1
|
Jaleel Z, Aboueisha MA, Adcock K, Cvancara DJ, Martinez V, Kinney G, Perkel DJ, Bhatt NK. Recordings of Superior Laryngeal Nerve Sensory Nerve Action Potentials in a Rat Model. Laryngoscope 2024; 134:5028-5033. [PMID: 39132845 DOI: 10.1002/lary.31675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVE Superior laryngeal nerve (SLN) function is critical to laryngeal sensation. Sensory dysfunction in the larynx, mediated through the internal branch of the superior laryngeal nerve (iSLN), is thought to occur with aging and neurodegenerative disease. However, objective analysis of iSLN neurophysiology is difficult due to its anatomic location and small diameter. This study measures sensory nerve action potentials (SNAP) from the iSLN in a rat model. METHODS SNAP data were obtained from two adult rat strains (Sprague-Dawley, SD and Fischer 344 × Brown Norway F1 Hybrid rats, FBN). Evoked responses were obtained by stimulating the main trunk of the SLN and recording the response using a 160-μm cuff electrode placed around the iSLN. SNAP were averaged from 10 stimulations. Laryngeal adductor reflex (LAR) threshold measurements were obtained with stimulation of the iSLN and direct laryngoscopy. The sections of the iSLN were obtained for histologic analysis. RESULTS SLN-evoked responses were successfully obtained in 18 hemi-laryngeal preparations (SD n = 13 and FBN n = 5) with corresponding LAR threshold measurements. Mean(±SD) SNAP latency, total duration, amplitude, negative durations, and intensity were 2.28 ms (±0.56), 2.13 ms (±0.70), 879 μV (±535), and 0.69 mA (±0.25), respectively. SLN stimulation threshold to elicit an LAR was of 0.84 mA (±0.31). CONCLUSION It is feasible to record evoked SLN responses in two adult rat strains. This work may lead to a tractable animal model for objective measurements of SLN neurophysiology with various disease states. LEVEL OF EVIDENCE NA Laryngoscope, 134:5028-5033, 2024.
Collapse
Affiliation(s)
- Zaroug Jaleel
- Department of Otolaryngology - Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, U.S.A
| | - Mohamed A Aboueisha
- Department of Otolaryngology - Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, U.S.A
- Department of Otolaryngology - Head and Neck Surgery, Faculty of Medicine Suez Canal University, Ismailia, Egypt
| | - Kelson Adcock
- Department of Otolaryngology - Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, U.S.A
| | - David J Cvancara
- Department of Otolaryngology - Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, U.S.A
| | - Vicente Martinez
- Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, Washington, U.S.A
| | - Greg Kinney
- Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, Washington, U.S.A
| | - David J Perkel
- Department of Otolaryngology - Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, U.S.A
- Department of Biology, University of Washington, Seattle, Washington, U.S.A
| | - Neel K Bhatt
- Department of Otolaryngology - Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, U.S.A
| |
Collapse
|
2
|
Li X, Lin X, Xie X, Chen X, Xie Y, Sun G. Histological characterization of rat vocal fold across different postnatal periods. Laryngoscope Investig Otolaryngol 2024; 9:e70018. [PMID: 39346782 PMCID: PMC11437529 DOI: 10.1002/lio2.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/28/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024] Open
Abstract
Objective To evaluate the vocal fold histological characteristics during different postnatal periods in rats, especially older rats. Methods Sprague-Dawley rats aged 4 days, 4 and 12 weeks, and 12 and 24 months were used for the experiment. Five larynges were obtained for each age and cut into 5-μm consecutive sections. The expression of Ki-67 was assessed using immunohistochemistry to examine cell proliferation. Elastic van Gieson staining was used to detect the collagen and elastin concentrations. The cell type was determined using multicolor immunofluorescence. Results Ki-67 was not expressed in the macula flava (MF) of 12-week-, 12-month-, and 24-month-old adults. Collagen fibers in the lamina propria (LP) increased with age. The elastic fiber concentrations in the LP decreased significantly at 24 months (p < .01) but remained stable in the MF. All posterior MF cells showed strong glial fibrillary acidic protein and vimentin-positive reactions with weaker expressions of CD68 and α-smooth muscle actin (α-SMA). The myofibroblasts (α-SMA-positive) and macrophages (CD68-positive) in the LP of the 24-month-old rats were significantly the highest (p < .01). Conclusion The extracellular matrix in the LP increases with age, presenting as an increase in collagen with the loss of elastin, which may be due to myofibroblast proliferation. Moreover, the cellular properties or extracellular matrix components of the mature MF in rats are comparable to those in humans.
Collapse
Affiliation(s)
- Xumao Li
- Department of Otorhinolaryngology‐Head and Neck SurgeryHuashan Hospital, Fudan UniversityShanghaiChina
| | - Xinsheng Lin
- Department of Otorhinolaryngology‐Head and Neck SurgeryHuashan Hospital, Fudan UniversityShanghaiChina
| | - Xinqiao Xie
- Department of Otorhinolaryngology‐Head and Neck SurgeryHuashan Hospital, Fudan UniversityShanghaiChina
| | - Xiangyu Chen
- Department of Otorhinolaryngology‐Head and Neck SurgeryHuashan Hospital, Fudan UniversityShanghaiChina
| | - Yuhui Xie
- Department of Otorhinolaryngology‐Head and Neck SurgeryHuashan Hospital, Fudan UniversityShanghaiChina
| | - Guangbin Sun
- Department of Otorhinolaryngology‐Head and Neck SurgeryHuashan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
3
|
González-García M, Carrillo-Franco L, Morales-Luque C, Ponce-Velasco M, Gago B, Dawid-Milner MS, López-González MV. Uncovering the neural control of laryngeal activity and subglottic pressure in anaesthetized rats: insights from mesencephalic regions. Pflugers Arch 2024; 476:1235-1247. [PMID: 38856775 PMCID: PMC11271367 DOI: 10.1007/s00424-024-02976-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/15/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024]
Abstract
To assess the possible interactions between the dorsolateral periaqueductal gray matter (dlPAG) and the different domains of the nucleus ambiguus (nA), we have examined the pattern of double-staining c-Fos/FoxP2 protein immunoreactivity (c-Fos-ir/FoxP2-ir) and tyrosine hydroxylase (TH) throughout the rostrocaudal extent of nA in spontaneously breathing anaesthetised male Sprague-Dawley rats during dlPAG electrical stimulation. Activation of the dlPAG elicited a selective increase in c-Fos-ir with an ipsilateral predominance in the somatas of the loose (p < 0.05) and compact formation (p < 0.01) within the nA and confirmed the expression of FoxP2 bilaterally in all the domains within the nA. A second group of experiments was made to examine the importance of the dlPAG in modulating the laryngeal response evoked after electrical or chemical (glutamate) dlPAG stimulations. Both electrical and chemical stimulations evoked a significant decrease in laryngeal resistance (subglottal pressure) (p < 0.001) accompanied with an increase in respiratory rate together with a pressor and tachycardic response. The results of our study contribute to new data on the role of the mesencephalic neuronal circuits in the control mechanisms of subglottic pressure and laryngeal activity.
Collapse
Affiliation(s)
- M González-García
- Department of Human Physiology, Faculty of Medicine, University of Málaga, Málaga, Spain.
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, Málaga, Spain.
- IBIMA Plataforma BIONAND, Málaga, Spain.
| | - L Carrillo-Franco
- Department of Human Physiology, Faculty of Medicine, University of Málaga, Málaga, Spain
- IBIMA Plataforma BIONAND, Málaga, Spain
| | - C Morales-Luque
- Department of Human Physiology, Faculty of Medicine, University of Málaga, Málaga, Spain
| | - M Ponce-Velasco
- IBIMA Plataforma BIONAND, Málaga, Spain
- Department of Cell Biology, University of Málaga, Málaga, Spain
| | - B Gago
- Department of Human Physiology, Faculty of Medicine, University of Málaga, Málaga, Spain
- IBIMA Plataforma BIONAND, Málaga, Spain
| | - M S Dawid-Milner
- Department of Human Physiology, Faculty of Medicine, University of Málaga, Málaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, Málaga, Spain
- IBIMA Plataforma BIONAND, Málaga, Spain
| | - M V López-González
- Department of Human Physiology, Faculty of Medicine, University of Málaga, Málaga, Spain.
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, Málaga, Spain.
- IBIMA Plataforma BIONAND, Málaga, Spain.
| |
Collapse
|
4
|
Fogarty MJ. Dendritic morphology of motor neurons and interneurons within the compact, semicompact, and loose formations of the rat nucleus ambiguus. Front Cell Neurosci 2024; 18:1409974. [PMID: 38933178 PMCID: PMC11199410 DOI: 10.3389/fncel.2024.1409974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction Motor neurons (MNs) within the nucleus ambiguus innervate the skeletal muscles of the larynx, pharynx, and oesophagus. These muscles are activated during vocalisation and swallowing and must be coordinated with several respiratory and other behaviours. Despite many studies evaluating the projections and orientation of MNs within the nucleus ambiguus, there is no quantitative information regarding the dendritic arbours of MNs residing in the compact, and semicompact/loose formations of the nucleus ambiguus.. Methods In female and male Fischer 344 rats, we evaluated MN number using Nissl staining, and MN and non-MN dendritic morphology using Golgi-Cox impregnation Brightfield imaging of transverse Nissl sections (15 μm) were taken to stereologically assess the number of nucleus ambiguus MNs within the compact and semicompact/loose formations. Pseudo-confocal imaging of Golgi-impregnated neurons within the nucleus ambiguus (sectioned transversely at 180 μm) was traced in 3D to determine dendritic arbourisation. Results We found a greater abundance of MNs within the compact than the semicompact/loose formations. Dendritic lengths, complexity, and convex hull surface areas were greatest in MNs of the semicompact/loose formation, with compact formation MNs being smaller. MNs from both regions were larger than non-MNs reconstructed within the nucleus ambiguus. Conclusion Adding HBLS to the diet could be a potentially effective strategy to improve horses' health.
Collapse
Affiliation(s)
- Matthew J. Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
5
|
Cvancara DJ, de Leon JA, Baertsch HC, Jaleel Z, Kinney G, Martinez V, Bhatt NK. Neurophysiology of the Superior Laryngeal Nerve in an In Vivo Rat Model. Laryngoscope 2024; 134:1778-1784. [PMID: 37787452 DOI: 10.1002/lary.31087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
OBJECTIVE The superior laryngeal nerve (SLN) is fundamental in laryngeal sensation, cough reflex, and pitch control. SLN injury has substantial consequences including altered sensation, aspiration, and dysphonia. To date, in vivo measurement of the SLN remains elusive. The purpose of this study was to assess the feasibility of recording motor and sensory evoked potentials in a rat SLN model. METHODS Twenty-two rat hemi-laryngeal preparations (n = 11) were obtained from 4-month-old Sprague-Dawley rats and included in this study. Compound motor action potentials (CMAPs) and motor unit number estimation (MUNE) were calculated by stimulating the SLN at the point of medial extension near the carotid artery and by placing a recording electrode on the cricothyroid muscle. Sensory response was determined through stimulation of the SLN and laryngoscopic visualization of a laryngeal adductor reflex (LAR). SLN and cricothyroid muscle cross-sections were stained and histologic morphometrics were quantified. RESULTS Laryngeal evoked potentials were successfully obtained in all trials. Mean CMAP latency and negative durations were 0.99 ± 0.57 ms and 1.49 ± 0.57 ms, respectively. The median MUNE was 2.06 (IQR 1.88, 3.51). LAR was induced with a mean intensity of 0.69 ± 0.20 mV. Mean axon count, myelin thickness, and g-ratio were 681 ± 192.2, 1.72 ± 0.26, and 0.45 ± 0.04, respectively. CONCLUSIONS This study demonstrates the feasibility of recording evoked response potentials following SLN stimulation. We hypothesize that this work will provide a tractable animal model to study changes in laryngeal sensation and cricothyroid motor function with aging, neurodegenerative disease, aspiration, or nerve injury. LEVEL OF EVIDENCE NA Laryngoscope, 134:1778-1784, 2024.
Collapse
Affiliation(s)
- David J Cvancara
- Department of Otolaryngology - Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA, U.S.A
| | - Julio A de Leon
- Department of Otolaryngology - Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA, U.S.A
| | - Hans C Baertsch
- Keck School of Medicine, University of Southern California, Los Angeles, California, U.S.A
| | - Zaroug Jaleel
- Department of Otolaryngology - Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA, U.S.A
| | - Greg Kinney
- Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, WA, U.S.A
| | - Vicente Martinez
- Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, WA, U.S.A
| | - Neel K Bhatt
- Department of Otolaryngology - Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA, U.S.A
| |
Collapse
|
6
|
González-García M, Carrillo-Franco L, Morales-Luque C, Dawid-Milner MS, López-González MV. Central Autonomic Mechanisms Involved in the Control of Laryngeal Activity and Vocalization. BIOLOGY 2024; 13:118. [PMID: 38392336 PMCID: PMC10886357 DOI: 10.3390/biology13020118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
In humans, speech is a complex process that requires the coordinated involvement of various components of the phonatory system, which are monitored by the central nervous system. The larynx in particular plays a crucial role, as it enables the vocal folds to meet and converts the exhaled air from our lungs into audible sounds. Voice production requires precise and sustained exhalation, which generates an air pressure/flow that creates the pressure in the glottis required for voice production. Voluntary vocal production begins in the laryngeal motor cortex (LMC), a structure found in all mammals, although the specific location in the cortex varies in humans. The LMC interfaces with various structures of the central autonomic network associated with cardiorespiratory regulation to allow the perfect coordination between breathing and vocalization. The main subcortical structure involved in this relationship is the mesencephalic periaqueductal grey matter (PAG). The PAG is the perfect link to the autonomic pontomedullary structures such as the parabrachial complex (PBc), the Kölliker-Fuse nucleus (KF), the nucleus tractus solitarius (NTS), and the nucleus retroambiguus (nRA), which modulate cardiovascular autonomic function activity in the vasomotor centers and respiratory activity at the level of the generators of the laryngeal-respiratory motor patterns that are essential for vocalization. These cores of autonomic structures are not only involved in the generation and modulation of cardiorespiratory responses to various stressors but also help to shape the cardiorespiratory motor patterns that are important for vocal production. Clinical studies show increased activity in the central circuits responsible for vocalization in certain speech disorders, such as spasmodic dysphonia because of laryngeal dystonia.
Collapse
Affiliation(s)
- Marta González-García
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA Plataforma BIONAND), 29010 Málaga, Spain
| | - Laura Carrillo-Franco
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA Plataforma BIONAND), 29010 Málaga, Spain
| | - Carmen Morales-Luque
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
| | - Marc Stefan Dawid-Milner
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA Plataforma BIONAND), 29010 Málaga, Spain
| | - Manuel Víctor López-González
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA Plataforma BIONAND), 29010 Málaga, Spain
| |
Collapse
|
7
|
Honzel E, Hernandez-Morato I, Joshi A, Pennington-Fitzgerald W, Moayedi Y, Pitman MJ. Temporal Expression of Hox Genes and Phox2b in the Rat Nucleus Ambiguus During Development: Implications on Laryngeal Innervation. Laryngoscope 2023; 133:3462-3471. [PMID: 37350386 PMCID: PMC10907063 DOI: 10.1002/lary.30826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
OBJECTIVES Recurrent laryngeal nerve (RLN) injury results in synkinetic reinnervation and vocal fold paralysis. Investigation of cues expressed in the developing brainstem that influence correct selective targeting of intrinsic laryngeal muscles may elucidate post-injury abnormalities contributing to non-functional reinnervation. Primary targets of interest were Hoxb1 and Hoxb2, members of the Hox family that create overlapping gradients in the developing brain, and their target Phox2b, a transcription factor necessary for cranial nerve branchio- and visceromotoneuron survival. METHODS Rat embryos at developmental days E14, E16, E18, and E20 (4 animals/age) were sectioned for RNA in situ hybridization to detect Hoxb1, Hoxb2, and Phox2b mRNA within the brainstem. Slides were costained with Islet1 antibody for identification of the nucleus ambiguus. Results were confirmed using immunohistochemistry. Sections were imaged on a confocal microscope. RNA and protein expressions were quantified using QuPath. Statistical analyses were performed using R. RESULTS Hoxb1, Hoxb2, and Phox2b expressions varied according to embryologic age. Hoxb1 and Hoxb2 expression peaked at E16, with significant decreases at E18 and E20 (one-way ANOVA p = 0.001 for both). Phox2b expression was highest at E14 and trended downward with increased embryologic age (one-way ANOVA p = 0.005). CONCLUSION Peak expression of Hoxb1 and Hoxb2 is observed at time points when the RLN arrives at the larynx and begins to branch toward individual muscles, positioning these gene products to be involved in cueing laryngeal motoneuron identity and target identification. Higher expression of Phox2b earlier in development suggests a role in laryngeal motoneuron formation. LEVEL OF EVIDENCE NA Laryngoscope, 133:3462-3471, 2023.
Collapse
Affiliation(s)
- Emily Honzel
- Department of Otolaryngology-Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, New York, U.S.A
| | - Ignacio Hernandez-Morato
- Department of Otolaryngology-Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, New York, U.S.A
| | - Abhinav Joshi
- Department of Otolaryngology-Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, New York, U.S.A
| | - William Pennington-Fitzgerald
- Department of Otolaryngology-Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, New York, U.S.A
| | - Yalda Moayedi
- Department of Otolaryngology-Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, New York, U.S.A
- Department of Neurology, Columbia University, New York, New York, U.S.A
| | - Michael J Pitman
- Department of Otolaryngology-Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, New York, U.S.A
- Department of Neurology, Columbia University, New York, New York, U.S.A
| |
Collapse
|
8
|
Blount Q, Hernandez-Morato I, Moayedi Y, Pitman MJ. Expression of Glial Cell-Derived Neurotrophic Factor Receptors Within Nucleus Ambiguus During Rat Development. Laryngoscope 2023; 133:2240-2247. [PMID: 36271908 PMCID: PMC10121972 DOI: 10.1002/lary.30440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/08/2022] [Accepted: 09/18/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The nucleus ambiguus (NAmb) is a column of neurons in the medulla oblongata, involved in bulbar functions. Expression of Glial Cell-Derived Neurotrophic Factor (GDNF) and its receptors (GDNFR) is observed within the cell bodies during reinnervation following recurrent laryngeal nerve (RLN) injury. Little is known regarding GDNFR expression in the formation of the NAmb and the laryngeal innervation during embryogenesis. Understanding the timing and pattern of GDNFR expression in embryogenesis versus after RLN injury may provide insights into therapeutic targets for regeneration after RLN injury. STUDY DESIGN Laboratory experiment. METHODS Rat brainstems at E14.5/E16.5/E18.5/E20.5/adult were stained for GDNFR: GFRα-1/GFRα-2/GFRα-3/Ret. Islet1 and choline acetyltransferase were used as cell body markers. Sections were observed using fluorescent microscopy and quantified through manual cell counting. RESULTS Expression of GFRα-1, GFRα-3, and Ret was identified within the NAmb, hypoglossal, and facial nuclei of the adult medulla. During development, GFRα-1 immunoreactivity was seen at E20.5. GFRα-2 expression was not observed at any timepoint. GFRα-3 expression began at E16.5. Ret expression within nerve fibers in the NAmb were observed beginning at E14.5, but never in the cell bodies. CONCLUSION Embryonic GDNFR expression in the NAmb differs from that of the adult after RLN injury. The developing brainstem experienced upregulation at discrete timepoints with signaling sustained through adulthood. In contrast, adult RLN-transected rats experienced patterns of up and down regulation. GFRα-1 may contribute to muscle targeting and neuromuscular junction maturation, GFRα-3 may contribute to both, as well as axon guidance. It is likely that GDNF is functioning via a Ret-independent pathway. LEVEL OF EVIDENCE NA Laryngoscope, 133:2240-2247, 2023.
Collapse
Affiliation(s)
- Quinton Blount
- Mercer University School of Medicine, Columbus, USA
- Department of Otolaryngology-Head and Neck Surgery, Columbia University College of Physicians and Surgeons, New York, U.S.A
| | - Ignacio Hernandez-Morato
- Department of Otolaryngology-Head and Neck Surgery, Columbia University College of Physicians and Surgeons, New York, U.S.A
| | - Yalda Moayedi
- Department of Otolaryngology-Head and Neck Surgery, Columbia University College of Physicians and Surgeons, New York, U.S.A
- Department of Neurology, Columbia University, New York, U.S.A
| | - Michael J Pitman
- Department of Otolaryngology-Head and Neck Surgery, Columbia University College of Physicians and Surgeons, New York, U.S.A
- Principal Investigator
| |
Collapse
|
9
|
Hernández-Morato I, Yu VX, Pitman MJ. A review of the peripheral proprioceptive apparatus in the larynx. Front Neuroanat 2023; 17:1114817. [PMID: 36910514 PMCID: PMC9998684 DOI: 10.3389/fnana.2023.1114817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/19/2023] [Indexed: 03/14/2023] Open
Abstract
The larynx is an organ of the upper airway that participates in breathing, glutition, voice production, and airway protection. These complex functions depend on vocal fold (VF) movement, facilitated in turn by the action of the intrinsic laryngeal muscles (ILM). The necessary precise and near-instantaneous modulation of each ILM contraction relies on proprioceptive innervation of the larynx. Dysfunctional laryngeal proprioception likely contributes to disorders such as laryngeal dystonia, dysphagia, vocal fold paresis, and paralysis. While the proprioceptive system in skeletal muscle derived from somites is well described, the proprioceptive circuitry that governs head and neck structures such as VF has not been so well characterized. For over two centuries, researchers have investigated the question of whether canonical proprioceptive organs, muscle spindles, and Golgi tendon organs, exist in the ILM, with variable findings. The present work is a state-of-the-art review of the peripheral component of laryngeal proprioception, including current knowledge of canonical and possible alternative proprioceptive circuitry elements in the larynx.
Collapse
Affiliation(s)
- Ignacio Hernández-Morato
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Irving Medical Center, New York, NY, United States
| | - Victoria X Yu
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Irving Medical Center, New York, NY, United States
| | - Michael J Pitman
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
10
|
Wei XP, Collie M, Dempsey B, Fortin G, Yackle K. A novel reticular node in the brainstem synchronizes neonatal mouse crying with breathing. Neuron 2022; 110:644-657.e6. [PMID: 34998469 PMCID: PMC8857054 DOI: 10.1016/j.neuron.2021.12.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/14/2021] [Accepted: 12/08/2021] [Indexed: 12/30/2022]
Abstract
Human speech can be divided into short, rhythmically timed elements, similar to syllables within words. Even our cries and laughs, as well as the vocalizations of other species, are periodic. However, the cellular and molecular mechanisms underlying the tempo of mammalian vocalizations remain unknown. Furthermore, even the core cells that produce vocalizations remain ill-defined. Here, we describe rhythmically timed neonatal mouse vocalizations that occur within single breaths and identify a brainstem node that is necessary for and sufficient to structure these cries, which we name the intermediate reticular oscillator (iRO). We show that the iRO acts autonomously and sends direct inputs to key muscles and the respiratory rhythm generator in order to coordinate neonatal vocalizations with breathing, as well as paces and patterns these cries. These results reveal that a novel mammalian brainstem oscillator embedded within the conserved breathing circuitry plays a central role in the production of neonatal vocalizations.
Collapse
Affiliation(s)
- Xin Paul Wei
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew Collie
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bowen Dempsey
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Gilles Fortin
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Kevin Yackle
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
11
|
Tagliapietra M, Frasson E, Cardellini D, Mariotto S, Ferrari S, Zanusso G, Plebani M, Monaco S. Hypothalamic-Bulbar MRI Hyperintensity in Anti-IgLON5 Disease with Serum-Restricted Antibodies: A Case Report and Systematic Review of Literature. J Alzheimers Dis 2021; 79:683-691. [PMID: 33337376 DOI: 10.3233/jad-201105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Anti-IgLON5 disease is a rare neurodegenerative tauopathy that displays heterogeneity in clinical spectrum, disease course, cerebrospinal fluid (CSF) findings, and variable response to immunotherapy. Sleep disorders, bulbar dysfunction, and gait abnormalities are common presenting symptoms, and conventional brain MRI scanning is often unrevealing. OBJECTIVE To provide a comprehensive overview of the literature and to assess the frequency of symptoms, MRI findings, and treatment response in patients with IgLON5 autoimmunity in the serum and CSF or restricted to serum. METHODS We examined a 65-year-old woman with bulbar-onset IgLON5 disease with serum-restricted antibodies, and we also performed a systematic review of all confirmed cases reported in the English literature. RESULTS We identified 93 patients, included our case. Clinical data were obtained in 58 subjects, in whom the most frequent symptoms were sleep-disordered breathing, dysphagia, parasomnias, dysarthria, limb or gait ataxia, stridor or vocal cord paresis, movement disorders, and postural instability. Distinct MRI alterations were identified in 12.5% of cases, as opposed to unspecific or unremarkable changes in the remaining patients. T2-hyperintense non-enhancing signal alterations involving the hypothalamus and the brainstem tegmentum were observed only in the present case. Inflammatory CSF was found in half of the cases and serum-restricted antibodies in 4 patients. Treatment with immunosuppressant or immunomodulatory drugs led to sustained clinical response in 19/52 patients. CONCLUSION Anti-IgLON5 autoimmunity should be considered in patients with sleep disorders, bulbar syndrome, autonomic involvement, and movement disorders, and high-field brain MRI can be of diagnostic help.
Collapse
Affiliation(s)
- Matteo Tagliapietra
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Emma Frasson
- Neurology Ward, Ospedale di Cittadella, Cittadella, Italy
| | - Davide Cardellini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Sara Mariotto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Sergio Ferrari
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Gianluigi Zanusso
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Salvatore Monaco
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
12
|
Belyk M, Lee YS, Brown S. How does human motor cortex regulate vocal pitch in singers? ROYAL SOCIETY OPEN SCIENCE 2018; 5:172208. [PMID: 30224990 PMCID: PMC6124115 DOI: 10.1098/rsos.172208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Vocal pitch is used as an important communicative device by humans, as found in the melodic dimension of both speech and song. Vocal pitch is determined by the degree of tension in the vocal folds of the larynx, which itself is influenced by complex and nonlinear interactions among the laryngeal muscles. The relationship between these muscles and vocal pitch has been described by a mathematical model in the form of a set of 'control rules'. We searched for the biological implementation of these control rules in the larynx motor cortex of the human brain. We scanned choral singers with functional magnetic resonance imaging as they produced discrete pitches at four different levels across their vocal range. While the locations of the larynx motor activations varied across singers, the activation peaks for the four pitch levels were highly consistent within each individual singer. This result was corroborated using multi-voxel pattern analysis, which demonstrated an absence of patterned activations differentiating any pairing of pitch levels. The complex and nonlinear relationships between the multiple laryngeal muscles that control vocal pitch may obscure the neural encoding of vocal pitch in the brain.
Collapse
Affiliation(s)
- Michel Belyk
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Yune S. Lee
- Department of Speech and Hearing Sciences and Center for Brain Injury, The Ohio State University, Columbus, OH, USA
| | - Steven Brown
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
Park JH, Ahn JH, Choi SY, Cho JH, Lee TK, Kim IH, Lee JC, Choi JH, Hwang IK, Lee YJ, Lee E, Park S, Lim J, Seo K, Won MH. The location of projection neurons to the biceps brachii muscle in the telencephalon of the pigeon. Anat Histol Embryol 2017; 46:528-532. [DOI: 10.1111/ahe.12297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 08/06/2017] [Indexed: 01/16/2023]
Affiliation(s)
- J. H. Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology; Hallym University; Chuncheon South Korea
| | - J. H. Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology; Hallym University; Chuncheon South Korea
| | - S. Y. Choi
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology; Hallym University; Chuncheon South Korea
| | - J. H. Cho
- Department of Neurobiology; School of Medicine; Kangwon National University; Chuncheon South Korea
| | - T.-K. Lee
- Department of Neurobiology; School of Medicine; Kangwon National University; Chuncheon South Korea
| | - I. H. Kim
- Department of Neurobiology; School of Medicine; Kangwon National University; Chuncheon South Korea
| | - J.-C. Lee
- Department of Neurobiology; School of Medicine; Kangwon National University; Chuncheon South Korea
| | - J. H. Choi
- Department of Anatomy; College of Veterinary Medicine; Kangwon National University; Chuncheon South Korea
| | - I. K. Hwang
- Department of Anatomy and Cell Biology; College of Veterinary Medicine, and Research Institute for Veterinary Science; Seoul National University; Seoul South Korea
| | - Y. J. Lee
- Department of Emergency Medicine; Seoul Hospital; College of Medicine; Sooncheonhyang University; Seoul South Korea
| | - E. Lee
- Department of Veterinary Clinical Sciences; College of Veterinary Medicine and Research Institute for Veterinary Science; Seoul National University; Seoul South Korea
| | - S. Park
- Department of Veterinary Clinical Sciences; College of Veterinary Medicine and Research Institute for Veterinary Science; Seoul National University; Seoul South Korea
| | - J. Lim
- Department of Veterinary Clinical Sciences; College of Veterinary Medicine and Research Institute for Veterinary Science; Seoul National University; Seoul South Korea
| | - K. Seo
- Department of Veterinary Clinical Sciences; College of Veterinary Medicine and Research Institute for Veterinary Science; Seoul National University; Seoul South Korea
| | - M.-H. Won
- Department of Veterinary Clinical Sciences; College of Veterinary Medicine and Research Institute for Veterinary Science; Seoul National University; Seoul South Korea
| |
Collapse
|
14
|
Hernandez-Morato I, Koss S, Sharma S, Pitman MJ. Influence of Netrin-1 on reinnervation of laryngeal muscles following recurrent laryngeal nerve injury. Neurosci Lett 2017; 653:244-249. [DOI: 10.1016/j.neulet.2017.05.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/16/2017] [Accepted: 05/16/2017] [Indexed: 10/19/2022]
|
15
|
Hernandez-Morato I, Pitman MJ, Sharma S. Muscle specific nucleus ambiguus neurons isolation and culturing. J Neurosci Methods 2016; 273:33-39. [PMID: 27475929 DOI: 10.1016/j.jneumeth.2016.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/14/2016] [Accepted: 07/21/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Peripheral nerve injury leads to a regenerative state. However, the reinnervation process is highly non-selective. Growing axons are often misrouted and establish aberrant synapsis to abductor or adductor muscles. Determining the complex properties of abductor and adductor motoneurons in a neuron culture, may lay the groundwork for future studies on axon guidance, leading to a clinical treatment for a selective reinnervation. NEW METHOD In the present study we develop a neuron culture protocol to isolate recurrent laryngeal nerve abductor and adductor motoneurons in order to study their unique properties. Comparison with existing methods the best period to perform the present protocol for postnatal rat cranial motoneurons isolation was determined. In addition, the method allows identification of specific motoneurons from other primary motoneurons and interneurons within brainstem. CONCLUSION The present protocol will allow investigators to perform targeted and novel studies of the mechanisms of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Ignacio Hernandez-Morato
- Department of Cell Biology and Anatomy, New York Medical College, Basic Sciences Building, 15 Dana Road, Valhalla, New York 10595, United States; Department of Otolaryngology-Head and Neck Surgery, Columbia University, Medical Center, 630 West, 168th Street, New York, NY 10032, United States.
| | - Michael J Pitman
- Department of Otolaryngology-Head and Neck Surgery, Columbia University, Medical Center, 630 West, 168th Street, New York, NY 10032, United States; Department of Otolaryngology, New York Eye and Ear Infirmary of Mount Sinai, 310E, 14th Street, 6th Floor, New York Eye and Ear Infirmary, New York, NY 10003, United States
| | - Sansar Sharma
- Department of Cell Biology and Anatomy, New York Medical College, Basic Sciences Building, 15 Dana Road, Valhalla, New York 10595, United States
| |
Collapse
|
16
|
Moraes DJA, Machado BH. Electrophysiological properties of laryngeal motoneurones in rats submitted to chronic intermittent hypoxia. J Physiol 2015; 593:619-34. [PMID: 25433075 DOI: 10.1113/jphysiol.2014.283085] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 11/17/2014] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS The respiratory control of the glottis by laryngeal motoneurones is characterized by inspiratory abduction and post-inspiratory adduction causing decreases and increases in upper airway resistance, respectively. Chronic intermittent hypoxia (CIH), an important component of obstructive sleep apnoea, exaggerated glottal abduction (before inspiration), associated with active expiration and decreased glottal adduction during post-inspiration. CIH increased the inspiratory and decreased the post-inspiratory laryngeal motoneurone activities, which is not associated to changes in their intrinsic electrophysiological properties. We conclude that the changes in the respiratory network after CIH seem to be an adaptive process required for an appropriated pulmonary ventilation and control of upper airway resistance under intermittent episodes of hypoxia. ABSTRACT To keep an appropriate airflow to and from the lungs under physiological conditions a precise neural co-ordination of the upper airway resistance by laryngeal motoneurones in the nucleus ambiguus is essential. Chronic intermittent hypoxia (CIH), an important component of obstructive sleep apnoea, may alter these fine mechanisms. Here, using nerve and whole cell patch clamp recordings in in situ preparations of rats we investigated the effects of CIH on the respiratory control of the upper airway resistance, on the electrophysiological properties of laryngeal motoneurones in the nucleus ambiguus, and the role of carotid body (CB) afferents to the brainstem on the underlying mechanisms of these effects. CIH rats exhibited longer pre-inspiratory and lower post-inspiratory superior laryngeal nerve activities than control rats. These changes produced exaggerated glottal abduction (before inspiration) and decreased glottal adduction during post-inspiration, indicating a reduction of upper airway resistance during these respiratory phases after CIH. CB denervation abolished these changes produced by CIH. Regarding choline acetyltransferase positive-laryngeal motoneurones, CIH increased the firing frequency of inspiratory and decreased the firing frequency of post-inspiratory laryngeal motoneurones, without changes in their intrinsic electrophysiological properties. These data show that the effects of CIH on the upper airway resistance and laryngeal motoneurones activities are driven by the integrity of CB, which afferents induce changes in the central respiratory generators in the brainstem. These neural changes in the respiratory network seem to be an adaptive process required for an appropriated pulmonary ventilation and control of upper airway resistance under intermittent episodes of hypoxia.
Collapse
Affiliation(s)
- Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
17
|
Berdugo-Vega G, Arias-Gil G, Rodriguez-Niedenführ M, Davies DC, Vázquez T, Pascual-Font A. GFAP immunoreactivity within the rat nucleus ambiguus after laryngeal nerve injury. J Anat 2014; 225:492-501. [PMID: 25181319 DOI: 10.1111/joa.12231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2014] [Indexed: 11/30/2022] Open
Abstract
Changes that occur in astroglial populations of the nucleus ambiguus after recurrent (RLN) or superior (SLN) laryngeal nerve injury have hitherto not been fully characterised. In the present study, rat RLN and SLN were lesioned. After 3, 7, 14, 28 or 56 days of survival, the nucleus ambiguus was investigated by means of glial fibrillary acidic protein (GFAP) immunofluorescence or a combination of GFAP immunofluorescence and the application of retrograde tracers. GFAP immunoreactivity was significantly increased 3 days after RLN resection and it remained significantly elevated until after 28 days post injury (dpi). By 56 dpi it had returned to basal levels. In contrast, following RLN transection with repair, GFAP immunoreactivity was significantly elevated at 7 dpi and remained significantly elevated until 14 dpi. It had returned to basal levels by 28 dpi. Topographical analysis of the distribution of GFAP immunoreactivity revealed that after RLN injury, GFAP immunoreactivity was increased beyond the area of the nucleus ambiguus within which RLN motor neuron somata were located. GFAP immunoreactivity was also observed in the vicinity of neuronal somata that project into the uninjured SLN. Similarly, lesion of the SLN resulted in increased GFAP immunoreactivity around the neuronal somata projecting into it and also in the vicinity of the motor neuron somata projecting into the RLN. The increase in GFAP immunoreactivity outside of the region containing the motor neurons projecting into the injured nerve, may reflect the onset of a regenerative process attempting to compensate for impairment of one of the laryngeal nerves and may occur because of the dual innervation of the posterior cricoarytenoid muscle. This dual innervation of a very specialised muscle could provide a useful model system for studying the molecular mechanisms underlying axonal regeneration process and the results of the current study could provide the basis for studies into functional regeneration following laryngeal nerve injury, with subsequent application to humans.
Collapse
Affiliation(s)
- G Berdugo-Vega
- Department of Human Anatomy and Embryology I, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Somatotopy of the extrinsic laryngeal muscles in the human sensorimotor cortex. Behav Brain Res 2014; 270:364-71. [DOI: 10.1016/j.bbr.2014.05.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 05/22/2014] [Accepted: 05/22/2014] [Indexed: 11/23/2022]
|
19
|
Hernández-Morato I, Berdugo-Vega G, Sañudo JR, Mchanwell S, Vázquez T, Valderrama-Canales FJ, Pascual-Font A. Somatotopic Changes in the Nucleus Ambiguus After Section and Regeneration of the Recurrent Laryngeal Nerve of the Rat. Anat Rec (Hoboken) 2014; 297:955-63. [DOI: 10.1002/ar.22877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/10/2013] [Accepted: 12/18/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Ignacio Hernández-Morato
- Department of Human Anatomy and Embryology I; School of Medicine, Complutense University of Madrid; Madrid Spain
| | - Gabriel Berdugo-Vega
- Department of Human Anatomy and Embryology I; School of Medicine, Complutense University of Madrid; Madrid Spain
| | - Jose R. Sañudo
- Department of Human Anatomy and Embryology I; School of Medicine, Complutense University of Madrid; Madrid Spain
| | - Stephen Mchanwell
- School of Medical Sciences Education Development; Newcastle University; Newcastle, NE2 4BW UK
| | - Teresa Vázquez
- Department of Human Anatomy and Embryology I; School of Medicine, Complutense University of Madrid; Madrid Spain
| | | | - Arán Pascual-Font
- Department of Human Anatomy and Embryology I; School of Medicine, Complutense University of Madrid; Madrid Spain
| |
Collapse
|
20
|
Hernández-Morato I, Valderrama-Canales FJ, Berdugo G, Arias G, McHanwell S, Sañudo J, Vázquez T, Pascual-Font A. Reorganization of laryngeal motoneurons after crush injury in the recurrent laryngeal nerve of the rat. J Anat 2013; 222:451-61. [PMID: 23444899 DOI: 10.1111/joa.12031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2013] [Indexed: 11/28/2022] Open
Abstract
Motoneurons innervating laryngeal muscles are located in the nucleus ambiguus (Amb), but there is no general agreement on the somatotopic representation and even less is known on how an injury in the recurrent laryngeal nerve (RLN) affects this pattern. This study analyzes the normal somatotopy of those motoneurons and describes its changes over time after a crush injury to the RLN. In the control group (control group 1, n = 9 rats), the posterior cricoarytenoid (PCA) and thyroarytenoid (TA) muscles were injected with cholera toxin-B. In the experimental groups the left RLN of each animal was crushed with a fine tip forceps and, after several survival periods (1, 2, 4, 8, 12 weeks; minimum six rats per time), the PCA and TA muscles were injected as described above. After each surgery, the motility of the vocal folds was evaluated. Additional control experiments were performed; the second control experiment (control group 2, n = 6 rats) was performed labeling the TA and PCA immediately prior to the section of the superior laryngeal nerve (SLN), in order to eliminate the possibility of accidental labeling of the cricothyroid (CT) muscle by spread from the injection site. The third control group (control group 3, n = 5 rats) was included to determine if there is some sprouting from the SLN into the territories of the RLN after a crush of this last nerve. One week after the crush injury of the RLN, the PCA and TA muscles were injected immediately before the section of the SLN. The results show that a single population of neurons represents each muscle with the PCA in the most rostral position followed caudalwards by the TA. One week post-RLN injury, both the somatotopy and the number of labeled motoneurons changed, where the labeled neurons were distributed randomly; in addition, an area of topographical overlap of the two populations was observed and vocal fold mobility was lost. In the rest of the survival periods, the overlapping area is larger, but the movement of the vocal folds tends to recover. After 12 weeks of survival, the disorganization within the Amb is the largest, but the number of motoneurons is similar to control, and all animals recovered the movement of the left vocal fold. Our additional controls indicate that no tracer spread to the CT muscle occurred, and that many of the labeled motoneurons from the PCA after 1 week post-RLN injury correspond to motoneurons whose axons travel in the SLN. Therefore, it seems that after RLN injury there is a collateral sprouting and collateral innervation. Although the somatotopic organization of the Amb is lost after a crush injury of the RLN and does not recover in the times studied here, the movement of the vocal folds as well as the number of neurons that supply the TA and the PCA muscles recovered within 8 weeks, indicating that the central nervous system of the rat has a great capacity of plasticity.
Collapse
Affiliation(s)
- Ignacio Hernández-Morato
- Departamento de Anatomía y Embriología Humana I, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|