1
|
Tomizawa Y, Nakatsukasa M, Ponce de León MS, Zollikofer CPE, Morimoto N. Shaft structure of the first metatarsal contains a strong phylogenetic signal in apes and humans. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e24987. [PMID: 38922796 DOI: 10.1002/ajpa.24987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 03/29/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVES Metatarsal bones constitute a key functional unit of the foot in primates. While the form-function relationships of metatarsals have been extensively studied, particularly in relation to the loss of the grasping ability of the foot in humans in contrast to apes, the effect of phyletic history on the metatarsal morphology and its variability remains largely unknown. MATERIALS AND METHODS Here, we evaluate how the strength of the phylogenetic signal varies from the first to the fifth metatarsal in humans, chimpanzees, gorillas, orangutans, gibbons, and Japanese macaques. We use computed tomography imaging and morphometric mapping to quantify the second moment of area around and along the metatarsal shaft and evaluate the strength of the phylogenetic signal with multivariate K-statistics. RESULTS The shaft structure of the first metatarsal, but not the others, correlates well with the phylogeny of apes and humans. DISCUSSION Given the importance of the first metatarsal for grasping and bipedal/quadrupedal locomotion, the strong phylogenetic but weak functional signal in its structure is unexpected. These findings suggest that the evolutionary diversification of hominoid locomotor behaviors, including human bipedality, is only partly reflected in form-function relationships of key skeletal elements, and that phylogenetic history acted as a major evolutionary constraint.
Collapse
Affiliation(s)
- Yuma Tomizawa
- Laboratory of Physical Anthropology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Masato Nakatsukasa
- Laboratory of Physical Anthropology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | | | - Naoki Morimoto
- Laboratory of Physical Anthropology, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Bleuze MM. Changes in limb bone diaphyseal structure in chimpanzees during development. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24942. [PMID: 38602254 DOI: 10.1002/ajpa.24942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 02/24/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
OBJECTIVES This study tests if femoral and humeral cross-sectional geometry (CSG) and cross-sectional properties (CSPs) in an ontogenetic series of wild-caught chimpanzees (Pan troglodytes ssp.) reflect locomotor behavior during development. The goal is to clarify the relationship between limb bone structure and locomotor behavior during ontogeny in Pan. MATERIALS AND METHODS The latex cast method was used to reconstruct cross sections at the midshaft femur and mid-distal humerus. Second moments of area (SMAs) (Ix, Iy, Imax, Imin), which are proportional to bending rigidity about a specified axis, and the polar SMA (J), which is proportional to average bending rigidity, were calculated at section locations. Cross-sectional shape (CSS) was assessed from Ix/Iy and Imax/Imin ratios. Juvenile and adult subsamples were compared. RESULTS Juveniles and adults have significantly greater femoral J compared to humeral J. Mean interlimb proportions of J are not significantly different between the groups. There is an overall decreasing trend in diaphyseal circularity between the juvenile phase of development and adulthood, although significant differences are only found in the humerus. DISCUSSION Juvenile chimpanzee locomotion includes forelimb- and hindlimb-biased behaviors. Juveniles and adults preferentially load their hindlimbs relative to their forelimbs. This may indicate similar locomotor behavior, although other explanations including a diversity of hindlimb-biased locomotor behaviors in juveniles cannot be ruled out. Different ontogenetic trends in forelimb and hindlimb CSS are consistent with limb bone CSG reflecting functional adaptation, albeit the complex nature of bone functional adaptation requires cautious interpretations of skeletal functional morphology from biomechanical analyses.
Collapse
Affiliation(s)
- Michele M Bleuze
- Institutional affiliation: Department of Anthropology, California State University Los Angeles, Los Angeles, California, USA
| |
Collapse
|
3
|
Cosnefroy Q, Berillon G, Gilissen E, Brige P, Chaumoître K, Lamberton F, Marchal F. New insights into patterns of integration in the femur and pelvis among catarrhines. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24931. [PMID: 38491922 DOI: 10.1002/ajpa.24931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/06/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVES Integration reflects the level of coordinated variation of the phenotype. The integration of postcranial elements can be studied from a functional perspective, especially with regards to locomotion. This study investigates the link between locomotion, femoral structural properties, and femur-pelvis complex morphology. MATERIALS AND METHODS We measured (1) morphological integration between femoral and pelvic morphologies using geometric morphometrics, and (2) covariation between femoral/pelvic morphologies and femoral diaphyseal cross-sectional properties, which we defined as morpho-structural integration. Morphological and morpho-structural integration patterns were measured among humans (n = 19), chimpanzees and bonobos (n = 16), and baboons (n = 14), whose locomotion are distinct. RESULTS Baboons show the highest magnitude of morphological integration and the lowest of morpho-structural integration. Chimpanzees and bonobos show intermediate magnitude of morphological and morpho-structural integration. Yet, body size seems to have a considerable influence on both integration patterns, limiting the interpretations. Finally, humans present the lowest morphological integration and the highest morpho-structural integration between femoral morphology and structural properties but not between pelvic morphology and femur. DISCUSSION Morphological and morpho-structural integration depict distinct strategies among the samples. A strong morphological integration among baboon's femur-pelvis module might highlight evidence for long-term adaptation to quadrupedalism. In humans, it is likely that distinct selective pressures associated with the respective function of the pelvis and the femur tend to decrease morphological integration. Conversely, high mechanical loading on the hindlimbs during bipedal locomotion might result in specific combination of structural and morphological features within the femur.
Collapse
Affiliation(s)
| | | | - Emmanuel Gilissen
- Department of African Zoology, Royal Museum for Central Africa, Tervuren, Belgium
- Laboratory of Histology and Neuropathology, Université Libre de Bruxelles, Brussels, Belgium
| | - Pauline Brige
- Aix-Marseille Univ, CNRS, CERIMED, Marseille, France
- Assistance Publique - Hôpitaux de Marseille, Pôle Pharmacie, Radiopharmacie, Marseille, France
| | - Kathia Chaumoître
- UMR 7268 ADES, Aix-Marseille Univ-CNRS-EFS, Marseille, France
- Assistance Publique Hôpitaux de Marseille, Hôpital Nord, Aix-Marseille Univ, Service d'Imagerie Médicale, Marseille, France
| | | | | |
Collapse
|
4
|
Stark S. Technical note: Capturing shape-Linear measurements and geometric morphometrics of the immature femora. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24949. [PMID: 38770662 DOI: 10.1002/ajpa.24949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/10/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVES Growth and developmental studies have been a prominent theme in bioarchaeology. These works traditionally focus on metric measurements of long bone length and age-at-death or cross-sectional geometric studies with the use of computed tomography scans for questions on growth and mobility. However, teasing apart aspects of size and shape have been difficult due to the cylindrical nature of immature long bones. This research investigates the methodological use of surface geometries from linear measurements and geometric morphometric methods (GMM) to answer questions on mobility and allometry during childhood. MATERIALS AND METHODS Left femora were selected from 42 individuals ranging from fetal to 12 years of age from medieval St Gregory's Priory, Canterbury, UK. Femora were digitized with structured-light-scanning for auto3dgm analysis and measurements were obtained from physical caliper measurements. Individuals were put into age groups based on biomechanical milestones during this age range. RESULTS Ratio and GMM confirm hypotheses of allometry and biomechanical milestones. Geometric morphometrics, however, detects more subtle differences in mobility at each age group. DISCUSSION The findings of this preliminary study support the potential use of GMM of immature femora, while indicating that the extent in range of mobility that can occur varies at different biological milestones.
Collapse
Affiliation(s)
- Sarah Stark
- Investigative Science, Historic England, Portsmouth, UK
- Department of Archaeology, University of Southampton, Southampton, UK
| |
Collapse
|
5
|
Cazenave M, Pina M, Hammond AS, Böhme M, Begun DR, Spassov N, Gazabón AV, Zanolli C, Bergeret-Medina A, Marchi D, Macchiarelli R, Wood B. Postcranial evidence does not support habitual bipedalism in Sahelanthropus tchadensis: A reply to Daver et al. (2022). J Hum Evol 2024:103557. [PMID: 38918139 DOI: 10.1016/j.jhevol.2024.103557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Affiliation(s)
- Marine Cazenave
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany; Division of Anthropology, American Museum of Natural History (AMNH), New York, NY 10024, USA; Department of Anatomy, Faculty of Health Sciences, University of Pretoria, 0084 Pretoria, South Africa.
| | - Marta Pina
- South Bank Applied BioEngineering Research (SABER), School of Engineering, Division of Mechanical Engineering and Design, London South Bank University, SE1 0AA London, UK; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Ashley S Hammond
- Division of Anthropology, American Museum of Natural History (AMNH), New York, NY 10024, USA; New York Consortium of Evolutionary Primatology (NYCEP) at AMNH, New York, NY 10024, USA
| | - Madelaine Böhme
- Eberhard Karls University of Tübingen, Department of Geoscience, Sigwartstr. 10, 72076 Tübingen, Germany; Senckenberg Centre for Human Evolution and Paleoenvironment, Sigwartstr. 10, 72076 Tübingen, Germany
| | - David R Begun
- Department of Anthropology, University of Toronto, Toronto, ON M5S 2S2, Canada
| | - Nikolai Spassov
- Department of Paleontology and Mineralogy, National Museum of Natural History, Bulgarian Academy of Sciences, BG-1000, Sofia, Bulgaria
| | - Alessandra Vecino Gazabón
- Division of Anthropology, American Museum of Natural History (AMNH), New York, NY 10024, USA; New York Consortium of Evolutionary Primatology (NYCEP) at AMNH, New York, NY 10024, USA; Richard Gilder Graduate School (RGGS) at the American Museum of Natural History, New York, USA
| | - Clément Zanolli
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, F-33600 Pessac, France; Evolutionary Studies Institute, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein 2000, Johannesburg, South Africa
| | | | - Damiano Marchi
- Department of Biology, University of Pisa, 56126 Pisa, Italy; Evolutionary Studies Institute, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein 2000, Johannesburg, South Africa
| | | | - Bernard Wood
- Center for the Advanced Study of Human Paleobiology and Department of Anthropology, George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
6
|
Kikuchi Y. Body mass estimates from postcranial skeletons and implication for positional behavior in Nacholapithecus kerioi: Evolutionary scenarios of modern apes. Anat Rec (Hoboken) 2023; 306:2466-2483. [PMID: 36753432 DOI: 10.1002/ar.25173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/21/2022] [Accepted: 01/22/2023] [Indexed: 02/09/2023]
Abstract
This study reported the body mass (BM) estimates of the Middle Miocene fossil hominoid Nacholapithecus kerioi from Africa. The average BM estimates from all forelimb and hindlimb skeletal elements was 22.7 kg, which is slightly higher than the previously reported estimate of ~22 kg. This study revealed that Nacholapithecus has a unique body proportion with an enlarged forelimb relative to a smaller hindlimb, suggesting an antipronograde posture/locomotion, which may be related to the long clavicle, robust ribs, and some hominoid-like vertebral morphology. Because the BM of Nacholapithecus in this study was estimated to be below 30 kg, Nacholapithecus probably did not have relatively shorter and robust femora, which may result from other mechanical constraints, as seen in extant African hominoids. The BM estimate of Nacholapithecus suggests that full substantial modifications of the trunk and forelimb anatomy for risk avoidance and foraging efficiency, as seen in extant great apes, would not be expected in Nacholapithecus. Because larger monkeys are less arboreal (e.g., Mandrillus sphinx or Papio spp.), and the maximum BM among extant constant arboreal cercopithecoids is ~24 kg (male Nasalis larvatus), Nacholapithecus would be a constant arboreal primate. Although caution should be applied because of targeting only males in this study, arboreal quadrupedalism with upright posture and occasional antipronograde locomotion (e.g., climbing, chambering, descending, arm-swing, and sway) using the powerful grasping capacity of the hand and foot may be assumed for positional behavior of Nacholapithecus.
Collapse
Affiliation(s)
- Yasuhiro Kikuchi
- Division of Human Anatomy and Biological Anthropology, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
7
|
Wysocki MA, Doyle ST. Advancing Osteoporosis Evaluation Procedures: Detailed Computational Analysis of Regional Structural Vulnerabilities in Osteoporotic Bone. J Pers Med 2023; 13:jpm13020321. [PMID: 36836558 PMCID: PMC9962183 DOI: 10.3390/jpm13020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Osteoporotic fractures of the femur are associated with poor healing, disability, reduced quality of life, and high mortality rates within 1 year. Moreover, osteoporotic fractures of the femur are still considered to be an unsolved problem in orthopedic surgery. In order to more effectively identify osteoporosis-related fracture risk and develop advanced treatment approaches for femur fractures, it is necessary to acquire a greater understanding of how osteoporosis alters the diaphyseal structure and biomechanical characteristics. The current investigation uses computational analyses to comprehensively examine how femur structure and its associated properties differ between healthy and osteoporotic bones. The results indicate statistically significant differences in multiple geometric properties between healthy femurs and osteoporotic femurs. Additionally, localized disparities in the geometric properties are evident. Overall, this approach will be beneficial in the development of new diagnostic procedures for highly detailed patient-specific detection of fracture risk, for establishing novel injury prevention treatments, and for informing advanced surgical solutions.
Collapse
|
8
|
O'Mahoney TG, Lowe T, Chamberlain AT, Sellers WI. Endostructural and periosteal growth of the human humerus. Anat Rec (Hoboken) 2023; 306:60-78. [PMID: 36054304 PMCID: PMC10086792 DOI: 10.1002/ar.25048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 01/31/2022] [Accepted: 03/22/2022] [Indexed: 01/29/2023]
Abstract
The growth and development of long bones are of considerable interests in the fields of comparative anatomy and palaeoanthropology, as evolutionary changes and adaptations to specific physical activity patterns are expected to be revealed during bone ontogeny. Traditionally, the cross-sectional geometry of long bones has been examined at discrete locations usually placed at set intervals or fixed percentage distances along the midline axis of the bone shaft. More recently, the technique of morphometric mapping has enabled the continuous analysis of shape variation along the shaft. Here we extend this technique to the full sequence of late fetal and postnatal development of the humeral shaft in a modern human population sample, with the aim of establishing the shape changes during growth and their relationship with the development of the arm musculature and activity patterns. A sample of modern human humeri from individuals of age ranging from 24 weeks in utero to 18 years was imaged using microtomography at multiple resolutions and custom Matlab scripts. Standard biomechanical properties, cortical thickness, surface curvature, and pseudo-landmarks were extracted along radial vectors spaced at intervals of 1° at each 0.5% longitudinal increment measured along the shaft axis. Heat maps were also generated for cortical thickness and surface curvature. The results demonstrate that a whole bone approach to analysis of cross-sectional geometry is more desirable where possible, as there is a continuous pattern of variation along the shaft. It is also possible to discriminate very young individuals and adolescents from other groups by relative cortical thickness, and also by periosteal surface curvature.
Collapse
Affiliation(s)
- Thomas George O'Mahoney
- School of Life SciencesAnglia Ruskin UniversityCambridgeUK
- School of Earth and Environmental SciencesUniversity of ManchesterManchesterUK
| | - Tristan Lowe
- Henry Moseley X‐Ray Imaging FacilityUniversity of ManchesterManchesterUK
| | | | | |
Collapse
|
9
|
Biomechanical Evaluation on the Bilateral Asymmetry of Complete Humeral Diaphysis in Chinese Archaeological Populations. Symmetry (Basel) 2021. [DOI: 10.3390/sym13101843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Diaphyseal cross-sectional geometry (CSG) is an effective indicator of humeral bilateral asymmetry. However, previous studies primarily focused on CSG properties from limited locations to represent the overall bilateral biomechanical performance of humeral diaphysis. In this study, the complete humeral diaphyses of 40 pairs of humeri from three Chinese archaeological populations were scanned using high-resolution micro-CT, and their biomechanical asymmetries were quantified by morphometric mapping. Patterns of humeral asymmetry were compared between sub-groups defined by sex and population, and the representativeness of torsional rigidity asymmetry at the 35% and 50% cross-sections (J35 and J50 asymmetry) was testified. Inter-group differences were observed on the mean morphometric maps, but were not statistically significant. Analogous distribution patterns of highly asymmetrical regions, which correspond to major muscle attachments, were observed across nearly all the sexes and populations. The diaphyseal regions with high variability of bilateral asymmetry tended to present a low asymmetrical level. The J35 and J50 asymmetry were related to the overall humeral asymmetry, but the correlation was moderate and they could not reflect localized asymmetrical features across the diaphysis. This study suggests that the overall asymmetry pattern of humeral diaphysis is more complicated than previously revealed by individual sections.
Collapse
|
10
|
Neaux D, Blanc B, Ortiz K, Locatelli Y, Schafberg R, Herrel A, Debat V, Cucchi T. Constraints associated with captivity alter craniomandibular integration in wild boar. J Anat 2021; 239:489-497. [PMID: 33713426 PMCID: PMC8273579 DOI: 10.1111/joa.13425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 01/01/2023] Open
Abstract
The domestication process is associated with substantial phenotypic changes through time. However, although morphological integration between biological structures is purported to have a major influence on the evolution of new morphologies, little attention has been paid to the influence of domestication on the magnitude of integration. Here, we assessed the influence of constraints associated with captivity, considered as one of the crucial first steps in the domestication process, on the integration of cranial and mandibular structures. We investigated the craniomandibular integration in Western European Sus scrofa using three-dimensional (3D) landmark-based geometric morphometrics. Our results suggest that captivity is associated with a lower level of integration between the cranium and the mandible. Plastic responses to captivity can thus affect the magnitude of integration of key functional structures. These findings underline the critical need to develop integration studies in the context of animal domestication to better understand the processes accountable for the set-up of domestic phenotypes through time.
Collapse
Affiliation(s)
- Dimitri Neaux
- Archéozoologie et Archéobotanique : Sociétés, Pratiques et Environnements, UMR 7209, Muséum national d'Histoire naturelle CNRS, Paris, France.,Laboratoire Paléontologie Evolution Paléoécosystèmes Paléoprimatologie, UMR 7262, Université de Poitiers CNRS, Poitiers, France
| | - Barbara Blanc
- Réserve Zoologique de la Haute Touche, Muséum national d'Histoire naturelle, Obterre, France
| | - Katia Ortiz
- Réserve Zoologique de la Haute Touche, Muséum national d'Histoire naturelle, Obterre, France.,Institut de Systématique, Evolution, Biodiversité, UMR 7205, Muséum national d'Histoire naturelle CNRS UPMC EPHE, Paris, France
| | - Yann Locatelli
- Réserve Zoologique de la Haute Touche, Muséum national d'Histoire naturelle, Obterre, France.,Physiologie de la Reproduction et des Comportements, UMR 7247, INRAE CNRS Université de Tours IFCE, Nouzilly, France
| | - Renate Schafberg
- Central Natural Science Collections, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Anthony Herrel
- Mécanismes Adaptatifs et Evolution, UMR 7179, Muséum national d'Histoire naturelle CNRS, Paris, France
| | - Vincent Debat
- Institut de Systématique, Evolution, Biodiversité, UMR 7205, Muséum national d'Histoire naturelle CNRS UPMC EPHE, Paris, France
| | - Thomas Cucchi
- Archéozoologie et Archéobotanique : Sociétés, Pratiques et Environnements, UMR 7209, Muséum national d'Histoire naturelle CNRS, Paris, France
| |
Collapse
|
11
|
Nadell JA, Elton S, Kovarovic K. Ontogenetic and morphological variation in primate long bones reflects signals of size and behavior. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 174:327-351. [PMID: 33368154 DOI: 10.1002/ajpa.24198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/08/2020] [Accepted: 11/19/2020] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Many primates change their locomotor behavior as they mature from infancy to adulthood. Here we investigate how long bone cross-sectional geometry in Pan, Gorilla, Pongo, Hylobatidae, and Macaca varies in shape and form over ontogeny, including whether specific diaphyseal cross sections exhibit signals of periosteal adaptation or canalization. MATERIALS AND METHODS Diaphyseal cross sections were analyzed in an ontogenetic series across infant, juvenile, and adult subgroups. Three-dimensional laser-scanned long bone models were sectioned at midshaft (50% of biomechanical length) and distally (20%) along the humerus and femur. Traditional axis ratios acted as indices of cross-sectional circularity, while geometric morphometric techniques were used to study cross-sectional allometry and ontogenetic trajectory. RESULTS The humeral midshaft is a strong indicator of posture and locomotor profile in the sample across development, while the mid-femur appears more reflective of shifts in size. By comparison, the distal diaphyses of both limb elements are more ontogenetically constrained, where periosteal shape is largely static across development relative to size, irrespective of a given taxon's behavior or ecology. DISCUSSION Primate limb shape is not only highly variable between taxa over development, but at discrete humeral and femoral diaphyseal locations. Overall, periosteal shape of the humeral and femoral midshaft cross sections closely reflects ontogenetic transitions in behavior and size, respectively, while distal shape in both bones appears more genetically constrained across intraspecific development, regardless of posture or size. These findings support prior research on tradeoffs between function and safety along the limbs.
Collapse
Affiliation(s)
- Jason A Nadell
- Department of Anthropology, Durham University, Durham, United Kingdom
| | - Sarah Elton
- Department of Anthropology, Durham University, Durham, United Kingdom
| | - Kris Kovarovic
- Department of Anthropology, Durham University, Durham, United Kingdom
| |
Collapse
|
12
|
Neaux D, Blanc B, Ortiz K, Locatelli Y, Laurens F, Baly I, Callou C, Lecompte F, Cornette R, Sansalone G, Haruda A, Schafberg R, Vigne JD, Debat V, Herrel A, Cucchi T. How Changes in Functional Demands Associated with Captivity Affect the Skull Shape of a Wild Boar (Sus scrofa). Evol Biol 2020. [DOI: 10.1007/s11692-020-09521-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Harbers H, Zanolli C, Cazenave M, Theil JC, Ortiz K, Blanc B, Locatelli Y, Schafberg R, Lecompte F, Baly I, Laurens F, Callou C, Herrel A, Puymerail L, Cucchi T. Investigating the impact of captivity and domestication on limb bone cortical morphology: an experimental approach using a wild boar model. Sci Rep 2020; 10:19070. [PMID: 33149160 PMCID: PMC7643176 DOI: 10.1038/s41598-020-75496-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022] Open
Abstract
The lack of bone morphological markers associated with the human control of wild animals has prevented the documentation of incipient animal domestication in archaeology. Here, we assess whether direct environmental changes (i.e. mobility reduction) could immediately affect ontogenetic changes in long bone structure, providing a skeletal marker of early domestication. We relied on a wild boar experimental model, analysing 24 wild-born specimens raised in captivity from 6 months to 2 years old. The shaft cortical thickness of their humerus was measured using a 3D morphometric mapping approach and compared with 23 free-ranging wild boars and 22 pigs from different breeds, taking into account sex, mass and muscle force differences. In wild boars we found that captivity induced an increase in cortical bone volume and muscle force, and a topographic change of cortical thickness associated with muscular expression along a phenotypic trajectory that differed from the divergence induced by selective breeding. These results provide an experimental proof of concept that changes in locomotor behaviour and selective breeding might be inferred from long bones morphology in the fossil and archaeological record. These trends need to be explored in the archaeological record and further studies are required to explore the developmental changes behind these plastic responses.
Collapse
Affiliation(s)
- Hugo Harbers
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements, UMR 7209, Muséum national d'Histoire naturelle, CNRS, Paris, France.
| | - Clement Zanolli
- Laboratoire PACEA, UMR 5199, Université de Bordeaux, Bordeaux, France
| | - Marine Cazenave
- School of Anthropology and Conservation, Skeletal Biology Research Centre, University of Kent, Marlowe Building, Canterbury, Kent, CT2 7NR, UK
- Department of Anatomy and Histology, School of Medicine, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Jean-Christophe Theil
- Mécanismes Adaptatifs et Evolution, UMR 7109, Muséum national d'Histoire naturelle CNRS, Paris, France
| | - Katia Ortiz
- Réserve Zoologique de la Haute Touche, Muséum national d'Histoire naturelle, Obterre, France
| | - Barbara Blanc
- Réserve Zoologique de la Haute Touche, Muséum national d'Histoire naturelle, Obterre, France
| | - Yann Locatelli
- Réserve Zoologique de la Haute Touche, Muséum national d'Histoire naturelle, Obterre, France
- Physiologie de la Reproduction et des Comportements, UMR 7247, National Research Institute for Agriculture, Food and Environment (INRAE), CNRS Université de Tours IFCE, Nouzilly, France
| | - Renate Schafberg
- Central Natural Science Collections, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Francois Lecompte
- Plateforme CIRE, National Research Institute for Agriculture, Food and Environment (INRAE), Nouzilly, France
| | - Isabelle Baly
- Unité Bases de Données sur la Biodiversité, Écologie, Environnement et Sociétés, UMS 3468, Muséum national d'Histoire naturelle, Paris, France
| | - Flavie Laurens
- Unité Bases de Données sur la Biodiversité, Écologie, Environnement et Sociétés, UMS 3468, Muséum national d'Histoire naturelle, Paris, France
| | - Cécile Callou
- Unité Bases de Données sur la Biodiversité, Écologie, Environnement et Sociétés, UMS 3468, Muséum national d'Histoire naturelle, Paris, France
| | - Anthony Herrel
- Mécanismes Adaptatifs et Evolution, UMR 7109, Muséum national d'Histoire naturelle CNRS, Paris, France
| | - Laurent Puymerail
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements, UMR 7209, Muséum national d'Histoire naturelle, CNRS, Paris, France
- Anthropologie bio-culturelle, droit, éthique et santé (ADES), UMR 7268, Faculté de Médecine Site Nord, Marseille, France
| | - Thomas Cucchi
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements, UMR 7209, Muséum national d'Histoire naturelle, CNRS, Paris, France.
| |
Collapse
|
14
|
Profico A, Bondioli L, Raia P, O'Higgins P, Marchi D. morphomap: An R package for long bone landmarking, cortical thickness, and cross‐sectional geometry mapping. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 174:129-139. [DOI: 10.1002/ajpa.24140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/15/2020] [Accepted: 08/11/2020] [Indexed: 01/15/2023]
Affiliation(s)
- Antonio Profico
- PalaeoHub, Department of Archaeology University of York York UK
| | - Luca Bondioli
- Service of Bioarchaeology Service Museo delle Civiltà Rome Italy
| | - Pasquale Raia
- Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse Università di Napoli Federico II Naples Italy
| | - Paul O'Higgins
- PalaeoHub, Department of Archaeology University of York York UK
- Hull York Medical School University of York York UK
- Centre for Forensic Anthropology University of Western Australia Perth Australia
| | - Damiano Marchi
- Department of Biology University of Pisa Pisa Italy
- Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences University of the Witwatersrand Johannesburg‐Braamfontein South Africa
| |
Collapse
|
15
|
Kubicka AM, Myszka A. Are entheseal changes and cross-sectional properties associated with the shape of the upper limb? AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:293-306. [PMID: 32643151 DOI: 10.1002/ajpa.24096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/11/2020] [Accepted: 05/15/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Reconstruction of the activity of past human populations can be carried out using various skeletal markers; however, the relationship between these methods is not fully understood. Therefore, the main aim of this article is to analyze the relationship between entheseal changes, cross-sectional properties, and variability in the shape of the upper limb. MATERIALS AND METHODS The analyzed material consisted of CT images of 71 right scapulae, humeri, and ulnae belonging to the same individuals from a mediaeval population located in Poland. For each series of bones for the same individual, skeletal markers such as: cross-sectional properties, entheses and shape variation were assessed. Next, correlations between these three skeletal indicators were calculated. RESULTS In general, the models showed that only sex influences entheses. Multivariate regression revealed significant correlation only between ulnar auricular surface shape and two types of mean score for entheses. DISCUSSION The findings are inconsistent and stand in contradiction to other research; therefore, we suggest that an assessment of individual activity should be carried out, using as many post-cranial elements as possible and a variety of methods. This approach will ensure more accurate reconstruction of the activity levels and patterns of archeological groups.
Collapse
Affiliation(s)
- Anna Maria Kubicka
- Institute of Zoology, Poznań University of Life Sciences, Poznań, Poland.,PaleoFED team, UMR 7194, CNRS, Département Homme et Environnement, Muséum national d'Histoire naturelle, Musée de l'Homme, Paris, France
| | - Anna Myszka
- Institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland
| |
Collapse
|
16
|
Becker SK. Osteoarthritis, entheses, and long bone cross-sectional geometry in the Andes: Usage, history, and future directions. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2020; 29:45-53. [PMID: 31473173 DOI: 10.1016/j.ijpp.2019.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
Akin to approaches encouraged by Verano (1997) in the Andes, and Ortner (2011, 2012) for general paleopathological studies, this article focuses on accurate descriptions and definitions of osteoarthritis, entheses, and long bone cross-sectional geometry. By evaluating these conditions as part of biological responses to abnormal skeletal changes and biomechanical stress, this research discusses each condition's pathogenesis. Further, this article emphasizes a "small data" approach to evaluating these conditions in ancient culturally and biologically related human populations, where the study samples must have good skeletal preservation, where estimates of age and sex need to be included as major factors, and where abnormalities need to be described and evaluated. This article also discusses global clinical and osteological research on ways scholars are currently trying to establish industry-wide methods to evaluate osteoarthritis, entheses, and long bone cross-sectional geometry. Recent studies have focused on rigorous evaluation of methodological techniques, recording protocols, and inter- and intra-observer error problems. Additionally, scholars have focused on physical intensity of movement using biomechanics, evaluated burials of known occupation, and used complex statistical methods to help interpret skeletal changes associated with these conditions. This article also narrows to focus on these conditions within thematic "small data" areas throughout the Andes. This research concludes with describing future directions to understand skeletal changes, such as more multidisciplinary studies between osteologists and pathologists, collaborations with living people to collect CT, x-rays, or computer-aided motion capture, and a stronger focus on how these conditions correlate with intense biomechanical changes in younger individuals.
Collapse
Affiliation(s)
- Sara K Becker
- Department of Anthropology, University of California Riverside, 1334 Watkins Hall Riverside, CA 92521, USA.
| |
Collapse
|
17
|
Terhune CE, Sylvester AD, Scott JE, Ravosa MJ. Internal architecture of the mandibular condyle of rabbits is related to dietary resistance during growth. J Exp Biol 2020; 223:jeb220988. [PMID: 32127379 DOI: 10.1242/jeb.220988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Abstract
Although there is considerable evidence that bone responds to the loading environment in which it develops, few analyses have examined phenotypic plasticity or bone functional adaptation in the masticatory apparatus. Prior work suggests that masticatory morphology is sensitive to differences in food mechanical properties during development; however, the importance of the timing/duration of loading and variation in naturalistic diets is less clear. Here, we examined microstructural and macrostructural differences in the mandibular condyle in four groups of white rabbits (Oryctolagus cuniculus) raised for a year on diets that varied in mechanical properties and timing of the introduction of mechanically challenging foods, simulating seasonal variation in diet. We employed sliding semilandmarks to locate multiple volumes of interest deep to the mandibular condyle articular surface, and compared bone volume fraction, trabecular thickness and spacing, and condylar size/shape among experimental groups. The results reveal a shared pattern of bony architecture across the articular surface of all treatment groups, while also demonstrating significant among-group differences. Rabbits raised on mechanically challenging diets have significantly increased bone volume fraction relative to controls fed a less challenging diet. The post-weaning timing of the introduction of mechanically challenging foods also influences architectural properties, suggesting that bone plasticity can extend well into adulthood and that bony responses to changes in loading may be rapid. These findings demonstrate that bony architecture of the mandibular condyle in rabbits responds to variation in mechanical loading during an organism's lifetime and has the potential to track dietary variation within and among species.
Collapse
Affiliation(s)
- Claire E Terhune
- Department of Anthropology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Adam D Sylvester
- Center for Functional Anatomy and Evolution, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeremiah E Scott
- Department of Medical Anatomical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Matthew J Ravosa
- Departments of Biological Sciences, Aerospace & Mechanical Engineering, and Anthropology, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
18
|
Harbers H, Neaux D, Ortiz K, Blanc B, Laurens F, Baly I, Callou C, Schafberg R, Haruda A, Lecompte F, Casabianca F, Studer J, Renaud S, Cornette R, Locatelli Y, Vigne JD, Herrel A, Cucchi T. The mark of captivity: plastic responses in the ankle bone of a wild ungulate ( Sus scrofa). ROYAL SOCIETY OPEN SCIENCE 2020; 7:192039. [PMID: 32269811 PMCID: PMC7137979 DOI: 10.1098/rsos.192039] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Deciphering the plastic (non-heritable) changes induced by human control over wild animals in the archaeological record is challenging. We hypothesized that changes in locomotor behaviour in a wild ungulate due to mobility control could be quantified in the bone anatomy. To test this, we experimented with the effect of mobility reduction on the skeleton of wild boar (Sus scrofa), using the calcaneus shape as a possible phenotypic marker. We first assessed differences in shape variation and covariation in captive-reared and wild-caught wild boars, taking into account differences in sex, body mass, available space for movement and muscle force. This plastic signal was then contrasted with the phenotypic changes induced by selective breeding in domestic pigs. We found that mobility reduction induces a plastic response beyond the shape variation of wild boars in their natural habitat, associated with a reduction in the range of locomotor behaviours and muscle loads. This plastic signal of captivity in the calcaneus shape differs from the main changes induced by selective breeding for larger muscle and earlier development that impacted the pigs' calcaneus shape in a much greater extent than the mobility reduction during the domestication process of their wild ancestors.
Collapse
Affiliation(s)
- Hugo Harbers
- UMR 7209, Archéozoologie, Archéobotanique, Sociétés Pratiques et Environnements (AASPE), CNRS, Muséum national d'Histoire naturelle, Paris, France
| | - Dimitri Neaux
- UMR 7209, Archéozoologie, Archéobotanique, Sociétés Pratiques et Environnements (AASPE), CNRS, Muséum national d'Histoire naturelle, Paris, France
| | - Katia Ortiz
- Réserve Zoologique de la Haute Touche, 36290 Obterre, Muséum national d'Histoire naturelle, France
| | - Barbara Blanc
- Réserve Zoologique de la Haute Touche, 36290 Obterre, Muséum national d'Histoire naturelle, France
| | - Flavie Laurens
- Unité Bases de données sur la Biodiversité, Écologie, Environnement et Sociétés (BBEES), Muséum national d'Histoire naturelle, Paris, France
| | - Isabelle Baly
- Unité Bases de données sur la Biodiversité, Écologie, Environnement et Sociétés (BBEES), Muséum national d'Histoire naturelle, Paris, France
| | - Cécile Callou
- Unité Bases de données sur la Biodiversité, Écologie, Environnement et Sociétés (BBEES), Muséum national d'Histoire naturelle, Paris, France
| | - Renate Schafberg
- Martin Luther University Halle-Wittenberg Central Natural Sciences Collections, Museum for domesticated animalsINRA, Nouzilly, France
| | - Ashleigh Haruda
- Martin Luther University Halle-Wittenberg Central Natural Sciences Collections, Museum for domesticated animalsINRA, Nouzilly, France
| | | | | | | | - Sabrina Renaud
- Laboratoire de Biométrie et Biologie Évolutive (LBBE), UMR 5558 CNRS, Université Lyon 1, Villeurbanne, France
| | - Raphael Cornette
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, France
| | - Yann Locatelli
- Réserve Zoologique de la Haute Touche, 36290 Obterre, Muséum national d'Histoire naturelle, France
| | - Jean-Denis Vigne
- UMR 7209, Archéozoologie, Archéobotanique, Sociétés Pratiques et Environnements (AASPE), CNRS, Muséum national d'Histoire naturelle, Paris, France
| | - Anthony Herrel
- UMR 7179, Département Adaptations du Vivant, Bâtiment d'Anatomie Comparée, CNRS, Muséum national d'Histoire naturelle, Paris, France
| | - Thomas Cucchi
- UMR 7209, Archéozoologie, Archéobotanique, Sociétés Pratiques et Environnements (AASPE), CNRS, Muséum national d'Histoire naturelle, Paris, France
- Author for correspondence: Thomas Cucchi e-mail:
| |
Collapse
|
19
|
Morita W, Morimoto N, Kono RT, Suwa G. Metameric variation of upper molars in hominoids and its implications for the diversification of molar morphogenesis. J Hum Evol 2019; 138:102706. [PMID: 31785453 DOI: 10.1016/j.jhevol.2019.102706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/20/2019] [Accepted: 10/20/2019] [Indexed: 11/18/2022]
Abstract
Metameric variation of molar size is in part associated with the dietary adaptations of mammals and results from slight alterations of developmental processes. Humans and great apes exhibit conspicuous variation in tooth morphology both between taxa and across tooth types. However, the manner in which metameric variation in molars emerged among apes and humans via evolutionary alterations in developmental processes remains largely unknown. In this study, we compare the enamel-dentine junction of the upper molars of humans-which closely correlates with morphology of the outer enamel surface and is less affected by wear-with that of the other extant hominoids: chimpanzees, bonobos, gorillas, orangutans, and gibbons. We used the morphometric mapping method to quantify and visualize three-dimensional morphological variation, and applied multivariate statistical analyses. Results revealed the following: 1) extant hominoids other than humans share a common pattern of metameric variation characterized by a largely linear change in morphospace; this indicates a relatively simple graded change in metameric molar shape; 2) intertaxon morphological differences become less distinct from the mesial to distal molars; and 3) humans diverge from the extant ape pattern in exhibiting a distinct metameric shape change trajectory in the morphospace. The graded shape change and lower intertaxon resolution from the mesial to distal molars are consistent with the concept of a 'key' tooth. The common metameric pattern observed among the extant nonhuman hominoids indicates that developmental patterns underlying metameric variation were largely conserved during ape evolution. Furthermore, the human-specific metameric pattern suggests considerable developmental modifications in the human lineage.
Collapse
Affiliation(s)
- Wataru Morita
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland; Department of Oral Functional Anatomy, Faculty of Dental Medicine, Hokkaido University, Hokkaido, Japan.
| | - Naoki Morimoto
- Laboratory of Physical Anthropology, Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan.
| | - Reiko T Kono
- Faculty of Letters, Keio University, Kanagawa, Japan
| | - Gen Suwa
- The University Museum, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Cortical bone distribution in the femoral neck of Paranthropus robustus. J Hum Evol 2019; 135:102666. [DOI: 10.1016/j.jhevol.2019.102666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023]
|
21
|
Friedl L, Claxton AG, Walker CS, Churchill SE, Holliday TW, Hawks J, Berger LR, DeSilva JM, Marchi D. Femoral neck and shaft structure in Homo naledi from the Dinaledi Chamber (Rising Star System, South Africa). J Hum Evol 2019; 133:61-77. [PMID: 31358184 DOI: 10.1016/j.jhevol.2019.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 01/27/2023]
Abstract
The abundant femoral assemblage of Homo naledi found in the Dinaledi Chamber provides a unique opportunity to test hypotheses regarding the taxonomy, locomotion, and loading patterns of this species. Here we describe neck and shaft cross-sectional structure of all the femoral fossils recovered in the Dinaledi Chamber and compare them to a broad sample of fossil hominins, recent humans, and extant apes. Cross-sectional geometric (CSG) properties from the femoral neck (base of neck and midneck) and diaphysis (subtrochanteric region and midshaft) were obtained through CT scans for H. naledi and through CT scans or from the literature for the comparative sample. The comparison of CSG properties of H. naledi and the comparative samples shows that H. naledi femoral neck is quite derived with low superoinferior cortical thickness ratio and high relative cortical area. The neck appears superoinferiorly elongated because of two bony pilasters on its superior surface. Homo naledi femoral shaft shows a relatively thick cortex compared to the other hominins. The subtrochanteric region of the diaphysis is mediolaterally elongated resembling early hominins while the midshaft is anteroposteriorly elongated, indicating high mobility levels. In term of diaphyseal robusticity, the H. naledi femur is more gracile that other hominins and most apes. Homo naledi shows a unique combination of characteristics in its femur that undoubtedly indicate a species committed to terrestrial bipedalism but with a unique loading pattern of the femur possibly consequence of the unique postcranial anatomy of the species.
Collapse
Affiliation(s)
- Lukas Friedl
- Department of Anthropology, University of West Bohemia, Plzeň, Czech Republic
| | - Alex G Claxton
- Department of Anthropology, Dartmouth College, 409 Silsby, HB 6047, Hanover, USA
| | - Christopher S Walker
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA; Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa; Department of Evolutionary Anthropology, Duke University, 04 Bio Sci Bldg, Durham, NC, 27708, USA
| | - Steven E Churchill
- Department of Evolutionary Anthropology, Duke University, 04 Bio Sci Bldg, Durham, NC, 27708, USA; Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa
| | - Trenton W Holliday
- Department of Anthropology, Tulane University, 417 Dinwiddie Hall, New Orleans, LA, 70118, USA; Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa
| | - John Hawks
- Department of Anthropology, University of Wisconsin, 5325 Sewell Social Science Building, Madison, WI, 53706, USA; Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa
| | - Lee R Berger
- Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa
| | - Jeremy M DeSilva
- Department of Anthropology, Dartmouth College, 409 Silsby, HB 6047, Hanover, USA; Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa
| | - Damiano Marchi
- Department of Biology, University of Pisa, vis Derna 1, Pisa, 56126, Italy; Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa.
| |
Collapse
|
22
|
Marchi D, Harper C, Chirchir H, Ruff C. Relative fibular strength and locomotor behavior in KNM-WT 15000 and OH 35. J Hum Evol 2019; 131:48-60. [DOI: 10.1016/j.jhevol.2019.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/01/2019] [Accepted: 02/21/2019] [Indexed: 12/14/2022]
|
23
|
HIGURASHI YASUO, GOTO RYOSUKE, NAKANO YOSHIHIKO. Integrative experimental and morphological study of the metacarpal and metatarsal bones of the Japanese macaque ( Macaca fuscata). ANTHROPOL SCI 2019. [DOI: 10.1537/ase.190511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- YASUO HIGURASHI
- Laboratory of System Physiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi
- Laboratory of Biological Anthropology, Graduate School of Human Sciences, Osaka University, Suita
| | - RYOSUKE GOTO
- Laboratory of Biological Anthropology, Graduate School of Human Sciences, Osaka University, Suita
| | - YOSHIHIKO NAKANO
- Laboratory of Biological Anthropology, Graduate School of Human Sciences, Osaka University, Suita
| |
Collapse
|
24
|
McRae R, Aronsen GP. Inventory and Assessment of theGorilla gorilla(Savage, 1847) Skeletal Collection Housed at the Yale Peabody Museum of Natural History. BULLETIN OF THE PEABODY MUSEUM OF NATURAL HISTORY 2018. [DOI: 10.3374/014.059.0205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ryan McRae
- Department of Anthropology, Yale University, New Haven CT 06520-8277 USA
| | - Gary P. Aronsen
- Biological Anthropology Laboratories, Department of Anthropology, Yale University, New Haven CT 06520-8277 USA
| |
Collapse
|
25
|
Canington SL, Sylvester AD, Burgess ML, Junno J, Ruff CB. Long bone diaphyseal shape follows different ontogenetic trajectories in captive and wild gorillas. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 167:366-376. [DOI: 10.1002/ajpa.23636] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Stephanie L. Canington
- Center for Functional Anatomy and Evolution Johns Hopkins University School of Medicine Baltimore Maryland
| | - Adam D. Sylvester
- Center for Functional Anatomy and Evolution Johns Hopkins University School of Medicine Baltimore Maryland
| | - M. Loring Burgess
- Center for Functional Anatomy and Evolution Johns Hopkins University School of Medicine Baltimore Maryland
| | | | - Christopher B. Ruff
- Center for Functional Anatomy and Evolution Johns Hopkins University School of Medicine Baltimore Maryland
| |
Collapse
|
26
|
Morimoto N. What Could Hominoid Fetuses Tell Us about Human Evolution? Anat Rec (Hoboken) 2018; 301:970-972. [DOI: 10.1002/ar.23789] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 12/04/2016] [Accepted: 12/28/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Naoki Morimoto
- Laboratory of Physical Anthropology, Department of Zoology, Graduate School of Science; Kyoto University; Kyoto Japan
| |
Collapse
|
27
|
Morimoto N, Nakatsukasa M, Ponce de León MS, Zollikofer CPE. Femoral ontogeny in humans and great apes and its implications for their last common ancestor. Sci Rep 2018; 8:1930. [PMID: 29386644 PMCID: PMC5792642 DOI: 10.1038/s41598-018-20410-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/18/2018] [Indexed: 11/09/2022] Open
Abstract
Inferring the morphology of the last common ancestor of humans, chimpanzees and gorillas is a matter of ongoing debate. Recent findings and reassessment of fossil hominins leads to the hypothesis that the last common ancestor was not extant African ape-like. However, an African great-ape-like ancestor with knuckle walking features still remains plausible and the most parsimonious scenario. Here we address this question via an evolutionary developmental approach, comparing taxon-specific patterns of shape change of the femoral diaphysis from birth to adulthood in great apes, humans, and macaques. While chimpanzees and gorillas exhibit similar locomotor behaviors, our data provide evidence for distinct ontogenetic trajectories, indicating independent evolutionary histories of femoral ontogeny. Our data further indicate that anthropoid primates share a basic pattern of femoral diaphyseal ontogeny that reflects shared developmental constraints. Humans escaped from these constraints via differential elongation of femur.
Collapse
Affiliation(s)
- Naoki Morimoto
- Laboratory of Physical Anthropology, Graduate School of Science, Kyoto University, Kyoto, Japan.
| | - Masato Nakatsukasa
- Laboratory of Physical Anthropology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
28
|
Sylvester AD, Terhune CE. Trabecular mapping: Leveraging geometric morphometrics for analyses of trabecular structure. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 163:553-569. [PMID: 28432829 DOI: 10.1002/ajpa.23231] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/04/2017] [Accepted: 04/04/2017] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Trabecular microstructure of limb bone epiphyses has been used to elucidate the relationship between skeletal form and behavior among mammals. Such studies have often relied on the analysis of a single volume of interest (VOI). Here we present a method for evaluating variation in bone microstructure across articular surfaces by leveraging sliding semilandmarks. METHODS Two samples were used to demonstrate the proposed methodology and test the hypothesis that microstructural variables are homogeneously distributed: tali from two ape genera (Pan and Pongo, n = 9) and modern human distal femora (n = 10). Sliding semilandmarks were distributed across articular surfaces and used to locate the position of multiple VOIs immediately deep to the cortical shell. Trabecular bone properties were quantified using the BoneJ plugin for ImageJ. Nonparametric MANOVA tests were used to make group comparisons and differences were explored using principal components analysis and visualized using color maps. RESULTS Tests reveal that trabecular parameters are not distributed homogeneously and identify differences between chimpanzee and orangutan tali with regards to trabecular spacing and degree of anisotropy, with chimpanzee tali being more anisotropic and having more uniformly spaced trabeculae. Human males and females differed in the pattern of trabecular spacing with males having more uniform trabecular spacing across the joint surface. CONCLUSIONS The proposed procedure quantifies variation in trabecular bone parameters across joint surfaces and allows for meaningful statistical comparisons between groups of interest. Consequently it holds promise to help elucidate links between trabecular bone structure and animal behavior.
Collapse
Affiliation(s)
- Adam D Sylvester
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Claire E Terhune
- Department of Anthropology, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
29
|
Aronsen GP, Kirkham M. Inventory and Assessment of thePan troglodytes(Blumenbach, 1799) Skeletal Collection Housed at the Yale Peabody Museum. BULLETIN OF THE PEABODY MUSEUM OF NATURAL HISTORY 2017. [DOI: 10.3374/014.058.0107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gary P. Aronsen
- Department of Anthropology, Biological Anthropology Laboratories, Yale University, P.O. Box 208277, New Haven CT 06520-8277 USA
| | - Megan Kirkham
- Division of Anthropology, Peabody Museum of Natural History, Yale University, New Haven CT USA
| |
Collapse
|
30
|
Morita W, Morimoto N, Ohshima H. Exploring metameric variation in human molars: a morphological study using morphometric mapping. J Anat 2016; 229:343-55. [PMID: 27098351 DOI: 10.1111/joa.12482] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2016] [Indexed: 12/01/2022] Open
Abstract
Human molars exhibit a type of metameric variation, which is the difference in serially repeated morphology within an organism. Various theories have been proposed to explain how this variation is brought about in the molars. Actualistic data that support the theories, however, are still relatively scarce because of methodological limitations. Here we propose new methods to analyse detailed tooth crown morphologies. We applied morphometric mapping to the enamel-dentine junction of human maxillary molars and examined whether odontogenetic models were adaptable to human maxillary molars. Our results showed that the upper first molar is phenotypically distinct among the maxillary molars. The average shape of the upper first molar is characterized by four well-defined cusps and precipitous surface relief of the occlusal table. On the other hand, upper third molar is characterized by smooth surface relief of the occlusal table and shows greater shape variation and distinct distribution patterns in morphospace. The upper second molar represents an intermediate state between first and third molar. Size-related shape variation was investigated by the allometric vector analysis, and it appeared that human maxillary molars tend to converge toward the shape of the upper first molar as the size increases. Differences between the upper first molar and the upper second and third molar can thus be largely explained as an effect of allometry. Collectively, these results indicate that the observed pattern of metameric variation in human molars is consistent with odontogenetic models of molar row structure (inhibitory cascade model) and molar crown morphology (patterning cascade model). This study shows that morphometric mapping is a useful tool to visualize and quantify the morphological features of teeth, which can provide the basis for a better understanding of tooth evolution linking morphology and development.
Collapse
Affiliation(s)
- Wataru Morita
- Department of Oral Functional Anatomy, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoki Morimoto
- Laboratory of Physical Anthropology, Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
31
|
Sarringhaus LA, MacLatchy LM, Mitani JC. Long bone cross-sectional properties reflect changes in locomotor behavior in developing chimpanzees. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 160:16-29. [PMID: 26780478 DOI: 10.1002/ajpa.22930] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Recent studies indicate that the locomotor behavior of wild chimpanzees changes during development. Before transitioning to quadrupedal knuckle-walking in adulthood, young chimpanzees engage in a significant amount of upper limb loading suspensory behavior. We investigated whether these dramatic changes in locomotion influence the strength and shape of chimpanzee long bones. MATERIALS AND METHODS We examined changes in chimpanzee arboreal locomotion over the course of development using behavioral data collected on wild chimpanzees. We measured the midshaft geometric properties of femora and humeri of wild-caught individuals housed in museum collections using micro computed tomographic scans. RESULTS Chimpanzees spent less time moving arboreally as they aged. Femoral/humeral strength ratios also increased with age, as predicted by the changing loading environment during development. Additional analyses revealed that femoral shape, but not humeral shape, varied across chimpanzee age classes. Adult femora were more elliptical compared with those of infants. This change in adult femora is consistent with the observation that adult chimpanzees spend most of their time moving terrestrially and consequently experience a less variable loading environment than do infants. DISCUSSION Taken together, these findings contribute to our understanding of how ontogenetic changes in function affect form. As similar changes may have characterized the behavioral and skeletal ontogeny of extinct hominoids including hominins, these findings furnish a potential means to make inferences about the behavior of fossil taxa based on the structural properties of their bones.
Collapse
Affiliation(s)
- Lauren A Sarringhaus
- Evolutionary Studies Institute, Palaeosciences Centre, University of the Witwatersrand, Johannesburg, South Africa.,University of Maryland University College Europe, PE28 4DE, England
| | - Laura M MacLatchy
- Department of Anthropology, University of Michigan, Ann Arbor, MI, 48109
| | - John C Mitani
- Department of Anthropology, University of Michigan, Ann Arbor, MI, 48109
| |
Collapse
|
32
|
MIZUSHIMA SOICHIRO, SUWA GEN, HIRATA KAZUAKI. A comparative analysis of fetal to subadult femoral midshaft bone distribution of prehistoric Jomon hunter-gatherers and modern Japanese. ANTHROPOL SCI 2016. [DOI: 10.1537/ase.151104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- SOICHIRO MIZUSHIMA
- Department of Anatomy, St. Marianna University School of Medicine, Kawasaki-shi
| | - GEN SUWA
- The University Museum, The University of Tokyo, Tokyo
| | - KAZUAKI HIRATA
- Department of Anatomy, St. Marianna University School of Medicine, Kawasaki-shi
| |
Collapse
|
33
|
Nadell JA, Shaw CN. Phenotypic plasticity and constraint along the upper and lower limb diaphyses ofHomo sapiens. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 159:410-22. [DOI: 10.1002/ajpa.22889] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/16/2015] [Accepted: 10/18/2015] [Indexed: 11/10/2022]
Affiliation(s)
| | - Colin N. Shaw
- Department of Archaeology and Anthropology; University of Cambridge; Cambridge UK
| |
Collapse
|
34
|
Stern T, Aviram R, Rot C, Galili T, Sharir A, Kalish Achrai N, Keller Y, Shahar R, Zelzer E. Isometric Scaling in Developing Long Bones Is Achieved by an Optimal Epiphyseal Growth Balance. PLoS Biol 2015; 13:e1002212. [PMID: 26241802 PMCID: PMC4524611 DOI: 10.1371/journal.pbio.1002212] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 06/26/2015] [Indexed: 11/19/2022] Open
Abstract
One of the major challenges that developing organs face is scaling, that is, the adjustment of physical proportions during the massive increase in size. Although organ scaling is fundamental for development and function, little is known about the mechanisms that regulate it. Bone superstructures are projections that typically serve for tendon and ligament insertion or articulation and, therefore, their position along the bone is crucial for musculoskeletal functionality. As bones are rigid structures that elongate only from their ends, it is unclear how superstructure positions are regulated during growth to end up in the right locations. Here, we document the process of longitudinal scaling in developing mouse long bones and uncover the mechanism that regulates it. To that end, we performed a computational analysis of hundreds of three-dimensional micro-CT images, using a newly developed method for recovering the morphogenetic sequence of developing bones. Strikingly, analysis revealed that the relative position of all superstructures along the bone is highly preserved during more than a 5-fold increase in length, indicating isometric scaling. It has been suggested that during development, bone superstructures are continuously reconstructed and relocated along the shaft, a process known as drift. Surprisingly, our results showed that most superstructures did not drift at all. Instead, we identified a novel mechanism for bone scaling, whereby each bone exhibits a specific and unique balance between proximal and distal growth rates, which accurately maintains the relative position of its superstructures. Moreover, we show mathematically that this mechanism minimizes the cumulative drift of all superstructures, thereby optimizing the scaling process. Our study reveals a general mechanism for the scaling of developing bones. More broadly, these findings suggest an evolutionary mechanism that facilitates variability in bone morphology by controlling the activity of individual epiphyseal plates. A novel computational approach for studying bone morphogenesis reveals that the longitudinal proportions of developing long bones are accurately maintained throughout elongation by the balance between proximal and distal growth rates. One of the major challenges that developing organs face is scaling, that is, the adjustment of physical proportions during the massive increase in size. Bone superstructures are projections that typically serve for tendon and ligament insertion or articulation. Therefore, superstructure position along the bone is crucial for musculoskeletal functionality. As bones are rigid structures that elongate only from their ends, it is unclear how superstructure positions are regulated during growth to end up in the right locations. Here, by analyzing a massive database of micro-CT images of developing mouse long bones, we show that all superstructures maintain their relative positions throughout development. It has been suggested that during development, superstructures are continuously reconstructed and relocated along the shaft, a process known as drift. However, our analysis reveals that most superstructures did not drift at all, implying the involvement of another mechanism. Indeed, we identify a novel mechanism for bone scaling, whereby each bone exhibits a specific and unique balance between the growth rates from its two ends, which accurately maintains the relative position of its superstructures. Moreover, we show mathematically that this mechanism minimizes the cumulative drift of all superstructures, thereby optimizing the scaling process.
Collapse
Affiliation(s)
- Tomer Stern
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail: (TS); (EZ)
| | - Rona Aviram
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Chagai Rot
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Galili
- Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv, Israel
| | - Amnon Sharir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Laboratory of Bone Biomechanics, Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Noga Kalish Achrai
- Laboratory of Bone Biomechanics, Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yosi Keller
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
| | - Ron Shahar
- Laboratory of Bone Biomechanics, Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail: (TS); (EZ)
| |
Collapse
|
35
|
Marchi D. Using the morphology of the hominoid distal fibula to interpret arboreality in Australopithecus afarensis. J Hum Evol 2015; 85:136-48. [DOI: 10.1016/j.jhevol.2015.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 11/17/2022]
|
36
|
Morimoto N, Suwa G, Nishimura T, Ponce de León MS, Zollikofer CPE, Lovejoy CO, Nakatsukasa M. Let bone and muscle talk together: a study of real and virtual dissection and its implications for femoral musculoskeletal structure of chimpanzees. J Anat 2015; 226:258-67. [PMID: 25601190 PMCID: PMC4337665 DOI: 10.1111/joa.12270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2014] [Indexed: 11/28/2022] Open
Abstract
Proximal femoral morphology and associated musculature are of special relevance to the understanding of hominoid locomotor systems. Knowledge of bone-muscle correspondence in extant hominoids forms an important comparative basis for inferring structure-function relationships in fossil hominids. However, there is still a lack of consensus on the correspondence between muscle attachment sites and surface morphology of the proximal femoral diaphysis in chimpanzees. Two alternative observations have been proposed regarding the attachment site positions of gluteus maximus (GM) and vastus lateralis (VL) relative to two prominent surface features of the proximal femoral diaphysis, the lateral spiral pilaster and the inferolateral fossa. Here, we use a combination of virtual and physical dissection in an attempt to identify the exact correspondence between muscle attachment sites and osteological features in two specimens of Pan troglodytes verus. The results show that the insertion of the GM tendon is consistently inferolateral to the lateral spiral pilaster, and that a part of the inferolateral fossa consistently forms the attachment site of the VL muscular fibers. While overall musculoskeletal features are similar in the two specimens examined in this study, GM and VL exhibit different degrees of segregation at the level of the inferolateral fossa. One specimen exhibited tendinous GM fibers penetrating the posteromedial part of VL, with both GM and VL inserting at the inferolateral fossa. In the other specimen, GM and VL were separated by a lateral intermuscular septum, which inserted into the inferolateral fossa. Variation of proximal femoral muscle attachments in chimpanzees is thus greater than previously thought. Our results indicate that a conspicuous osteological feature such as the inferolateral fossa does not necessarily correspond to the attachment site of a single muscle, but could serve as a boundary region between two muscles. Caution is thus warranted when interpreting the surface topography of muscle attachment sites and inferring locomotor functions.
Collapse
Affiliation(s)
- Naoki Morimoto
- Laboratory of Physical Anthropology, Graduate School of Science, Kyoto UniversityKyoto, Japan
| | - Gen Suwa
- The University Museum, The University of TokyoHongo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | - C Owen Lovejoy
- Department of Anthropology, School of Biomedical Sciences, Kent State UniversityKent, OH, USA
| | - Masato Nakatsukasa
- Laboratory of Physical Anthropology, Graduate School of Science, Kyoto UniversityKyoto, Japan
| |
Collapse
|
37
|
Jashashvili T, Dowdeswell MR, Lebrun R, Carlson KJ. Cortical structure of hallucal metatarsals and locomotor adaptations in hominoids. PLoS One 2015; 10:e0117905. [PMID: 25635768 PMCID: PMC4311976 DOI: 10.1371/journal.pone.0117905] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/29/2014] [Indexed: 11/18/2022] Open
Abstract
Diaphyseal morphology of long bones, in part, reflects in vivo loads experienced during the lifetime of an individual. The first metatarsal, as a cornerstone structure of the foot, presumably expresses diaphyseal morphology that reflects loading history of the foot during stance phase of gait. Human feet differ substantially from those of other apes in terms of loading histories when comparing the path of the center of pressure during stance phase, which reflects different weight transfer mechanisms. Here we use a novel approach for quantifying continuous thickness and cross-sectional geometric properties of long bones in order to test explicit hypotheses about loading histories and diaphyseal structure of adult chimpanzee, gorilla, and human first metatarsals. For each hallucal metatarsal, 17 cross sections were extracted at regularly-spaced intervals (2.5% length) between 25% and 65% length. Cortical thickness in cross sections was measured in one degree radially-arranged increments, while second moments of area were measured about neutral axes also in one degree radially-arranged increments. Standardized thicknesses and second moments of area were visualized using false color maps, while penalized discriminant analyses were used to evaluate quantitative species differences. Humans systematically exhibit the thinnest diaphyseal cortices, yet the greatest diaphyseal rigidities, particularly in dorsoplantar regions. Shifts in orientation of maximum second moments of area along the diaphysis also distinguish human hallucal metatarsals from those of chimpanzees and gorillas. Diaphyseal structure reflects different loading regimes, often in predictable ways, with human versus non-human differences probably resulting both from the use of arboreal substrates by non-human apes and by differing spatial relationships between hallux position and orientation of the substrate reaction resultant during stance. The novel morphological approach employed in this study offers the potential for transformative insights into form-function relationships in additional long bones, including those of extinct organisms (e.g., fossils).
Collapse
Affiliation(s)
- Tea Jashashvili
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa
- Department of Geology and Palaeontology, Georgian National Museum, Tbilisi, Georgia
- * E-mail:
| | - Mark R. Dowdeswell
- School of Statistics and Actuarial Science, University of the Witwatersrand, Wits, South Africa
| | - Renaud Lebrun
- Institut des Sciences de l’Evolution de Montpellier—UMR 5554, Montpellier, France
| | - Kristian J. Carlson
- Evolutionary Studies Institute, University of the Witwatersrand, Wits, South Africa
- Department of Anthropology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
38
|
Abstract
Plant cells in tissues experience mechanical stress not only as a result of high turgor, but also through interaction with their neighbors. Cells can expand at different rates and in different directions from neighbors with which they share a cell wall. This in connection with specific tissue shapes and properties of the cell wall material can lead to intricate stress patterns throughout the tissue. Two cellular responses to mechanical stress are a microtubule cytoskeletal response that directs new wall synthesis so as to resist stress, and a hormone transporter response that regulates transport of the hormone auxin, a regulator of cell expansion. Shape changes in plant tissues affect the pattern of stresses in the tissues, and at the same time, via the cellular stress responses, the pattern of stresses controls cell growth, which in turn changes tissue shape, and stress pattern. This feedback loop controls plant morphogenesis, and explains several previously mysterious aspects of plant growth.
Collapse
|
39
|
Milella M. The influence of life history and sexual dimorphism on entheseal changes in modern humans and African great apes. PLoS One 2014; 9:e107963. [PMID: 25251439 PMCID: PMC4175998 DOI: 10.1371/journal.pone.0107963] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 08/16/2014] [Indexed: 11/19/2022] Open
Abstract
Entheseal changes have been widely studied with regard to their correlation to biomechanical stress and their usefulness for biocultural reconstructions. However, anthropological and medical studies have demonstrated the marked influence of both age and sex on the development of these features. Studies of entheseal changes are mostly aimed in testing functional hypotheses and are mostly focused on modern humans, with few data available for non-human primates. The lack of comparative studies on the effect of age and sex on entheseal changes represent a gap in our understanding of the evolutionary basis of both development and degeneration of the human musculoskeletal system. The aim of the present work is to compare age trajectories and patterns of sexual dimorphism in entheseal changes between modern humans and African great apes. To this end we analyzed 23 postcranial entheses in a human contemporary identified skeletal collection (N = 484) and compared the results with those obtained from the analysis of Pan (N = 50) and Gorilla (N = 47) skeletal specimens. Results highlight taxon-specific age trajectories possibly linked to differences in life history schedules and phyletic relationships. Robusticity trajectories separate Pan and modern humans from Gorilla, whereas enthesopathic patterns are unique in modern humans and possibly linked to their extended potential lifespan. Comparisons between sexes evidence a decreasing dimorphism in robusticity from Gorilla, to modern humans to Pan, which is likely linked to the role played by size, lifespan and physical activity on robusticity development. The present study confirms previous hypotheses on the possible relevance of EC in the study of life history, pointing moreover to their usefulness in evolutionary studies.
Collapse
Affiliation(s)
- Marco Milella
- Anthropological Institute and Museum, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
40
|
Morimoto N, Ponce de León MS, Zollikofer CPE. Phenotypic variation in infants, not adults, reflects genotypic variation among chimpanzees and bonobos. PLoS One 2014; 9:e102074. [PMID: 25013970 PMCID: PMC4094530 DOI: 10.1371/journal.pone.0102074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/13/2014] [Indexed: 11/18/2022] Open
Abstract
Studies comparing phenotypic variation with neutral genetic variation in modern humans have shown that genetic drift is a main factor of evolutionary diversification among populations. The genetic population history of our closest living relatives, the chimpanzees and bonobos, is now equally well documented, but phenotypic variation among these taxa remains relatively unexplored, and phenotype-genotype correlations are not yet documented. Also, while the adult phenotype is typically used as a reference, it remains to be investigated how phenotype-genotye correlations change during development. Here we address these questions by analyzing phenotypic evolutionary and developmental diversification in the species and subspecies of the genus Pan. Our analyses focus on the morphology of the femoral diaphysis, which represents a functionally constrained element of the locomotor system. Results show that during infancy phenotypic distances between taxa are largely congruent with non-coding (neutral) genotypic distances. Later during ontogeny, however, phenotypic distances deviate from genotypic distances, mainly as an effect of heterochronic shifts between taxon-specific developmental programs. Early phenotypic differences between Pan taxa are thus likely brought about by genetic drift while late differences reflect taxon-specific adaptations.
Collapse
Affiliation(s)
- Naoki Morimoto
- Laboratory of Physical Anthropology, Graduate School of Science, Kyoto University, Kyoto, Japan
- * E-mail: (NM); (CPEZ)
| | | | | |
Collapse
|
41
|
Guy F, Gouvard F, Boistel R, Euriat A, Lazzari V. Prospective in (Primate) dental analysis through tooth 3D topographical quantification. PLoS One 2013; 8:e66142. [PMID: 23826088 PMCID: PMC3691165 DOI: 10.1371/journal.pone.0066142] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/01/2013] [Indexed: 12/03/2022] Open
Abstract
The occlusal morphology of the teeth is mostly determined by the enamel-dentine junction morphology; the enamel-dentine junction plays the role of a primer and conditions the formation of the occlusal enamel reliefs. However, the accretion of the enamel cap yields thickness variations that alter the morphology and the topography of the enamel–dentine junction (i.e., the differential deposition of enamel by the ameloblasts create an external surface that does not necessarily perfectly parallel the enamel–dentine junction). This self-reliant influence of the enamel on tooth morphology is poorly understood and still under-investigated. Studies considering the relationship between enamel and dentine morphologies are rare, and none of them tackled this relationship in a quantitative way. Major limitations arose from: (1) the difficulties to characterize the tooth morphology in its comprehensive tridimensional aspect and (2) practical issues in relating enamel and enamel–dentine junction quantitative traits. We present new aspects of form representation based exclusively on 3D analytical tools and procedures. Our method is applied to a set of 21 unworn upper second molars belonging to eight extant anthropoid genera. Using geometrical analysis of polygonal meshes representatives of the tooth form, we propose a 3D dataset that constitutes a detailed characterization of the enamel and of the enamel–dentine junction morphologies. Also, for the first time, to our knowledge, we intend to establish a quantitative method for comparing enamel and enamel–dentine junction surfaces descriptors (elevation, inclination, orientation, etc.). New indices that allow characterizing the occlusal morphology are proposed and discussed. In this note, we present technical aspects of our method with the example of anthropoid molars. First results show notable individual variations and taxonomic heterogeneities for the selected topographic parameters and for the pattern and strength of association between enamel–dentine junction and enamel, the enamel cap altering in different ways the “transcription” of the enamel–dentine junction morphology.
Collapse
Affiliation(s)
- Franck Guy
- Centre National de la Recherche Scientifique, Institut Ecologie et Environnement, UMR 7262 - iPHEP: Institut de Paléoprimatologie et Paléontologie Humaine, Evolution et Paléoenvironnements, Université de Poitiers, Faculté des Sciences, Poitiers, France.
| | | | | | | | | |
Collapse
|
42
|
Development of Cortical Bone Geometry in the Human Femoral and Tibial Diaphysis. Anat Rec (Hoboken) 2013; 296:774-87. [DOI: 10.1002/ar.22688] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/20/2013] [Indexed: 11/07/2022]
|
43
|
Patel BA, Ruff CB, Simons EL, Organ JM. Humeral Cross-Sectional Shape in Suspensory Primates and Sloths. Anat Rec (Hoboken) 2013; 296:545-56. [DOI: 10.1002/ar.22669] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 01/04/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Biren A. Patel
- Department of Cell and Neurobiology; Keck School of Medicine, University of Southern California; Los Angeles California
| | - Christopher B. Ruff
- Center for Functional Anatomy and Evolution; Johns Hopkins University School of Medicine; Baltimore Maryland
| | | | - Jason M. Organ
- Department of Anatomy and Cell Biology; Indiana University School of Medicine; Indianapolis Indiana
| |
Collapse
|
44
|
Puymerail L, Ruff CB, Bondioli L, Widianto H, Trinkaus E, Macchiarelli R. Structural analysis of the Kresna 11 Homo erectus femoral shaft (Sangiran, Java). J Hum Evol 2012; 63:741-9. [PMID: 23036460 DOI: 10.1016/j.jhevol.2012.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/09/2012] [Accepted: 08/17/2012] [Indexed: 11/17/2022]
Abstract
The biomechanical characterization of lower limb long bones in the chrono-ecogeographically diverse species Homo erectus is a fundamental step for assessing evolutionary changes in locomotor mode and body shape that occurred within the genus Homo. However, the samples available for the Early and earlier Middle Pleistocene are small and widely scattered in time and space, thus limiting our understanding of the nature and polarity of morphological trends. Compared to the African fossil record, loading histories based on detailed biomechanical assessment of diaphyseal strength in Indonesian H. erectus lower limb long bones have not been assessed. By using a microtomographic record (μCT), we performed a quantitative analysis of the biomechanical properties and structural organization of Kresna 11, a late Early Pleistocene adult H. erectus femoral shaft from the Sangiran Dome, Central Java. Relative to the modern human condition, Kresna 11 shows the predominant mediolateral cortical thickening (hypertrophy) and the distal displacement of the minimum diaphyseal breadth characteristic of early Homo femora, associated nonetheless with relatively modest cortical thickness within the mid-proximal portion. Synthetic functional imaging of the shaft through the planar representation of its inner structure has revealed distal thickening of the medial cortex, a feature previously unreported in H. erectus. The increase in relative mediolateral bending strength observed in Kresna 11 supports the hypothesis that, rather than simply reflecting differences in patterns of locomotor loading, biomechanical properties of the femoral shaft in archaic Homo are strongly influenced by body shape, i.e., variations in pelvic breadth and femoral neck length.
Collapse
Affiliation(s)
- Laurent Puymerail
- Département de Préhistoire, UMR 7194, Muséum national d'Histoire naturelle, 43 rue Buffon, 75005 Paris, France.
| | | | | | | | | | | |
Collapse
|
45
|
Gröning F, Fagan M, O'higgins P. Comparing the Distribution of Strains with the Distribution of Bone Tissue in a Human Mandible: A Finite Element Study. Anat Rec (Hoboken) 2012; 296:9-18. [DOI: 10.1002/ar.22597] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 08/06/2012] [Indexed: 11/12/2022]
|
46
|
Morimoto N, Zollikofer CPE, Ponce de León MS. Shared human-chimpanzee pattern of perinatal femoral shaft morphology and its implications for the evolution of hominin locomotor adaptations. PLoS One 2012; 7:e41980. [PMID: 22848680 PMCID: PMC3405051 DOI: 10.1371/journal.pone.0041980] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 06/27/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Acquisition of bipedality is a hallmark of human evolution. How bipedality evolved from great ape-like locomotor behaviors, however, is still highly debated. This is mainly because it is difficult to infer locomotor function, and even more so locomotor kinematics, from fossil hominin long bones. Structure-function relationships are complex, as long bone morphology reflects phyletic history, developmental programs, and loading history during an individual's lifetime. Here we discriminate between these factors by investigating the morphology of long bones in fetal and neonate great apes and humans, before the onset of locomotion. METHODOLOGY/PRINCIPAL FINDINGS Comparative morphometric analysis of the femoral diaphysis indicates that its morphology reflects phyletic relationships between hominoid taxa to a greater extent than taxon-specific locomotor adaptations. Diaphyseal morphology in humans and chimpanzees exhibits several shared-derived features, despite substantial differences in locomotor adaptations. Orangutan and gorilla morphologies are largely similar, and likely represent the primitive hominoid state. CONCLUSIONS/SIGNIFICANCE These findings are compatible with two possible evolutionary scenarios. Diaphyseal morphology may reflect retained adaptive traits of ancestral taxa, hence human-chimpanzee shared-derived features may be indicative of the locomotor behavior of our last common ancestor. Alternatively, diaphyseal morphology might reflect evolution by genetic drift (neutral evolution) rather than selection, and might thus be more informative about phyletic relationships between taxa than about locomotor adaptations. Both scenarios are consistent with the hypothesis that knuckle-walking in chimpanzees and gorillas resulted from convergent evolution, and that the evolution of human bipedality is unrelated to extant great ape locomotor specializations.
Collapse
Affiliation(s)
- Naoki Morimoto
- Anthropological Institute, University of Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
47
|
Kikuchi Y, Takemoto H, Kuraoka A. Relationship between humeral geometry and shoulder muscle power among suspensory, knuckle-walking, and digitigrade/palmigrade quadrupedal primates. J Anat 2011; 220:29-41. [PMID: 22050714 DOI: 10.1111/j.1469-7580.2011.01451.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Shoulder morphology is functionally related to different patterns of locomotion in primates. To investigate this we performed a quantitative analysis of the relationship between cortical bone thickness (Cbt) of the muscle/tendon attachment site on the humerus and physiological cross-sectional area (PCSA) of the shoulder muscle in primates with different locomotory habits. The deltoid, subscapularis, supraspinatus, and infraspinatus were investigated. A chimpanzee, a gibbon, a baboon, two species of macaque, a lutong, a capuchin, and a squirrel monkey were included in the study. The total length of the humerus was measured and the values were converted into three-dimensional reconstructed data on a computer by computed tomography. The Cbt values were obtained from the volumes divided by the areas of the muscle/tendon attachment sites of the humerus by computer analysis. Muscle mass, muscle fascicle length, and muscle pennation angle were measured and PCSA was calculated using these parameters. A relatively high Cbt and small PCSA were characteristic of the gibbon. The gibbon's high Cbt suggests that passive tension in the muscle/tendon attachment site of suspensory primates (brachiators) may be greater than that of quadrupedal primates, whereas the relatively small PCSA indicates an association with a large amount of internal muscle fascia to endure the passive stress of brachiation. Although chimpanzees undertake some suspensory locomotion, the results for this species resemble those of the digitigrade/palmigrade quadrupedal primates rather than those of the suspensory primate. However, the deltoid and subscapularis in chimpanzee differ from those of the other primates and appear to be affected by the peculiar locomotion of knuckle-walking, i.e. the moment arm of forelimb in chimpanzees is relatively longer than that of digitigrade/palmigrade quadrupedal primates. Hence, a large PCSA in the deltoid and subscapularis may contribute to sustaining the body weight during locomotion. On the other hand, a thin cortical bone relative to a large PCSA was a feature of the cercopithecids, indicating that digitigrade/palmigrade quadrupedal locomotion produces less tension at the muscle/tendon attachment sites compared with that produced by brachiators.
Collapse
Affiliation(s)
- Yasuhiro Kikuchi
- Division of Human Anatomy and Biological Anthropology, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan.
| | | | | |
Collapse
|