1
|
Werth AJ, Crompton AW. Cetacean tongue mobility and function: A comparative review. J Anat 2023; 243:343-373. [PMID: 37042479 PMCID: PMC10439401 DOI: 10.1111/joa.13876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
Cetaceans are atypical mammals whose tongues often depart from the typical (basal) mammalian condition in structure, mobility, and function. Their tongues are dynamic, innovative multipurpose tools that include the world's largest muscular structures. These changes reflect the evolutionary history of cetaceans' secondary adaptation to a fully aquatic environment. Cetacean tongues play no role in mastication and apparently a greatly reduced role in nursing (mainly channeling milk ingestion), two hallmarks of Mammalia. Cetacean tongues are not involved in drinking, breathing, vocalizing, and other non-feeding activities; they evidently play no or little role in taste reception. Although cetaceans do not masticate or otherwise process food, their tongues retain key roles in food ingestion, transport, securing/positioning, and swallowing, though by different means than most mammals. This is due to cetaceans' aquatic habitat, which in turn altered their anatomy (e.g., the intranarial larynx and consequent soft palate alteration). Odontocetes ingest prey via raptorial biting or tongue-generated suction. Odontocete tongues expel water and possibly uncover benthic prey via hydraulic jetting. Mysticete tongues play crucial roles driving ram, suction, or lunge ingestion for filter feeding. The uniquely flaccid rorqual tongue, not a constant volume hydrostat (as in all other mammalian tongues), invaginates into a balloon-like pouch to temporarily hold engulfed water. Mysticete tongues also create hydrodynamic flow regimes and hydraulic forces for baleen filtration, and possibly for cleaning baleen. Cetacean tongues lost or modified much of the mobility and function of generic mammal tongues, but took on noteworthy morphological changes by evolving to accomplish new tasks.
Collapse
Affiliation(s)
- Alexander J Werth
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, Virginia, USA
| | - A W Crompton
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Young MT, Bowman CIW, Erb A, Schwab JA, Witmer LM, Herrera Y, Brusatte SL. Evidence for a novel cranial thermoregulatory pathway in thalattosuchian crocodylomorphs. PeerJ 2023; 11:e15353. [PMID: 37151298 PMCID: PMC10162039 DOI: 10.7717/peerj.15353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023] Open
Abstract
Thalattosuchian crocodylomorphs were a diverse clade that lived from the Early Jurassic to the Early Cretaceous. The subclade Metriorhynchoidea underwent a remarkable transition, evolving from semi-aquatic ambush predators into fully aquatic forms living in the open oceans. Thalattosuchians share a peculiar palatal morphology with semi-aquatic and aquatic fossil cetaceans: paired anteroposteriorly aligned grooves along the palatal surface of the bony secondary palate. In extant cetaceans, these grooves are continuous with the greater palatine artery foramina, arteries that supply their oral thermoregulatory structures. Herein, we investigate the origins of thalattosuchian palatal grooves by examining CT scans of six thalattosuchian species (one teleosauroid, two early-diverging metriorhynchoids and three metriorhynchids), and CT scans of eleven extant crocodylian species. All thalattosuchians had paired osseous canals, enclosed by the palatines, that connect the nasal cavity to the oral cavity. These osseous canals open into the oral cavity via foramina at the posterior terminus of the palatal grooves. Extant crocodylians lack both the external grooves and the internal canals. We posit that in thalattosuchians these novel palatal canals transmitted hypertrophied medial nasal vessels (artery and vein), creating a novel heat exchange pathway connecting the palatal vascular plexus to the endocranial region. Given the general hypertrophy of thalattosuchian cephalic vasculature, and their increased blood flow and volume, thalattosuchians would have required a more extensive suite of thermoregulatory pathways to maintain stable temperatures for their neurosensory tissues.
Collapse
Affiliation(s)
- Mark T. Young
- School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom
- LWL-Museum für Naturkunde, Münster, Germany
| | | | - Arthur Erb
- School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Julia A. Schwab
- School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom
| | - Lawrence M. Witmer
- Department of Biomedical Sciences, Ohio University, Athens, Ohio, United States
| | - Yanina Herrera
- Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina
| | | |
Collapse
|
3
|
Braun CD, Arostegui MC, Thorrold SR, Papastamatiou YP, Gaube P, Fontes J, Afonso P. The Functional and Ecological Significance of Deep Diving by Large Marine Predators. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:129-159. [PMID: 34416123 DOI: 10.1146/annurev-marine-032521-103517] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many large marine predators make excursions from surface waters to the deep ocean below 200 m. Moreover, the ability to access meso- and bathypelagic habitats has evolved independently across marine mammals, reptiles, birds, teleost fishes, and elasmobranchs. Theoretical and empirical evidence suggests a number of plausible functional hypotheses for deep-diving behavior. Developing ways to test among these hypotheses will, however, require new ways to quantify animal behavior and biophysical oceanographic processes at coherent spatiotemporal scales. Current knowledge gaps include quantifying ecological links between surface waters and mesopelagic habitats and the value of ecosystem services provided by biomass in the ocean twilight zone. Growing pressure for ocean twilight zone fisheries creates an urgent need to understand the importance of the deep pelagic ocean to large marine predators.
Collapse
Affiliation(s)
- Camrin D Braun
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA;
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Martin C Arostegui
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA;
- Air-Sea Interaction and Remote Sensing Department, Applied Physics Laboratory, University of Washington, Seattle, Washington 98105, USA
| | - Simon R Thorrold
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA;
| | - Yannis P Papastamatiou
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, Florida 33181, USA
| | - Peter Gaube
- Air-Sea Interaction and Remote Sensing Department, Applied Physics Laboratory, University of Washington, Seattle, Washington 98105, USA
| | - Jorge Fontes
- Okeanos and Institute of Marine Research, University of the Azores, 9901-862 Horta, Portugal
| | - Pedro Afonso
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA;
- Okeanos and Institute of Marine Research, University of the Azores, 9901-862 Horta, Portugal
| |
Collapse
|
4
|
Lonati GL, Zitterbart DP, Miller CA, Corkeron P, Murphy CT, Moore MJ. Investigating the thermal physiology of critically endangered North Atlantic right whales Eubalaena glacialis via aerial infrared thermography. ENDANGER SPECIES RES 2022. [DOI: 10.3354/esr01193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
Peredo CM, Pyenson ND. Morphological variation of the relictual alveolar structures in the mandibles of baleen whales. PeerJ 2021; 9:e11890. [PMID: 34395101 PMCID: PMC8327965 DOI: 10.7717/peerj.11890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/10/2021] [Indexed: 12/17/2022] Open
Abstract
Living baleen whales (mysticetes) are bulk filter feeders that use keratinous baleen plates to filter food from prey laden water. Extant mysticetes are born entirely edentulous, though they possess tooth buds early in ontogeny, a trait inherited from toothed ancestors. The mandibles of extant baleen whales have neither teeth nor baleen; teeth are resorbed in utero and baleen grows only on the palate. The mandibles of extant baleen whales also preserve a series of foramina and associated sulci that collectively form an elongated trough, called the alveolar groove. Despite this name, it remains unclear if the alveolar groove of edentulous mysticetes and the dental structures of toothed mammals are homologous. Here, we describe and quantify the anatomical diversity of these structures across extant mysticetes and compare their variable morphologies across living taxonomic groups (i.e., Balaenidae, Neobalaenidae, Eschrichtiidae, and Balaenopteridae). Although we found broad variability across taxonomic groups for the alveolar groove length, occupying approximately 60–80 percent of the mandible’s total curvilinear length (CLL) across all taxa, the relictual alveolar foramen showed distinct patterns, ranging between 15–25% CLL in balaenids, while ranging between 3–12% CLL in balaenopterids. This variability and the morphological patterning along the body of the mandible is consistent with the hypothesis that the foramina underlying the alveolar groove reflect relictual alveoli. These findings also lay the groundwork for future histological studies to examine the contents of these foramina and clarify their potential role in the feeding process.
Collapse
Affiliation(s)
- Carlos Mauricio Peredo
- Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington D.C., United States of America.,Earth and Environmental Science, University of Michigan - Ann Arbor, Ann Arbor, MI, United States of America.,Marine Biology, Texas A&M University - Galveston, Galveston, TX, United States of America
| | - Nicholas D Pyenson
- Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington D.C., United States of America.,Paleontology and Geology, Burke Museum of Natural History and Culture, Seattle, WA, United States of America
| |
Collapse
|
6
|
Sharp SM, McLellan WA, Rotstein DS, Costidis AM, Barco SG, Durham K, Pitchford TD, Jackson KA, Daoust PY, Wimmer T, Couture EL, Bourque L, Frasier T, Frasier B, Fauquier D, Rowles TK, Hamilton PK, Pettis H, Moore MJ. Gross and histopathologic diagnoses from North Atlantic right whale Eubalaena glacialis mortalities between 2003 and 2018. DISEASES OF AQUATIC ORGANISMS 2019; 135:1-31. [PMID: 31219432 DOI: 10.3354/dao03376] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Seventy mortalities of North Atlantic right whales Eubalaena glacialis (NARW) were documented between 2003 and 2018 from Florida, USA, to the Gulf of St. Lawrence, Canada. These included 29 adults, 14 juveniles, 10 calves, and 17 of unknown age class. Females represented 65.5% (19/29) of known-sex adults. Fourteen cases had photos only; 56 carcasses received external examinations, 44 of which were also necropsied. Cause of death was determined in 43 cases, of which 38 (88.4%) were due to anthropogenic trauma: 22 (57.9%) from entanglement, and 16 (42.1%) from vessel strike. Gross and histopathologic lesions associated with entanglement were often severe and included deep lacerations caused by constricting line wraps around the flippers, flukes, and head/mouth; baleen plate mutilation; chronic extensive bone lesions from impinging line, and traumatic scoliosis resulting in compromised mobility in a calf. Chronically entangled whales were often in poor body condition and had increased cyamid burden, reflecting compromised health. Vessel strike blunt force injuries included skull and vertebral fractures, blubber and muscle contusions, and large blood clots. Propeller-induced wounds often caused extensive damage to blubber, muscle, viscera, and bone. Overall prevalence of NARW entanglement mortalities increased from 21% (1970-2002) to 51% during this study period. This demonstrates that despite mitigation efforts, entanglements and vessel strikes continue to inflict profound physical trauma and suffering on individual NARWs. These cumulative mortalities are also unsustainable at the population level, so urgent and aggressive intervention is needed to end anthropogenic mortality in this critically endangered species.
Collapse
Affiliation(s)
- S M Sharp
- International Fund for Animal Welfare, Yarmouth Port, MA 02675, USA Addresses for other authors are given in the supplements at www.int-res.com/articles/suppl/d135p001_supp.pdf
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Werth AJ, Rita D, Rosario MV, Moore MJ, Sformo TL. How do baleen whales stow their filter? A comparative biomechanical analysis of baleen bending. ACTA ACUST UNITED AC 2018; 221:jeb.189233. [PMID: 30337355 DOI: 10.1242/jeb.189233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/11/2018] [Indexed: 11/20/2022]
Abstract
Bowhead and right whale (balaenid) baleen filtering plates, longer in vertical dimension (≥3-4 m) than the closed mouth, presumably bend during gape closure. This has not been observed in live whales, even with scrutiny of video-recorded feeding sequences. To determine what happens to the baleen during gape closure, we conducted an integrative, multifactorial study including materials testing, functional (flow tank and kinematic) testing and histological examination. We measured baleen bending properties along the dorsoventral length of plates and anteroposterior location within a rack of plates via mechanical (axial bending, composite flexure, compression and tension) tests of hydrated and air-dried tissue samples from balaenid and other whale baleen. Balaenid baleen is remarkably strong yet pliable, with ductile fringes, and low stiffness and high elasticity when wet; it likely bends in the closed mouth when not used for filtration. Calculation of flexural modulus from stress/strain experiments shows that the balaenid baleen is slightly more flexible where it emerges from the gums and at its ventral terminus, but kinematic analysis indicates plates bend evenly along their whole length. Fin and humpback whale baleen has similar material properties but less flexibility, with no dorsoventral variation. The internal horn tubes have greater external and hollow luminal diameter but lower density in the lateral relative to medial baleen of bowhead and fin whales, suggesting a greater capacity for lateral bending. Baleen bending has major consequences not only for feeding morphology and energetics but also for conservation given that entanglement in fishing gear is a leading cause of whale mortality.
Collapse
Affiliation(s)
- Alexander J Werth
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA 23943, USA
| | - Diego Rita
- Department of Evolutionary Biology, Ecology, and Environmental Science, University of Barcelona, 08028 Barcelona, Spain
| | - Michael V Rosario
- Department of Ecology & Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Michael J Moore
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Todd L Sformo
- Department of Wildlife Management, North Slope Borough, Barrow, AK 99723, USA.,Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| |
Collapse
|
8
|
Goldbogen JA, Cade DE, Boersma AT, Calambokidis J, Kahane-Rapport SR, Segre PS, Stimpert AK, Friedlaender AS. Using Digital Tags With Integrated Video and Inertial Sensors to Study Moving Morphology and Associated Function in Large Aquatic Vertebrates. Anat Rec (Hoboken) 2018; 300:1935-1941. [PMID: 28971623 DOI: 10.1002/ar.23650] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 12/20/2022]
Abstract
The anatomy of large cetaceans has been well documented, mostly through dissection of dead specimens. However, the difficulty of studying the world's largest animals in their natural environment means the functions of anatomical structures must be inferred. Recently, non-invasive tracking devices have been developed that measure body position and orientation, thereby enabling the detailed reconstruction of underwater trajectories. The addition of cameras to the whale-borne tags allows the sensor data to be matched with real-time observations of how whales use their morphological structures, such as flukes, flippers, feeding apparatuses, and blowholes for the physiological functions of locomotion, feeding, and breathing. Here, we describe a new tag design with integrated video and inertial sensors and how it can be used to provide insights to the function of whale anatomy. This technology has the potential to facilitate a wide range of discoveries and comparative studies, but many challenges remain to increase the resolution and applicability of the data. Anat Rec, 300:1935-1941, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- J A Goldbogen
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California
| | - D E Cade
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California
| | - A T Boersma
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California
| | | | - S R Kahane-Rapport
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California
| | - P S Segre
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California
| | - A K Stimpert
- Vertebrate Ecology Laboratory, Moss Landing Marine Laboratories, Moss Landing, California
| | - A S Friedlaender
- Marine Mammal Institute, Hatfield Marine Science Center, Oregon State University, Newport, Oregon
| |
Collapse
|
9
|
Fortune SME, Koski WR, Higdon JW, Trites AW, Baumgartner MF, Ferguson SH. Evidence of molting and the function of "rock-nosing" behavior in bowhead whales in the eastern Canadian Arctic. PLoS One 2017; 12:e0186156. [PMID: 29166385 PMCID: PMC5699794 DOI: 10.1371/journal.pone.0186156] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/26/2017] [Indexed: 11/19/2022] Open
Abstract
Bowhead whales (Balaena mysticetus) have a nearly circumpolar distribution, and occasionally occupy warmer shallow coastal areas during summertime that may facilitate molting. However, relatively little is known about the occurrence of molting and associated behaviors in bowhead whales. We opportunistically observed whales in Cumberland Sound, Nunavut, Canada with skin irregularities consistent with molting during August 2014, and collected a skin sample from a biopsied whale that revealed loose epidermis and sloughing. During August 2016, we flew a small unmanned aerial system (sUAS) over whales to take video and still images to: 1) determine unique individuals; 2) estimate the proportion of the body of unique individuals that exhibited sloughing skin; 3) determine the presence or absence of superficial lines representative of rock-rubbing behavior; and 4) measure body lengths to infer age-class. The still images revealed that all individuals (n = 81 whales) were sloughing skin, and that nearly 40% of them had mottled skin over more than two-thirds of their bodies. The video images captured bowhead whales rubbing on large rocks in shallow, coastal areas—likely to facilitate molting. Molting and rock rubbing appears to be pervasive during late summer for whales in the eastern Canadian Arctic.
Collapse
Affiliation(s)
- Sarah M. E. Fortune
- Department of Zoology and Marine Mammal Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
- * E-mail:
| | | | | | - Andrew W. Trites
- Department of Zoology and Marine Mammal Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark F. Baumgartner
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Steven H. Ferguson
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada
| |
Collapse
|
10
|
Thewissen JGM, Hieronymus TL, George JC, Suydam R, Stimmelmayr R, McBurney D. Evolutionary aspects of the development of teeth and baleen in the bowhead whale. J Anat 2017; 230:549-566. [PMID: 28070906 DOI: 10.1111/joa.12579] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 02/05/2023] Open
Abstract
In utero, baleen whales initiate the development of several dozens of teeth in upper and lower jaws. These tooth germs reach the bell stage and are sometimes mineralized, but toward the end of prenatal life they are resorbed and no trace remains after birth. Around the time that the germs disappear, the keratinous baleen plates start to form in the upper jaw, and these form the food-collecting mechanism. Baleen whale ancestors had two generations of teeth and never developed baleen, and the prenatal teeth of modern fetuses are usually interpreted as an evolutionary leftover. We investigated the development of teeth and baleen in bowhead whale fetuses using histological and immunohistochemical evidence. We found that upper and lower dentition initially follow similar developmental pathways. As development proceeds, upper and lower tooth germs diverge developmentally. Lower tooth germs differ along the length of the jaw, reminiscent of a heterodont dentition of cetacean ancestors, and lingual processes of the dental lamina represent initiation of tooth bud formation of replacement teeth. Upper tooth germs remain homodont and there is no evidence of a secondary dentition. After these germs disappear, the oral epithelium thickens to form the baleen plates, and the protein FGF-4 displays a signaling pattern reminiscent of baleen plates. In laboratory mammals, FGF-4 is not involved in the formation of hair or palatal rugae, but it is involved in tooth development. This leads us to propose that the signaling cascade that forms teeth in most mammals has been exapted to be involved in baleen plate ontogeny in mysticetes.
Collapse
Affiliation(s)
- J G M Thewissen
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Tobin L Hieronymus
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - John C George
- Department of Wildlife Management, North Slope Borough, Barrow, AK, USA
| | - Robert Suydam
- Department of Wildlife Management, North Slope Borough, Barrow, AK, USA
| | - Raphaela Stimmelmayr
- Department of Wildlife Management, North Slope Borough, Barrow, AK, USA.,Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Denise McBurney
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| |
Collapse
|
11
|
Goldbogen JA, Cade DE, Calambokidis J, Friedlaender AS, Potvin J, Segre PS, Werth AJ. How Baleen Whales Feed: The Biomechanics of Engulfment and Filtration. ANNUAL REVIEW OF MARINE SCIENCE 2017; 9:367-386. [PMID: 27620830 DOI: 10.1146/annurev-marine-122414-033905] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Baleen whales are gigantic obligate filter feeders that exploit aggregations of small-bodied prey in littoral, epipelagic, and mesopelagic ecosystems. At the extreme of maximum body size observed among mammals, baleen whales exhibit a unique combination of high overall energetic demands and low mass-specific metabolic rates. As a result, most baleen whale species have evolved filter-feeding mechanisms and foraging strategies that take advantage of seasonally abundant yet patchily and ephemerally distributed prey resources. New methodologies consisting of multi-sensor tags, active acoustic prey mapping, and hydrodynamic modeling have revolutionized our ability to study the physiology and ecology of baleen whale feeding mechanisms. Here, we review the current state of the field by exploring several hypotheses that aim to explain how baleen whales feed. Despite significant advances, major questions remain about the processes that underlie these extreme feeding mechanisms, which enabled the evolution of the largest animals of all time.
Collapse
Affiliation(s)
- J A Goldbogen
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California 93950; , ,
| | - D E Cade
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California 93950; , ,
| | - J Calambokidis
- Cascadia Research Collective, Olympia, Washington 98501;
| | - A S Friedlaender
- Department of Fisheries and Wildlife, Marine Mammal Institute, Hatfield Marine Science Center, Oregon State University, Newport, Oregon 97365;
| | - J Potvin
- Department of Physics, Saint Louis University, St. Louis, Missouri 63103;
| | - P S Segre
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California 93950; , ,
| | - A J Werth
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, Virginia 23943;
| |
Collapse
|
12
|
Costidis AM, Rommel SA. The extracranial venous system in the heads of beaked whales, with implications on diving physiology and pathogenesis. J Morphol 2015; 277:34-64. [DOI: 10.1002/jmor.20437] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 07/07/2015] [Accepted: 08/10/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Alexander M. Costidis
- Biology and Marine Biology; University of North Carolina Wilmington; Wilmington North Carolina
| | - Sentiel A. Rommel
- Biology and Marine Biology; University of North Carolina Wilmington; Wilmington North Carolina
| |
Collapse
|
13
|
Sensory Hairs in the Bowhead Whale,Balaena mysticetus(Cetacea, Mammalia). Anat Rec (Hoboken) 2015; 298:1327-35. [DOI: 10.1002/ar.23163] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 11/07/2022]
|
14
|
Ball HC, Stavarz M, Oldaker J, Usip S, Londraville RL, George JC, Thewissen JG, Duff RJ. Seasonal and Ontogenetic Variation in Subcutaneous Adipose Of the Bowhead Whale (Balaena mysticetus). Anat Rec (Hoboken) 2015; 298:1416-23. [DOI: 10.1002/ar.23125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/23/2014] [Accepted: 12/29/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Hope C. Ball
- Department of Biology; The University of Akron; Akron Ohio
- Department of Anatomy and Neurobiology; Northeast Ohio Medical University; Rootstown Ohio
| | | | | | - Sharon Usip
- Department of Anatomy and Neurobiology; Northeast Ohio Medical University; Rootstown Ohio
| | | | - John C. George
- North Slope Borough Department of Wildlife Management; Barrow Alaska
| | | | | |
Collapse
|
15
|
Ekdale EG, Kienle SS. Passive restriction of blood flow and counter-current heat exchange via lingual retia in the tongue of a neonatal gray whale Eschrichtius robustus (Cetacea, Mysticeti). Anat Rec (Hoboken) 2015; 298:675-9. [PMID: 25737382 DOI: 10.1002/ar.23111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 09/02/2014] [Indexed: 11/07/2022]
Abstract
Retia mirabilia play broad roles in cetacean physiology, including thermoregulation during feeding and pressure regulations during diving. Vascular bundles of lingual retia are described within the base of the tongue of a neonatal female gray whale (Eschrichtius robustus). Each rete consists of a central artery surrounded by four to six smaller veins. The retia and constituent vessels decrease in diameter as they extend anteriorly within the hyoglossus muscle from a position anterior to the basihyal cartilage toward the apex of the tongue. The position of the retia embedded in the hyoglossus and the anterior constriction of the vessels differs from reports of similar vascular bundles that were previously identified in gray whales. The retia likely serve as a counter-current heat exchange system to control body temperature during feeding. Cold blood flowing toward the body center within the periarterial veins would accept heat from warm blood in the central artery flowing toward the anterior end of the tongue. Although thermoregulatory systems have been identified within the mouths of a few mysticete species, the distribution of such vascular structures likely is more widespread among baleen whales than has previously been described.
Collapse
Affiliation(s)
- Eric G Ekdale
- Department of Biology, San Diego State University, San Diego, California; Department of Paleontology, San Diego Natural History Museum, San Diego, California
| | | |
Collapse
|
16
|
Ekdale EG, Deméré TA, Berta A. Vascularization of the gray whale palate (Cetacea, Mysticeti, Eschrichtius robustus): soft tissue evidence for an alveolar source of blood to baleen. Anat Rec (Hoboken) 2015; 298:691-702. [PMID: 25663479 DOI: 10.1002/ar.23119] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/31/2014] [Accepted: 09/02/2014] [Indexed: 11/08/2022]
Abstract
The origin of baleen in mysticetes heralded a major transition during cetacean evolution. Extant mysticetes are edentulous in adulthood, but rudimentary teeth develop in utero within open maxillary and mandibular alveolar grooves. The teeth are resorbed prenatally and the alveolar grooves close as baleen germ develops. Arteries supplying blood to highly vascularized epithelial tissue from which baleen develops pass through lateral nutrient foramina in the area of the embryonic alveolar grooves and rudimentary teeth. Those vessels are hypothesized to be branches of the superior alveolar artery, but branches of the greater palatine arteries may play a role in the baleen vascularization. Through a combination of latex injection, CT, and traditional dissection of the palate of a neonatal gray whale (Eschrichtius robustus), we confirm that the baleen receives blood from vessels within the superior alveolar canal via the lateral foramina. The greater palatine artery is restricted to its own passage with no connections to the baleen. This study has implications for the presence of baleen in extinct taxa by identifying the vessels and bony canals that supply blood to the epithelium from which baleen develops. The results indicate that the lateral foramina in edentulous mysticete fossils are bony correlates for the presence of baleen, and the results can be used to help identify bony canals and foramina that have been used to reconstruct baleen in extinct mysticetes that retained teeth in adulthood. Further comparisons are made with mammals that also possess oral keratin structures, including ruminants, ornithorhynchid monotremes, and sirenians.
Collapse
Affiliation(s)
- Eric G Ekdale
- Department of Biology, San Diego State University, San Diego, California; Department of Paleontology, San Diego Natural History Museum, San Diego, California
| | | | | |
Collapse
|
17
|
Buono MR, Fernández MS, Fordyce RE, Reidenberg JS. Anatomy of nasal complex in the southern right whale, Eubalaena australis (Cetacea, Mysticeti). J Anat 2014; 226:81-92. [PMID: 25440939 DOI: 10.1111/joa.12250] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2014] [Indexed: 11/28/2022] Open
Abstract
The nasal region of the skull has undergone dramatic changes during the course of cetacean evolution. In particular, mysticetes (baleen whales) conserve the nasal mammalian pattern associated with the secondary function of olfaction, and lack the sound-producing specializations present in odontocetes (toothed whales, dolphins and porpoises). To improve our understanding of the morphology of the nasal region of mysticetes, we investigate the nasal anatomy, osteology and myology of the southern right whale, Eubalaena australis, and make comparisons with other mysticetes. In E. australis external deflection surfaces around the blowholes appear to divert water off the head, and differ in appearance from those observed in balaenopterids, eschrichtiids and cetotherids. In E. australis the blowholes are placed above hypertrophied nasal soft tissues formed by fat and nasal muscles, a pattern also observed in balaenopterids (rorqual mysticetes) and a cetotherid (pygmy right whale, Caperea marginata). Blowhole movements are due to the action of five nasofacial muscles: dilator naris superficialis, dilator naris profundus, depressor alae nasi, constrictor naris, and retractor alae nasi. The dilator naris profundus found in E. australis has not been previously reported in balaenopterids. The other nasofacial muscles have a similar arrangement in balaenopterids, with minor differences. A novel structure, not reported previously in any mysticete, is the presence of a vascular tissue (rete mirabile) covering the lower nasal passage. This vascular tissue could play a role in warming inspired air, or may engorge to accommodate loss of respiratory space volume due to gas compression from increased pressure during diving.
Collapse
Affiliation(s)
- Mónica R Buono
- Laboratorio de Paleontología, Centro Nacional Patagónico (CONICET), Puerto Madryn, Chubut, Argentina
| | | | | | | |
Collapse
|