1
|
Moriai H, Yokoyama T, Abdali SS, Nakamuta N, Yamamoto Y. Distribution of proteins for synaptic release in nerve endings associated with the trachealis muscle of rats. Auton Neurosci 2023; 244:103042. [PMID: 36370593 DOI: 10.1016/j.autneu.2022.103042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/08/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
The immunohistochemical localization of proteins for synaptic release was examined in smooth muscle-associated sensory nerve endings using whole-mount preparations of the rat trachea. Plant-like smooth muscle-associated nerve endings with immunoreactivity for Na+-K+-ATPase, α3-subunit were identified in the trachealis muscle. VGLUT1, synapsin1, t-SNARE proteins (SNAP25 and syntaxin1), v-SNARE proteins (VAMP1 and VAMP2), and a presynaptic active zone-related protein (piccolo) were detected in the terminal parts of these endings. These results suggest that smooth muscle-associated nerve endings secrete glutamate to modulate sensorimotor functions in the lung deflation reflex.
Collapse
Affiliation(s)
- Hisae Moriai
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Takuya Yokoyama
- Department of Anatomy (Cell Biology), Iwate Medical University, Yahaba, Japan
| | - Sayed Sharif Abdali
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan.
| |
Collapse
|
2
|
Yamamoto Y, Moriai H, Yokoyama T, Nakamuta N. Immunohistochemical distribution of proteins involved in glutamate release in subepithelial sensory nerve endings of rat epiglottis. Histochem Cell Biol 2021; 157:51-63. [PMID: 34613496 DOI: 10.1007/s00418-021-02038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2021] [Indexed: 11/25/2022]
Abstract
To elucidate the efferent functions of sensory nerve endings, the distribution of calretinin and vesicular glutamate transporter 1 (VGLUT1) in laryngeal laminar nerve endings and the immunohistochemical distribution of proteins associated with synaptic vesicle release, i.e., t-SNARE (SNAP25 and syntaxin 1), v-SNARE (VAMP1 and VAMP2), synaptotagmin 1 (Syt1), bassoon, and piccolo, were examined. Subepithelial laminar nerve endings immunoreactive for Na+-K+-ATPase α3-subunit (NKAα3) were largely distributed in the whole-mount preparation of the epiglottic mucosa, and several endings were also immunoreactive for calretinin. VGLUT1 immunoreactivity was observed within terminal part near the outline of the small processes of NKAα3-immunoreactive nerve ending. SNAP25, syntaxin 1, and VAMP1 immunoreactivities were detected in terminal parts of calretinin-immunoreactive endings, whereas VAMP2 immunoreactivity was only observed in a few terminals. Terminal parts immunoreactive for calretinin and/or VGLUT1 also exhibited immunoreactivities for Syt1, Ca2+ sensor for membrane trafficking, and for bassoon and piccolo, presynaptic scaffold proteins. The presence of vesicular release-related proteins, including SNARE proteins, in the terminals of laryngeal laminar endings indicate that intrinsic glutamate modulates their afferent activity in an autocrine-like manner.
Collapse
Affiliation(s)
- Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, 18-8, Ueda 3-chome, Morioka, Iwate, 020-8550, Japan.
| | - Hisae Moriai
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, 18-8, Ueda 3-chome, Morioka, Iwate, 020-8550, Japan
| | - Takuya Yokoyama
- Department of Anatomy (Cell Biology), Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, 18-8, Ueda 3-chome, Morioka, Iwate, 020-8550, Japan
| |
Collapse
|
3
|
Hirakawa M, Yokoyama T, Yamamoto Y, Saino T. Morphology of P2X3-immunoreactive basket-like afferent nerve endings surrounding serosal ganglia and close relationship with vesicular nucleotide transporter-immunoreactive nerve fibers in the rat gastric antrum. J Comp Neurol 2021; 529:3866-3881. [PMID: 34297862 DOI: 10.1002/cne.25219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/05/2021] [Accepted: 07/16/2021] [Indexed: 11/11/2022]
Abstract
We previously reported P2X3 purinoceptor (P2X3)-expressing vagal afferent nerve endings with large web-like structures in the subserosal tissue of the antral lesser curvature, suggesting that these nerve endings were one of the vagal mechanoreceptors. The present study investigated the morphological relationship between P2X3-immunoreactive nerve endings and serosal ganglia in the rat gastric antrum by immunohistochemistry of whole-mount preparations using confocal scanning laser microscopy. P2X3-immunoreactive basket-like subserosal nerve endings with new morphology were distributed laterally to the gastric sling muscles in the distal antrum of the lesser curvature. Parent axons ramified into numerous nerve fibers with pleomorphic flattened structures to form basket-like nerve endings, and the parent axons were originated from large net-like structures of vagal afferent nerve endings. Basket-like nerve endings wrapped around the whole serosal ganglia, which were characterized by neurofilament 200 kDa-immunoreactive neurons with or without neuronal nitric oxide synthase immunoreactivity and S100B-immunoreactive glial cells. Furthermore, basket-like nerve endings were localized in close apposition to dopamine beta-hydroxylase-immunoreactive sympathetic nerve fibers immunoreactive for vesicular nucleotide transporter. These results suggest that P2X3-immunoreactive basket-like nerve endings associated with serosal ganglia are the specialized ending structures of vagal subserosal mechanoreceptors in order to increase the sensitivity during antral peristalsis, and are activated by ATP from sympathetic nerve fibers and/or serosal ganglia for the regulation of mechanoreceptor function.
Collapse
Affiliation(s)
- Masato Hirakawa
- Department of Anatomy (Cell Biology), Iwate Medical University, Yahaba, Japan
| | - Takuya Yokoyama
- Department of Anatomy (Cell Biology), Iwate Medical University, Yahaba, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Tomoyuki Saino
- Department of Anatomy (Cell Biology), Iwate Medical University, Yahaba, Japan
| |
Collapse
|
4
|
Atsumi K, Yajima T, Tachiya D, Kokubun S, Shoji N, Sasano T, Ichikawa H, Sato T. Sensory neurons in the human jugular ganglion. Tissue Cell 2020; 64:101344. [PMID: 32473709 DOI: 10.1016/j.tice.2020.101344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022]
Abstract
The jugular ganglion (JG) contains sensory neurons of the vagus nerve which innervate somatic and visceral structures in cranial and cervical regions. In this study, the number of sensory neurons in the human JG was investigated. And, the morphology of sensory neurons in the human JG and nodose ganglion (NG) was compared. The estimated number of JG neurons was 2721.8-9301.1 (average number of sensory neurons ± S.D. = 7975.1 ± 3312.8). There was no significant difference in sizes of the neuronal cell body and nucleus within the JG (cell body, 1128.8 ± 99.7 μ m2; nucleus, 127.7 ± 20.8 μ m2) and NG (cell body, 963.8 ± 225.7 μ m2; nucleus, 123.2 ± 32.3 μ m2). These findings indicate that most of sensory neurons show the similar morphology in the JG and NG. Our immunohistochemical method also demonstrated the distribution of ion channels, neurotransmitter agents and calcium-binding proteins in the human JG. Numerous JG neurons were immunoreactive for transient receptor potential cation channel subfamily V member 1 (TRPV1, mean ± SD = 19.9 ± 11.5 %) and calcitonin gene-related peptide (CGRP, 28.4 ± 6.7 %). A moderate number of JG neurons contained TRPV2 (12.0 ± 4.7 %), substance P (SP, 15.7 ± 6.9 %) and secreted protein, acidic and rich in cysteine-like 1 (SPARCL1, 14.6 ± 7.4 %). A few JG neurons had vesicular glutamate transporter 2 (VGLUT2, 5.6 ± 2.9 %) and parvalbumin (PV, 2.3 ± 1.4 %). SP- and TRPV2-containing JG neurons had mainly small and medium-sized cell bodies, respectively. TRPV1- and VGLUT2- containing JG neurons were small to medium-sized. CGRP- and SPARCL1-containing JG neurons were of various cell body sizes. Sensory neurons in the human JG were mostly free of vasoactive intestinal polypeptide (VIP), tyrosine hydroxylase (TH) and neuropeptide Y (NPY). In the external auditory canal skin, subepithelial nerve fibers contained TRPV1, TRPV2, SP, CGRP and VGLUT2. Perivascular nerve fibers also had TRPV1, TRPV2, SP, CGRP, VIP, NPY and TH. However, PV- and SPARCL1-containing nerve endings could not be seen in the external auditory canal. It is likely that sensory neurons in the human JG can transduce nociceptive and mechanoreceptive information from the external auditory canal. Theses neurons may be also associated with neurogenic inflammation in the external auditory canal and ear-cough reflex through the vagus nerve.
Collapse
Affiliation(s)
- Keiichiro Atsumi
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Takehiro Yajima
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Daisuke Tachiya
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Souichi Kokubun
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Noriaki Shoji
- Division of Oral Diagnosis, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Takashi Sasano
- Division of Oral Diagnosis, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Hiroyuki Ichikawa
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Tadasu Sato
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan.
| |
Collapse
|
5
|
Yokoyama T, Settai K, Nakamuta N, Yamamoto Y. Vesicular glutamate transporter 2-immunoreactive afferent nerve terminals in rat carotid sinus baroreceptors. Acta Histochem 2020; 122:151469. [PMID: 31784233 DOI: 10.1016/j.acthis.2019.151469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/24/2019] [Accepted: 11/14/2019] [Indexed: 11/17/2022]
Abstract
Sensory nerve endings respond to various stimuli and subsequently transmit afferent informations to central nervous system, but their responsibility has been suggested to be modulated by glutamate. In the present study, we examined the immunohistochemical localization of vesicular glutamate transporter 1 (vGLUT1) and vGLUT2 in baroreceptor nerve endings immunoreactive for P2X2 and P2X3 purinoceptors in the rat carotid sinus by immunohistochemistry of whole-mount preparations with confocal scanning laser microscopy. P2X3-immunoreactive flat leaf-like axon terminals were immunoreactive to vGLUT2, but not to vGLUT1. Among members of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex, immunoreactivities for synaptosomal-associated protein, 25 kDa, Syntaxin1, and vesicle-associated membrane protein 2 (VAMP2) were localized in P2X2- and P2X3-immunoreactive axon terminals. Punctate immunoreactive products for VAMP2 and vGLUT2 were co-localized in axon terminals. These results suggest that vGLUT2 is localized in P2X3-immunoreactive baroreceptor terminals in the carotid sinus, and these terminals may release glutamate by exocytosis in order to modulate baroreceptor function in the carotid sinus.
Collapse
Affiliation(s)
- Takuya Yokoyama
- Department of Anatomy (Cell Biology), Iwate Medical University, Yahaba, Japan
| | - Kazuya Settai
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan.
| |
Collapse
|
6
|
Zhang FX, Ge SN, Dong YL, Shi J, Feng YP, Li Y, Li YQ, Li JL. Vesicular glutamate transporter isoforms: The essential players in the somatosensory systems. Prog Neurobiol 2018; 171:72-89. [PMID: 30273635 DOI: 10.1016/j.pneurobio.2018.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/28/2018] [Accepted: 09/23/2018] [Indexed: 02/08/2023]
Abstract
In nervous system, glutamate transmission is crucial for centripetal conveyance and cortical perception of sensory signals of different modalities, which necessitates vesicular glutamate transporters 1-3 (VGLUT 1-3), the three homologous membrane-bound protein isoforms, to load glutamate into the presysnaptic vesicles. These VGLUTs, especially VGLUT1 and VGLUT2, selectively label and define functionally distinct neuronal subpopulations at each relay level of the neural hierarchies comprising spinal and trigeminal sensory systems. In this review, by scrutinizing each structure of the organism's fundamental hierarchies including dorsal root/trigeminal ganglia, spinal dorsal horn/trigeminal sensory nuclear complex, somatosensory thalamic nuclei and primary somatosensory cortex, we summarize and characterize in detail within each relay the neuronal clusters expressing distinct VGLUT protein/transcript isoforms, with respect to their regional distribution features (complementary distribution in some structures), axonal terminations/peripheral innervations and physiological functions. Equally important, the distribution pattern and characteristics of VGLUT1/VGLUT2 axon terminals within these structures are also epitomized. Finally, the correlation of a particular VGLUT isoform and its physiological role, disclosed thus far largely via studying the peripheral receptors, is generalized by referring to reports on global and conditioned VGLUT-knockout mice. Also, researches on VGLUTs relating to future direction are tentatively proposed, such as unveiling the elusive differences between distinct VGLUTs in mechanism and/or pharmacokinetics at ionic/molecular level, and developing VGLUT-based pain killers.
Collapse
Affiliation(s)
- Fu-Xing Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Shun-Nan Ge
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China; Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China
| | - Yu-Lin Dong
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Juan Shi
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Yu-Peng Feng
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Yang Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China
| | - Yun-Qing Li
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, PR China.
| | - Jin-Lian Li
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
7
|
Fernández-Montoya J, Avendaño C, Negredo P. The Glutamatergic System in Primary Somatosensory Neurons and Its Involvement in Sensory Input-Dependent Plasticity. Int J Mol Sci 2017; 19:ijms19010069. [PMID: 29280965 PMCID: PMC5796019 DOI: 10.3390/ijms19010069] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 01/25/2023] Open
Abstract
Glutamate is the most common neurotransmitter in both the central and the peripheral nervous system. Glutamate is present in all types of neurons in sensory ganglia, and is released not only from their peripheral and central axon terminals but also from their cell bodies. Consistently, these neurons express ionotropic and metabotropic receptors, as well as other molecules involved in the synthesis, transport and release of the neurotransmitter. Primary sensory neurons are the first neurons in the sensory channels, which receive information from the periphery, and are thus key players in the sensory transduction and in the transmission of this information to higher centers in the pathway. These neurons are tightly enclosed by satellite glial cells, which also express several ionotropic and metabotropic glutamate receptors, and display increases in intracellular calcium accompanying the release of glutamate. One of the main interests in our group has been the study of the implication of the peripheral nervous system in sensory-dependent plasticity. Recently, we have provided novel evidence in favor of morphological changes in first- and second-order neurons of the trigeminal system after sustained alterations of the sensory input. Moreover, these anatomical changes are paralleled by several molecular changes, among which those related to glutamatergic neurotransmission are particularly relevant. In this review, we will describe the state of the art of the glutamatergic system in sensory ganglia and its involvement in input-dependent plasticity, a fundamental ground for advancing our knowledge of the neural mechanisms of learning and adaptation, reaction to injury, and chronic pain.
Collapse
Affiliation(s)
- Julia Fernández-Montoya
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, 28029 Madrid, Spain.
| | - Carlos Avendaño
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, 28029 Madrid, Spain.
| | - Pilar Negredo
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, 28029 Madrid, Spain.
| |
Collapse
|
8
|
Piancino MG, Isola G, Cannavale R, Cutroneo G, Vermiglio G, Bracco P, Anastasi GP. From periodontal mechanoreceptors to chewing motor control: A systematic review. Arch Oral Biol 2017; 78:109-121. [PMID: 28226300 DOI: 10.1016/j.archoralbio.2017.02.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 01/29/2017] [Accepted: 02/07/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE This critical review summarizes the current knowledge of the structural and functional characteristics of periodontal mechanoreceptors, and understands their role in the signal pathways and functional motor control. METHOD A systematic review of the literature was conducted. Original articles were searched through Pubmed, Cochrane Central database and Embase until january 2016. RESULT 1466 articles were identified through database searching and screened by reviewing the abstracts. 160 full-text were assessed for eligibility, and after 109 exclusion, 51 articles were included in the review process. Studies selected by the review process were mainly divided in studies on animal and studies on humans. Morphological, histological, molecular and electrophysiological studies investigating the periodontal mechanoreceptors in animals and in humans were included, evaluated and described. CONCLUSION Our knowledge of the periodontal mechanoreceptors, let us conclude that they are very refined neural receptors, deeply involved in the activation and coordination of the masticatory muscles during function. Strictly linked to the rigid structure of the teeth, they determine all the functional physiological and pathological processes of the stomatognathic system. The knowledge of their complex features is fundamental for all dental professionists. Further investigations are of utmost importance for guiding the technological advances in the respect of the neural control in the dental field.
Collapse
Affiliation(s)
- Maria Grazia Piancino
- Department of Orthodontics and Gnathology-Masticatory Function, Turin University, Italy.
| | - Gaetano Isola
- Department of Orthodontics and Gnathology-Masticatory Function, Turin University, Italy
| | - Rosangela Cannavale
- Department of Orthodontics and Gnathology-Masticatory Function, Turin University, Italy
| | - Giuseppina Cutroneo
- Department of Biomedical Sciences and Morphological and Functional Images, Messina University, Italy
| | - Giovanna Vermiglio
- Department of Biomedical Sciences and Morphological and Functional Images, Messina University, Italy
| | - Pietro Bracco
- Department of Orthodontics and Gnathology-Masticatory Function, Turin University, Italy
| | - Giuseppe Pio Anastasi
- Department of Biomedical Sciences and Morphological and Functional Images, Messina University, Italy
| |
Collapse
|
9
|
Yokoyama T, Nakamuta N, Kusakabe T, Yamamoto Y. Vesicular glutamate transporter 2-immunoreactive afferent nerve terminals in the carotid body of the rat. Cell Tissue Res 2014; 358:271-5. [DOI: 10.1007/s00441-014-1921-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/15/2014] [Indexed: 01/24/2023]
|
10
|
Zerari-Mailly F, Braud A, Davido N, Touré B, Azérad J, Boucher Y. Glutamate control of pulpal blood flow in the incisor dental pulp of the rat. Eur J Oral Sci 2012; 120:402-7. [DOI: 10.1111/j.1600-0722.2012.00989.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2012] [Indexed: 01/02/2023]
Affiliation(s)
| | - Adeline Braud
- UFR d'Odontologie; Université Diderot; Paris; France
| | - Nicolas Davido
- Service d'Odontologie; Groupe Hospitalier Pitie Salpêtrière; Paris; France
| | - Babacar Touré
- Faculté de Médecine Pharmacie et d'Odontologie; Université Cheikh Anta Diop; Dakar; Sénégal
| | | | | |
Collapse
|