1
|
Stanton AE, Goodwin K, Sundarakrishnan A, Jaslove JM, Gleghorn JP, Pavlovich AL, Nelson CM. Negative Transpulmonary Pressure Disrupts Airway Morphogenesis by Suppressing Fgf10. Front Cell Dev Biol 2021; 9:725785. [PMID: 34926440 PMCID: PMC8673560 DOI: 10.3389/fcell.2021.725785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Mechanical forces are increasingly recognized as important determinants of cell and tissue phenotype and also appear to play a critical role in organ development. During the fetal stages of lung morphogenesis, the pressure of the fluid within the lumen of the airways is higher than that within the chest cavity, resulting in a positive transpulmonary pressure. Several congenital defects decrease or reverse transpulmonary pressure across the developing airways and are associated with a reduced number of branches and a correspondingly underdeveloped lung that is insufficient for gas exchange after birth. The small size of the early pseudoglandular stage lung and its relative inaccessibility in utero have precluded experimental investigation of the effects of transpulmonary pressure on early branching morphogenesis. Here, we present a simple culture model to explore the effects of negative transpulmonary pressure on development of the embryonic airways. We found that negative transpulmonary pressure decreases branching, and that it does so in part by altering the expression of fibroblast growth factor 10 (Fgf10). The morphogenesis of lungs maintained under negative transpulmonary pressure can be rescued by supplementing the culture medium with exogenous FGF10. These data suggest that Fgf10 expression is regulated by mechanical stress in the developing airways. Understanding the mechanical signaling pathways that connect transpulmonary pressure to FGF10 can lead to the establishment of novel non-surgical approaches for ameliorating congenital lung defects.
Collapse
Affiliation(s)
- Alice E Stanton
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, United States
| | - Katharine Goodwin
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States
| | - Aswin Sundarakrishnan
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, United States
| | - Jacob M Jaslove
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Jason P Gleghorn
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, United States
| | - Amira L Pavlovich
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, United States
| | - Celeste M Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, United States.,Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| |
Collapse
|
2
|
Abstract
Branching morphogenesis generates epithelial trees which facilitate gas exchange, filtering, as well as secretion processes with their large surface to volume ratio. In this review, we focus on the developmental mechanisms that control the early stages of lung branching morphogenesis. Lung branching morphogenesis involves the stereotypic, recurrent definition of new branch points, subsequent epithelial budding, and lung tube elongation. We discuss current models and experimental evidence for each of these steps. Finally, we discuss the role of the mesenchyme in determining the organ-specific shape.
Collapse
Affiliation(s)
- Dagmar Iber
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Basel, Switzerland; Swiss Institute of Bioinformatics (SIB), Basel, Switzerland.
| |
Collapse
|
3
|
Oldham MJ, Lucci F, Foong C, Yeo D, Asgharian B, Cockram S, Luke S, Chua J, Hoeng J, Peitsch MC, Kuczaj AK. Use of micro-CT to determine tracheobronchial airway geometries in three strains of mice used in inhalation toxicology as disease models. Anat Rec (Hoboken) 2021; 304:2050-2067. [PMID: 33554477 PMCID: PMC8451890 DOI: 10.1002/ar.24596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/30/2020] [Accepted: 12/24/2020] [Indexed: 02/04/2023]
Abstract
Aerosol dosimetry estimates for mouse strains used as models for human disease are not available, primarily because of the lack of tracheobronchial airway morphometry data. By using micro-CT scans of in-situ prepared lung casts, tracheobronchial airway morphometry for four strains of mice were obtained: Balb/c, AJ, C57BL/6, and Apoe-/- . The automated tracheobronchial airway morphometry algorithms for airway length and diameter were successfully verified against previously published manual and automated tracheobronchial airway morphometry data derived from two identical in-situ Balb/c mouse lung casts. There was also excellent agreement in tracheobronchial airway length and diameter between the automated and manual airway data for the AJ, C57BL/6, and Apoe-/- mice. Differences in branch angle measurements were partially due to the differences in definition between the automated algorithms and manual morphometry techniques. Unlike the manual airway morphometry techniques, the automated algorithms were able to provide a value for inclination to gravity for each airway. Inclusion of an inclination to gravity angle for each airway along with airway length, diameter, and branch angle make the current automated tracheobronchial airway data suitable for use in dosimetry programs that can provide dosimetry estimates for inhaled material. The significant differences in upper tracheobronchial airways between Balb/c mice and between C57BL/6 and Apoe-/- mice highlight the need for mouse strain-specific aerosol dosimetry estimates.
Collapse
Affiliation(s)
- Michael J Oldham
- Altria Client Services LLC, Richmond, Virginia, USA.,Oldham Associates LLC, Manakin Sabot, Virginia, USA
| | - Francesco Lucci
- Philip Morris International Research and Development, Neuchâtel, Switzerland
| | - Clement Foong
- Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore, Singapore
| | - Demetrius Yeo
- Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore, Singapore
| | | | - Steve Cockram
- Synopsys Northern Europe Ltd., Bradninch Hall, Exeter, UK
| | - Stephen Luke
- Synopsys Northern Europe Ltd., Bradninch Hall, Exeter, UK
| | - Joanne Chua
- Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore, Singapore
| | - Julia Hoeng
- Philip Morris International Research and Development, Neuchâtel, Switzerland
| | - Manual C Peitsch
- Philip Morris International Research and Development, Neuchâtel, Switzerland
| | - Arkadiusz K Kuczaj
- Philip Morris International Research and Development, Neuchâtel, Switzerland.,Multiscale Modeling and Simulation, Department of Applied Mathematics, University of Twente, Enschede, The Netherlands
| |
Collapse
|
4
|
Combination of µCT and light microscopy for generation-specific stereological analysis of pulmonary arterial branches: a proof-of-concept study. Histochem Cell Biol 2020; 155:227-239. [PMID: 33263790 PMCID: PMC7709482 DOI: 10.1007/s00418-020-01946-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2020] [Indexed: 12/21/2022]
Abstract
Various lung diseases, including pulmonary hypertension, chronic obstructive pulmonary disease or bronchopulmonary dysplasia, are associated with structural and architectural alterations of the pulmonary vasculature. The light microscopic (LM) analysis of the blood vessels is limited by the fact that it is impossible to identify which generation of the arterial tree an arterial profile within a LM microscopic section belongs to. Therefore, we established a workflow that allows for the generation-specific quantitative (stereological) analysis of pulmonary blood vessels. A whole left rabbit lung was fixed by vascular perfusion, embedded in glycol methacrylate and imaged by micro-computed tomography (µCT). The lung was then exhaustively sectioned and 20 consecutive sections were collected every 100 µm to obtain a systematic uniform random sample of the whole lung. The digital processing involved segmentation of the arterial tree, generation analysis, registration of LM sections with the µCT data as well as registration of the segmentation and the LM images. The present study demonstrates that it is feasible to identify arterial profiles according to their generation based on a generation-specific color code. Stereological analysis for the first three arterial generations of the monopodial branching of the vasculature included volume fraction, total volume, lumen-to-wall ratio and wall thickness for each arterial generation. In conclusion, the correlative image analysis of µCT and LM-based datasets is an innovative method to assess the pulmonary vasculature quantitatively.
Collapse
|
5
|
Bauer C, Krueger M, Lamm WJE, Glenny RW, Beichel RR. lapdMouse: associating lung anatomy with local particle deposition in mice. J Appl Physiol (1985) 2019; 128:309-323. [PMID: 31774357 DOI: 10.1152/japplphysiol.00615.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To facilitate computational toxicology, we developed an approach for generating high-resolution lung-anatomy and particle-deposition mouse models. Major processing steps of our method include mouse preparation, serial block-face cryomicrotome imaging, and highly automated image analysis for generating three-dimensional (3D) mesh-based models and volume-based models of lung anatomy (airways, lobes, sublobes, and near-acini structures) that are linked to local particle-deposition measurements. Analysis resulted in 34 mouse models covering 4 different mouse strains (B6C3F1: 8, BALB/C: 11, C57Bl/6: 8, and CD-1: 7) as well as both sexes (16 male and 18 female) and different particle sizes [2 μm (n = 15), 1 μm (n = 16), and 0.5 μm (n = 3)]. On average, resulting mouse airway models had 1,616.9 ± 298.1 segments, a centerline length of 597.6 ± 59.8 mm, and 1,968.9 ± 296.3 outlet regions. In addition to 3D geometric lung models, matching detailed relative particle-deposition measurements are provided. All data sets are available online in the lapdMouse archive for download. The presented approach enables linking relative particle deposition to anatomical structures like airways. This will in turn improve the understanding of site-specific airflows and how they affect drug, environmental, or biological aerosol deposition.NEW & NOTEWORTHY Computer simulations of particle deposition in mouse lungs play an important role in computational toxicology. Until now, a limiting factor was the lack of high-resolution mouse lung models and measured local particle-deposition information, which are required for developing accurate modeling approaches (e.g., computational fluid dynamics). With the developed imaging and analysis approach, we address this issue and provide all of the raw and processed data in a publicly accessible repository.
Collapse
Affiliation(s)
- Christian Bauer
- University of Iowa, Department of Electrical and Computer Engineering, Iowa City, Iowa
| | - Melissa Krueger
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Wayne J E Lamm
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Robb W Glenny
- Departments of Medicine and of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington
| | - Reinhard R Beichel
- University of Iowa, Department of Electrical and Computer Engineering, Iowa City, Iowa
| |
Collapse
|
6
|
Excipient-free isoniazid aerosol administration in mice: Evaporation-nucleation particle generation, pulmonary delivery and body distribution. Int J Pharm 2019; 563:101-109. [PMID: 30928214 DOI: 10.1016/j.ijpharm.2019.03.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 01/03/2023]
Abstract
Excipient-free isoniazid aerosol formation and pulmonary delivery in mice are studied. An evaporation-nucleation route is used for the generation of isoniazid aerosol. Particle diameters and number concentrations are measured with an aerosol spectrometer consisting of a diffusion battery, condensation chamber, and photoelectric counter. The pulmonary delivery of isoniazid particles is studied in both nose-only (NO) and whole-body (WB) inhalation chambers for the particle mean diameter and number concentration to be 600 nm and 6 × 106 cm-3, respectively. It is found that the rate of drug systemic absorption in the WB chamber is 27% higher than that for the NO one because of an additional consumption of drug orally from the fur in the WB chamber. The particle deposition efficiency ε in the mouse respiratory tract is measured as a function of mean diameter. The quantity ε is equal to 0.7 for the particle diameter d = 10 nm and decreases to 0.2 with the diameter increasing to 300 nm, and then, at d > 300 nm the deposition efficiency increases with diameter to 0.5 at d = 2000 nm. The bioavailability of the aerosol form of isoniazid (72 ± 10%) is very close to that for the per-oral form (61 ± 10%).
Collapse
|
7
|
Kolanjiyil AV, Kleinstreuer C, Kleinstreuer NC, Pham W, Sadikot RT. Mice-to-men comparison of inhaled drug-aerosol deposition and clearance. Respir Physiol Neurobiol 2018; 260:82-94. [PMID: 30445230 DOI: 10.1016/j.resp.2018.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/07/2018] [Accepted: 11/10/2018] [Indexed: 01/17/2023]
Abstract
Part of the effective prediction of the pharmacokinetics of drugs (or toxic particles) requires extrapolation of experimental data sets from animal studies to humans. As the respiratory tracts of rodents and humans are anatomically very different, there is a need to study airflow and drug-aerosol deposition patterns in lung airways of these laboratory animals and compare them to those of human lungs. As a first step, interspecies computational comparison modeling of inhaled nano-to-micron size drugs (50 nm < d<15μm) was performed using mouse and human upper airway models under realistic breathing conditions. Critical species-specific differences in lung physiology of the upper airways and subsequently in local drug deposition were simulated and analyzed. In addition, a hybrid modeling methodology, combining Computational Fluid-Particle Dynamics (CF-PD) simulations with deterministic lung deposition models, was developed and predicted total and regional drug-aerosol depositions in lung airways of both mouse and man were compared, accounting for the geometric, kinematic and dynamic differences. Interestingly, our results indicate that the total particle deposition fractions, especially for submicron particles, are comparable in rodent and human respiratory models for corresponding breathing conditions. However, care must be taken when extrapolating a given dosage as considerable differences were noted in the regional particle deposition pattern. Combined with the deposition model, the particle retention and clearance kinetics of deposited nanoparticles indicates that the clearance rate from the mouse lung is higher than that in the human lung. In summary, the presented computer simulation models provide detailed fluid-particle dynamics results for upper lung airways of representative human and mouse models with a comparative analysis of particle lung deposition data, including a novel mice-to-men correlation as well as a particle-clearance analysis both useful for pharmacokinetic and toxicokinetic studies.
Collapse
Affiliation(s)
- Arun V Kolanjiyil
- Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, United States
| | - Clement Kleinstreuer
- Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, United States; Joint UNC-NCSU Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695-7910, United States.
| | - Nicole C Kleinstreuer
- National Institute of Environmental Health Sciences (NIEHS), National Toxicology Program Interagency Center for Evaluation of Alternative Toxicological, Methods (NICEATM), United States
| | - Wellington Pham
- Department of Radiology and Radiological Sciences, Vanderbilt University, Institute of Imaging Science, United States
| | - Ruxana T Sadikot
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, School of Medicine, United States; Department of Veterans Affairs, Atlanta VAMC, United States
| |
Collapse
|
8
|
Islam A, Oldham MJ, Wexler AS. Comparison of Manual and Automated Measurements of Tracheobronchial Airway Geometry in Three Balb/c Mice. Anat Rec (Hoboken) 2017; 300:2046-2057. [PMID: 28632922 DOI: 10.1002/ar.23624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/11/2017] [Accepted: 03/28/2017] [Indexed: 08/23/2023]
Abstract
Mammalian lungs are comprised of large numbers of tracheobronchial airways that transition from the trachea to alveoli. Studies as wide ranging as pollutant deposition and lung development rely on accurate characterization of these airways. Advancements in CT imaging and the value of computational approaches in eliminating the burden of manual measurement are providing increased efficiency in obtaining this geometric data. In this study, we compare an automated method to a manual one for the first six generations of three Balb/c mouse lungs. We find good agreement between manual and automated methods and that much of the disagreement can be attributed to method precision. Using the automated method, we then provide anatomical data for the entire tracheobronchial airway tree from three Balb/C mice. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:2046-2057, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Asef Islam
- Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, 21218
| | | | - Anthony S Wexler
- Mechanical and Aerospace Engineering, University of California, Davis, California
| |
Collapse
|
9
|
Abstract
The mouse lung has become increasingly important as a surrogate of the human lung for inhalation risk assessment. The main structural difference between the two lungs is that the airway branching of the human lung is relatively symmetric, while that of the mouse lung is distinctly asymmetric or monopodial. The objectives of this study were to develop a stochastic, asymmetric particle deposition model for the Balb/c mouse and to compare predicted deposition patterns with those in the human lung. The asymmetric bronchial airway geometry of the Balb/c mouse was based on a statistical analysis of several lung casts, while, in the absence of pertinent data, the asymmetric acinar airway geometry was represented by an allometrically scaled-down version of the rat acinar region, assuming structural similarity. Deposition of inhaled particles in nasal, bronchial and acinar airways for mouse-specific breathing conditions was computed with the Monte Carlo deposition model IDEAL-mouse. While total deposition for submicron particles decreases with increasing diameter in a fashion similar to that in the human lung, the effect of inhalability and nasal pre-filtration significantly reduces total deposition in the mouse lung for particles with diameters greater than about 3 μm. The most notable difference between submicron particle deposition in the mouse and human airways is the shift of the deposition distribution from distal airway generations in the human lung to upper airway generations in the mouse lung. However, if plotted as a function of airway diameter, both deposition distributions are quite similar, indicating that airway diameter may be a more appropriate morphometric parameter for extrapolation purposes than airway generation.
Collapse
Affiliation(s)
- Renate Winkler-Heil
- a Division of Physics and Biophysics , Department of Chemistry and Physics of Materials, University of Salzburg , Salzburg , Austria
| | - Werner Hofmann
- a Division of Physics and Biophysics , Department of Chemistry and Physics of Materials, University of Salzburg , Salzburg , Austria
| |
Collapse
|
10
|
Liu KY, Yang WH, Dong XK, Cong LM, Li N, Li Y, Wen ZB, Yin Z, Lan ZJ, Li WP, Li JS. Inhalation Study of Mycobacteriophage D29 Aerosol for Mice by Endotracheal Route and Nose-Only Exposure. J Aerosol Med Pulm Drug Deliv 2016; 29:393-405. [PMID: 26745146 DOI: 10.1089/jamp.2015.1233] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Lytic mycobacteriophage D29 has the potential for tuberculosis treatment including multidrug-resistant strains. The aims of this study are to investigate deposition and distribution of aerosolized phage D29 particles in naive Balb/C mice, together with pharmacokinetics and evaluation of acute lung injury. METHODS Pharmacokinetics and BALF (bronchoalveolar lavage fluids) were analyzed after administration of phage D29 aerosols by endotracheal route using Penn-century aerosolizer; Collison 6-jet and Spinning top aerosol nebulizers (STAG) were used to generate phage aerosols with different particle size distributions in nose-only inhalation experiments. After exposure, deposited amounts of phage D29 particles in respiratory tracts were measured, and deposition efficiencies were calculated. A typical path deposition model for mice was developed, and then comparisons were made between predictions and experimentally measured results. RESULTS Approximately 10% of aerosolized phages D29 reached lung of mouse for pulmonary delivery, and were completely eliminated until 72 h after administration. In contrast, about 0.1% of intraperitoneal injected phages reached the lung, and were almost eliminated at 12 h time point. The inflammation was hardly observed in lung according to the results of BALF analysis. The CMADs (count median aerodynamic diameters) of generated aerosol by Collison and STAG nebulizer were 0.8 μm and 1.5 μm, respectively. After nose-only exposure, measured deposition efficiencies in whole respiratory tract for 0.8 and 1.5 μm phage particles were below 1% and 10%, respectively. Predictions of the computer deposition model compared fairly well with experimentally measured results. CONCLUSIONS This is the first systematic study of phage D29 aerosol respiratory challenge in laboratory animals. It provides evidence that aerosol delivery of phage D29 is an effective way for treating pulmonary infections caused by Mycobacterium tuberculosis. This research will also provide important data for future inhalation experiments.
Collapse
Affiliation(s)
- Ke-Yang Liu
- 1 Tongzhou Institute of Infectious Diseases and Epidemiology , Beijing, China .,2 State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing, China
| | - Wen-Hui Yang
- 2 State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing, China
| | - Xiao-Kai Dong
- 2 State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing, China
| | - Li-Ming Cong
- 1 Tongzhou Institute of Infectious Diseases and Epidemiology , Beijing, China
| | - Na Li
- 2 State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing, China
| | - Yun Li
- 3 College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China
| | - Zhan-Bo Wen
- 2 State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing, China
| | - Zhe Yin
- 2 State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing, China
| | - Zhi-Jie Lan
- 1 Tongzhou Institute of Infectious Diseases and Epidemiology , Beijing, China
| | - Wei-Peng Li
- 1 Tongzhou Institute of Infectious Diseases and Epidemiology , Beijing, China
| | - Jin-Song Li
- 2 State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing, China
| |
Collapse
|
11
|
Albertine KH. Utility of large-animal models of BPD: chronically ventilated preterm lambs. Am J Physiol Lung Cell Mol Physiol 2015; 308:L983-L1001. [PMID: 25770179 PMCID: PMC4437012 DOI: 10.1152/ajplung.00178.2014] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 02/19/2015] [Indexed: 11/22/2022] Open
Abstract
This paper is focused on unique insights provided by the preterm lamb physiological model of bronchopulmonary dysplasia (BPD). Connections are also made to insights provided by the former preterm baboon model of BPD, as well as to rodent models of lung injury to the immature, postnatal lung. The preterm lamb and baboon models recapitulate the clinical setting of preterm birth and respiratory failure that require prolonged ventilation support for days or weeks with oxygen-rich gas. An advantage of the preterm lamb model is the large size of preterm lambs, which facilitates physiological studies for days or weeks during the evolution of neonatal chronic lung disease (CLD). To this advantage is linked an integrated array of morphological, biochemical, and molecular analyses that are identifying the role of individual genes in the pathogenesis of neonatal CLD. Results indicate that the mode of ventilation, invasive mechanical ventilation vs. less invasive high-frequency nasal ventilation, is related to outcomes. Our approach also includes pharmacological interventions that test causality of specific molecular players, such as vitamin A supplementation in the pathogenesis of neonatal CLD. The new insights that are being gained from our preterm lamb model may have important translational implications about the pathogenesis and treatment of BPD in preterm human infants.
Collapse
Affiliation(s)
- Kurt H Albertine
- Department of Pediatrics, University of Utah, School of Medicine, Salt Lake City, Utah; Department of Medicine, University of Utah, School of Medicine, Salt Lake City, Utah; and Department of Neurobiology and Anatomy, University of Utah, School of Medicine, Salt Lake City, Utah
| |
Collapse
|
12
|
Asgharian B, Price O, Oldham M, Chen L, Saunders E, Gordon T, Mikheev V, Minard K, Teeguarden JG. Computational modeling of nanoscale and microscale particle deposition, retention and dosimetry in the mouse respiratory tract. Inhal Toxicol 2014; 26:829-42. [PMID: 25373829 PMCID: PMC4668803 DOI: 10.3109/08958378.2014.935535] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Comparing effects of inhaled particles across rodent test systems and between rodent test systems and humans is a key obstacle to the interpretation of common toxicological test systems for human risk assessment. These comparisons, correlation with effects and prediction of effects, are best conducted using measures of tissue dose in the respiratory tract. Differences in lung geometry, physiology and the characteristics of ventilation can give rise to differences in the regional deposition of particles in the lung in these species. Differences in regional lung tissue doses cannot currently be measured experimentally. Regional lung tissue dosimetry can however be predicted using models developed for rats, monkeys, and humans. A computational model of particle respiratory tract deposition and clearance was developed for BALB/c and B6C3F1 mice, creating a cross-species suite of available models for particle dosimetry in the lung. Airflow and particle transport equations were solved throughout the respiratory tract of these mice strains to obtain temporal and spatial concentration of inhaled particles from which deposition fractions were determined. Particle inhalability (Inhalable fraction, IF) and upper respiratory tract (URT) deposition were directly related to particle diffusive and inertial properties. Measurements of the retained mass at several post-exposure times following exposure to iron oxide nanoparticles, micro- and nanoscale C60 fullerene, and nanoscale silver particles were used to calibrate and verify model predictions of total lung dose. Interstrain (mice) and interspecies (mouse, rat and human) differences in particle inhalability, fractional deposition and tissue dosimetry are described for ultrafine, fine and coarse particles.
Collapse
Affiliation(s)
| | - O.T. Price
- Applied Research Associates, Inc., Arlington, VA
| | - M. Oldham
- Virginia Commonwealth University, Richmond, VA
| | - L.C. Chen
- Department of Environmental Medicine, New York University School of
Medicine, NY
| | - E.L. Saunders
- Department of Environmental Medicine, New York University School of
Medicine, NY
| | - T. Gordon
- Department of Environmental Medicine, New York University School of
Medicine, NY
| | - V.B. Mikheev
- Battelle Memorial Institute, 505 King Avenue, Columbus, OH
43201-2696
| | - K.R. Minard
- Pacific Northwest National Laboratory, Richland, WA
| | | |
Collapse
|
13
|
Scott GD, Blum ED, Fryer AD, Jacoby DB. Tissue optical clearing, three-dimensional imaging, and computer morphometry in whole mouse lungs and human airways. Am J Respir Cell Mol Biol 2014; 51:43-55. [PMID: 24471696 DOI: 10.1165/rcmb.2013-0284oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In whole adult mouse lung, full identification of airway nerves (or other cellular/subcellular objects) has not been possible due to patchy distribution and micron-scale size. Here we describe a method using tissue clearing to acquire the first complete image of three-dimensional (3D) innervation in the lung. We then created a method to pair analysis of nerve (or any other colabeled epitope) images with identification of 3D tissue compartments and airway morphometry by using fluorescent casting and morphometry software (which we designed and are making available as open-source). We then tested our method to quantify a sparse heterogeneous nerve population by examining visceral pleural nerves. Finally, we demonstrate the utility of our method in human tissue to image full thickness innervation in irregular 3D tissue compartments and to quantify sparse objects (intrinsic airway ganglia). Overall, this method can uniquely pair the advantages of whole tissue imaging and cellular/subcellular fluorescence microscopy.
Collapse
Affiliation(s)
- Gregory D Scott
- Division of Pulmonary and Critical Care, Oregon Health and Sciences University, Portland, Oregon
| | | | | | | |
Collapse
|