawley rats. Experimental group (exp.) received radiation after implant surgery and the other group (control) didn't. Each group was divided into three sub-groups according to the healing time (2, 4, and 8 week) from implant placement. The exp. group 1, 2 received 15-Gy radiation 1 day after implant placement (immediate irradiation). The exp. group 3 received 15-Gy radiation 4 weeks after implant placement (delayed irradiation). RESULTS The bone mineral density (BMD) was significantly lower in the immediate irradiation groups. BMD was similar in the delayed irradiation group and the control group. The irradiated groups exhibited a lower bone-to-implant contact ratio, although the difference was not statistically significant. The irradiated groups also exhibited a significantly lower bone volume and higher empty lacuna count than the control groups. No implant failure due to local irradiation was found in this study. CONCLUSION Within the limits of this study, the timing of local irradiation critically influences the bone healing mechanism, which is related to loading time of prostheses.
Collapse
Affiliation(s)
- Re-Mee Doh
- Department of Advanced General Dentistry, Dankook University College of Dentistry, Cheonan, Republic of Korea
| | - Sungtae Kim
- Department of Periodontology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Ki Chang Keum
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun Won Kim
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - June-Sung Shim
- Department of Prosthodontics, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Han-Sung Jung
- Division in Anatomy and Development Biology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Kyeong-Mee Park
- Department of Advanced General Dentistry, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Moon-Kyu Chung
- Division in Anatomy and Development Biology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| |
Collapse
|
21
|
Mello ASDS, dos Santos PL, Marquesi A, Queiroz TP, Margonar R, de Souza Faloni AP. Some aspects of bone remodeling around dental implants. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.piro.2015.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Siqueira CRBD, Semenoff TADV, Palma VC, Borges ÁH, Silva NFD, Segundo AS. Effect of chronic stress on implant osseointegration into rat's mandible. Acta Cir Bras 2015; 30:598-603. [PMID: 26465103 DOI: 10.1590/s0102-865020150090000003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/11/2015] [Indexed: 11/22/2022] Open
|
23
|
Du Z, Lee RSB, Hamlet S, Doan N, Ivanovski S, Xiao Y. Evaluation of the first maxillary molar post-extraction socket as a model for dental implant osseointegration research. Clin Oral Implants Res 2015; 27:1469-1478. [DOI: 10.1111/clr.12571] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Zhibin Du
- Institute of Health and Biomedical Innovation; Queensland University of Technology; Kelvin Grove Brisbane Qld Australia
| | - Ryan S. B. Lee
- School of Dentistry and Oral Health; Griffith University; Southport Qld Australia
| | - Stephen Hamlet
- School of Dentistry and Oral Health; Griffith University; Southport Qld Australia
| | - Nghiem Doan
- Institute of Health and Biomedical Innovation; Queensland University of Technology; Kelvin Grove Brisbane Qld Australia
| | - Saso Ivanovski
- School of Dentistry and Oral Health; Griffith University; Southport Qld Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation; Queensland University of Technology; Kelvin Grove Brisbane Qld Australia
| |
Collapse
|
24
|
Mouraret S, Hunter D, Bardet C, Brunski J, Bouchard P, Helms J. A pre-clinical murine model of oral implant osseointegration. Bone 2014; 58:177-84. [PMID: 23886841 PMCID: PMC4962868 DOI: 10.1016/j.bone.2013.07.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 05/31/2013] [Accepted: 07/10/2013] [Indexed: 10/26/2022]
Abstract
Many of our assumptions concerning oral implant osseointegration are extrapolated from experimental models studying skeletal tissue repair in long bones. This disconnect between clinical practice and experimental research hampers our understanding of bone formation around oral implants and how this process can be improved. We postulated that oral implant osseointegration would be fundamentally equivalent to implant osseointegration elsewhere in the body. Mice underwent implant placement in the edentulous ridge anterior to the first molar and peri-implant tissues were evaluated at various timepoints after surgery. Our hypothesis was disproven; oral implant osseointegration is substantially different from osseointegration in long bones. For example, in the maxilla peri-implant pre-osteoblasts are derived from cranial neural crest whereas in the tibia peri-implant osteoblasts are derived from mesoderm. In the maxilla, new osteoid arises from periostea of the maxillary bone but in the tibia the new osteoid arises from the marrow space. Cellular and molecular analyses indicate that osteoblast activity and mineralization proceeds from the surfaces of the native bone and osteoclastic activity is responsible for extensive remodeling of the new peri-implant bone. In addition to histologic features of implant osseointegration, molecular and cellular assays conducted in a murine model provide new insights into the sequelae of implant placement and the process by which bone is generated around implants.
Collapse
Affiliation(s)
- S. Mouraret
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA 94305, USA
- Department of Periodontology, Service of Odontology, Rothschild Hospital, AP-HP, Paris 7 Denis, Diderot University, U.F.R. of Odontology, Paris, France
| | - D.J. Hunter
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA 94305, USA
| | - C. Bardet
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA 94305, USA
- Dental School University Paris Descartes PRES Sorbonne Paris Cité, EA 2496 Montrouge, France
| | - J.B. Brunski
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA 94305, USA
| | - P. Bouchard
- Department of Periodontology, Service of Odontology, Rothschild Hospital, AP-HP, Paris 7 Denis, Diderot University, U.F.R. of Odontology, Paris, France
| | - J.A. Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA 94305, USA
- Corresponding author. Fax: +1 650 736 4374. (J.A. Helms)
| |
Collapse
|
25
|
Ramírez-Fernández MP, Calvo-Guirado JL, Maté-Sánchez Del Val JE, Delgado-Ruiz RA, Negri B, Barona-Dorado C. Ultrastructural study by backscattered electron imaging and elemental microanalysis of bone-to-biomaterial interface and mineral degradation of porcine xenografts used in maxillary sinus floor elevation. Clin Oral Implants Res 2013; 24:523-30. [PMID: 22276656 DOI: 10.1111/j.1600-0501.2011.02414.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2011] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The aim of this study was to carry out an ultrastructural study of the biomaterial-to-bone interface and biomaterial mineral degradation in retrieved bone biopsies following maxillary sinus augmentation using collagenized porcine xenografts (Osteobiol(®) Mp3) in 15 clinical cases. MATERIALS AND METHODS Nine months after sinus lifting, bone cores were harvested from the maxillary sinus. The specimens were processed for observation under a scanning electron microscope with backscattered electron imaging (SEM-BSE). In addition, chemical analysis and elemental mapping of the mineral composition were generated using a microanalytical system based on energy-dispersive X-ray spectrometry (EDX). RESULTS No clinical complications were evident during surgery. Scanning electron microscopy revealed that newly formed bone had become closely attached to the xenograft. Statistical analysis showed a significantly high Ca/P ratio in the biomaterial (2.46 ± 0.16) and at the bone interface (2.00 ± 0.48) compared to bone (1.97 ± 0.36), which suggests that there may be a gradual diffusion of Ca ions from the biomaterial into the newly forming bone at the interface as part of the biomaterial's resorption process. EDX analysis of the residual porcine biomaterial at different points showed some particle categories with different mean ratios of Ca/P according to size, pointing to different stages of the resorption process. CONCLUSIONS The biomaterial proved to be biocompatible, bioreabsorbable and osteoconductive when used as a bone substitute for maxillary sinus elevation. SEM-BSE revealed that newly formed bone had become closely attached to the xenografts. EDX analysis monitored the resorption process of the porcine bone xenograft. Elemental mapping showed that there was a gradual diffusion of Ca ions from the biomaterial to the newly forming bone at the interface.
Collapse
|
26
|
Dusad A, Chakkalakal DA, Namavar F, Haider H, Hanisch B, Duryee MJ, Diaz A, Rensch A, Zhang Y, Hess R, Thiele GM, Fehringer EV. Titanium implant with nanostructured zirconia surface promotes maturation of peri-implant bone in osseointegration. Proc Inst Mech Eng H 2013; 227:510-22. [PMID: 23637261 DOI: 10.1177/0954411913479300] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The goal of the experiment outlined in this article is to improve upon noncemented methods of arthroplasty for clinical application in elderly patients. This was done by determining whether titanium implants with a novel nanostructured zirconia surface, which was created by ion beam-assisted deposition, would prevent impaired osseointegration of intramedullary implants in 1-year-old rats receiving a protein-deficient diet. Specifically, we asked whether the implant with the nanostructured zirconia surface would increase expression of markers of bone maturation within the remodeling of peri-implant woven bone. The control implants, which were made of commercially pure titanium, had a polished surface ex vivo but are known to acquire a microstructured titania surface in vivo. Ten 1-year-old rats received experimental implant (group A) and 10 had control (group B) implants. Ten 3-month-old rats received normal protein diet and the control implant (group C). Animals were euthanized 8 weeks after implantation, and transverse sections of femur-implant samples were used for histology, micro-computed tomography and immunohistochemical evaluations. In group B, the expression of α2β1 and α5β1 integrins, which are known to mediate osteoblast adhesion, glycosaminoglycans, heparan sulfate and chondroitin sulfate, was less than half of that in group C. Important to this study, the zirconia surface used in group A prevented these deficiencies. Therefore, these results indicate that nanostructured zirconia surface created on clinical implants by ion beam-assisted deposition may prevent impaired osseointegration in elderly patients by promoting quicker maturation of peri-implant woven bone.
Collapse
Affiliation(s)
- Anand Dusad
- Experimental Immunology Laboratory, Veterans Affairs Nebraska-Western Iowa Health Care System (VA NWIHCS), Research Services 151, Omaha, NE, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Vignoletti F, Abrahamsson I. Quality of reporting of experimental research in implant dentistry. Critical aspects in design, outcome assessment and model validation. J Clin Periodontol 2012; 39 Suppl 12:6-27. [DOI: 10.1111/j.1600-051x.2011.01830.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fabio Vignoletti
- Department of Periodontology; Faculty of Odontology; Complutense University of Madrid; Madrid; Spain
| | - Ingemar Abrahamsson
- Department of Periodontology; Institute of Odontology; The Sahlgrenska Academy; University of Gothenburg; Gothenburg; Sweden
| |
Collapse
|
28
|
Nasoori A, Mohitmafi S, Khoshzaban A, Tavakoli SAH, Shahabi Z. Biochemical and biomechanical evaluation of human pericardial membrane and demineralized bone matrix in rabbit calvarial defects. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s00580-011-1394-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
29
|
Haga M, Nozawa-Inoue K, Li M, Oda K, Yoshie S, Amizuka N, Maeda T. A morphological analysis on the osteocytic lacunar canalicular system in bone surrounding dental implants. Anat Rec (Hoboken) 2011; 294:1074-82. [PMID: 21538931 DOI: 10.1002/ar.21391] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Osseointegration is the most preferable interface of dental implants and newly formed bone. However, the cavity preparation for dental implants often gives rise to empty lacunae or pyknotic osteocytes in bone surrounding the dental implant. This study aimed to examine the chronological alternation of osteocytes in the bone surrounding the titanium implants using a rat model. The distribution of the osteocytic lacunar canalicular system (OLCS) in bone around the titanium implants was examined by silver impregnation according to Bodian's staining. We also performed double staining for alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP), as well as immunohistochemistry for fibroblast growth factor (FGF) 23--a regulator for the serum concentration of phosphorus--and sclerostin, which has been shown to inhibit osteoblastic activities. Newly formed bone and the injured bone at the early stage exhibited an irregularly distributed OLCS and a few osteocytes positive for sclerostin or FGF23, therefore indicating immature bone. Osteocytes in the surrounding bone from Day 20 to Month 2 came to reveal an intense immunoreactivity for sclerostin. Later on, the physiological bone remodeling gradually replaced such immature bone into a compact profile bearing a regularly arranged OLCS. As the bone was remodeled, FGF23 immunoreactivity became more intense, but sclerostin became less so in the well-arranged OLCS. In summary, it seems likely that OLCS in the bone surrounding the dental implants is damaged by cavity formation, but later gradually recovers as bone remodeling takes place, ultimately inducing mature bone.
Collapse
Affiliation(s)
- Maiko Haga
- Department of Histology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan.
| | | | | | | | | | | | | |
Collapse
|
30
|
Calvo-Guirado JL, Delgado-Ruíz RA, Ramírez-Fernández MP, Maté-Sánchez JE, Ortiz-Ruiz A, Marcus A. Retracted:
Histomorphometric and mineral degradation study of Ossceram®
: a novel biphasic B-tricalcium phosphate, in critical size defects in rabbits. Clin Oral Implants Res 2011; 23:667-675. [DOI: 10.1111/j.1600-0501.2011.02193.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Andersen MØ, Kjems J. RNA Interference Enhanced Implants. ACTIVE IMPLANTS AND SCAFFOLDS FOR TISSUE REGENERATION 2011. [DOI: 10.1007/8415_2011_68] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|