1
|
Evers SW, Joyce WG, Choiniere JN, Ferreira GS, Foth C, Hermanson G, Yi H, Johnson CM, Werneburg I, Benson RBJ. Independent origin of large labyrinth size in turtles. Nat Commun 2022; 13:5807. [PMID: 36220806 PMCID: PMC9553989 DOI: 10.1038/s41467-022-33091-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
The labyrinth of the vertebrate inner ear is a sensory system that governs the perception of head rotations. Central hypotheses predict that labyrinth shape and size are related to ecological adaptations, but this is under debate and has rarely been tested outside of mammals. We analyze the evolution of labyrinth morphology and its ecological drivers in living and fossil turtles, an understudied group that underwent multiple locomotory transitions during 230 million years of evolution. We show that turtles have unexpectedly large labyrinths that evolved during the origin of aquatic habits. Turtle labyrinths are relatively larger than those of mammals, and comparable to many birds, undermining the hypothesis that labyrinth size correlates directly with agility across vertebrates. We also find that labyrinth shape variation does not correlate with ecology in turtles, undermining the widespread expectation that reptilian labyrinth shapes convey behavioral signal, and demonstrating the importance of understudied groups, like turtles.
Collapse
Affiliation(s)
- Serjoscha W Evers
- Department of Geosciences, University of Fribourg, Chemin du Musée 6, 1700, Fribourg, Switzerland.
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, United Kingdom.
| | - Walter G Joyce
- Department of Geosciences, University of Fribourg, Chemin du Musée 6, 1700, Fribourg, Switzerland
| | - Jonah N Choiniere
- Evolutionary Studies Institute, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg, 2000, South Africa
| | - Gabriel S Ferreira
- Senckenberg Centre for Human Evolution and Paleoenvironment an der Universität Tübingen, Sigwartstraße 10, 72076, Tübingen, Germany
- Fachbereich Geowissenschaften, Universität Tübingen, Hölderlinstraße 12, 72074, Tübingen, Germany
| | - Christian Foth
- Department of Geosciences, University of Fribourg, Chemin du Musée 6, 1700, Fribourg, Switzerland
| | - Guilherme Hermanson
- Department of Geosciences, University of Fribourg, Chemin du Musée 6, 1700, Fribourg, Switzerland
- Laboratório de Paleontologia de Ribeirão Preto, FFCLRP, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Hongyu Yi
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing, 100049, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment Beijing, 100044, Beijing, China
| | - Catherine M Johnson
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, United Kingdom
| | - Ingmar Werneburg
- Senckenberg Centre for Human Evolution and Paleoenvironment an der Universität Tübingen, Sigwartstraße 10, 72076, Tübingen, Germany
- Fachbereich Geowissenschaften, Universität Tübingen, Hölderlinstraße 12, 72074, Tübingen, Germany
| | - Roger B J Benson
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, United Kingdom
- Evolutionary Studies Institute, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg, 2000, South Africa
| |
Collapse
|
2
|
Racicot R. Evolution of whale sensory ecology: Frontiers in nondestructive anatomical investigations. Anat Rec (Hoboken) 2021; 305:736-752. [PMID: 34546007 DOI: 10.1002/ar.24761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/09/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022]
Abstract
Studies surrounding the evolution of sensory system anatomy in cetaceans over the last ~100 years have shed light on aspects of the early evolution of hearing sensitivities, the small relative size of the organ of balance (semicircular canals and vestibule), brain (endocast) shape and relative volume changes, and ontogenetic development of sensory-related structures. Here, I review advances in our knowledge of sensory system anatomy as informed by the use of nondestructive imaging techniques, with a focus on applied methods in computed tomography (CT and μCT), and identify the key questions that remain to be addressed. Of these, the most important are: Is lower frequency hearing sensitivity the ancestral condition for whales? Did echolocation evolve more than once in odontocetes; and if so, when and why? How has the structure of the cetacean brain changed, through the evolution of whales, and does this correspond to changes in hearing sensitivities? Finally, what are the general pathways of ontogenetic development of sensory systems in odontocetes and mysticetes? Answering these questions will allow us to understand important macroevolutionary patterns in a fully aquatic mammalian group and provides baseline data on species for which we have limited biological information because of logistical limitations.
Collapse
Affiliation(s)
- Rachel Racicot
- Abteilung Messelforschung und Mammalogie, Senckenberg Forschungsinstitut und Naturkundemuseum, Frankfurt am Main, Germany.,Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Selba MC, Bryson ER, Rosenberg CL, Heng HG, DeLeon VB. Selective breeding in domestic dogs: How selecting for a short face impacted canine neuroanatomy. Anat Rec (Hoboken) 2020; 304:101-115. [PMID: 32686330 DOI: 10.1002/ar.24471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/13/2020] [Accepted: 04/19/2020] [Indexed: 12/17/2022]
Abstract
The range of cranial morphology seen in domestic dogs (Canis lupus familiaris) is a direct result of thousands of years of selective breeding. This article is the first to investigate how selection for reduced faces in brachycephalic dogs impacted the neuroanatomy of the canine brain through the analysis of endocasts. Previous research has demonstrated global effects on the shape of the bony cranium as the result of these breeding practices; however, these studies have largely focused on the bony structures of the skull and failed to consider the influence of facial reduction on the soft tissues of the brain. We generated endocasts from an existing set of clinically-obtained CT scans representing a variety of dogs with various cranial morphologies. These dogs represented four breeds as well as a comparative sample of dogs of unknown breed. We recorded three-dimensional coordinate data for 31 landmarks representing various gyri, sulci, and other neuroanatomical landmarks that allowed us to analyze differences in shape of the endocasts. Through geometric morphometric analyses, we determined that the endocast shape variance in this sample is correlated with cephalic index, and thus the selection for facial reduction has caused a perceivable effect on canine neuroanatomy. Additionally, we found the majority of the shape variance in the sample to be associated with olfactory anatomy; however, the rest of the morphology also correlates with cephalic index. The results of this article indicate that modern breeding practices and the selection for dogs with short faces have significantly influenced canine neuroanatomy.
Collapse
|
4
|
Racicot RA, Darroch SAF, Kohno N. Neuroanatomy and inner ear labyrinths of the narwhal, Monodon monoceros, and beluga, Delphinapterus leucas (Cetacea: Monodontidae). J Anat 2018; 233:421-439. [PMID: 30033539 PMCID: PMC6131972 DOI: 10.1111/joa.12862] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2018] [Indexed: 10/28/2022] Open
Abstract
Narwhals (Monodon monoceros) and belugas (Delphinapterus leucas) are the only extant members of the Monodontidae, and are charismatic Arctic-endemic cetaceans that are at risk from global change. Investigating the anatomy and sensory apparatuses of these animals is essential to understanding their ecology and evolution, and informs efforts for their conservation. Here, we use X-ray CT scans to compare aspects of the endocranial and inner ear labyrinth anatomy of extant monodontids and use the overall morphology to draw larger inferences about the relationship between morphology and ecology. We show that differences in the shape of the brain, vasculature, and neural canals of both species may relate to differences in diving and other behaviors. The cochleae are similar in morphology in the two species, signifying similar hearing ranges and a close evolutionary relationship. Lastly, we compare two different methods for calculating 90var - a calculation independent of body size that is increasingly being used as a proxy for habitat preference. We show that a 'direct' angular measurement method shows significant differences between Arctic and other habitat preferences, but angle measurements based on planes through the semicircular canals do not, emphasizing the need for more detailed study and standardization of this measurement. This work represents the first comparative internal anatomical study of the endocranium and inner ear labyrinths of this small clade of toothed whales.
Collapse
Affiliation(s)
- Rachel A. Racicot
- Department of Earth and Environmental SciencesVanderbilt UniversityNashvilleTNUSA
- The Dinosaur InstituteNatural History Museum of Los Angeles CountyLos AngelesCAUSA
| | - Simon A. F. Darroch
- Department of Earth and Environmental SciencesVanderbilt UniversityNashvilleTNUSA
| | - Naoki Kohno
- Department of Geology and PaleontologyNational Museum of Nature and ScienceTokyoJapan
- Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan
| |
Collapse
|
5
|
Allemand R, Boistel R, Daghfous G, Blanchet Z, Cornette R, Bardet N, Vincent P, Houssaye A. Comparative morphology of snake (Squamata) endocasts: evidence of phylogenetic and ecological signals. J Anat 2017; 231:849-868. [PMID: 28960295 DOI: 10.1111/joa.12692] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2017] [Indexed: 12/22/2022] Open
Abstract
Brain endocasts obtained from computed tomography (CT) are now widely used in the field of comparative neuroanatomy. They provide an overview of the morphology of the brain and associated tissues located in the cranial cavity. Through anatomical comparisons between species, insights on the senses, the behavior, and the lifestyle can be gained. Although there are many studies dealing with mammal and bird endocasts, those performed on the brain endocasts of squamates are comparatively rare, thus limiting our understanding of their morphological variability and interpretations. Here, we provide the first comparative study of snake brain endocasts in order to bring new information about the morphology of these structures. Additionally, we test if the snake brain endocast encompasses a phylogenetic and/or an ecological signal. For this purpose, the digital endocasts of 45 snake specimens, including a wide diversity in terms of phylogeny and ecology, were digitized using CT, and compared both qualitatively and quantitatively. Snake endocasts exhibit a great variability. The different methods performed from descriptive characters, linear measurements and the outline curves provided complementary information. All these methods have shown that the shape of the snake brain endocast contains, as in mammals and birds, a phylogenetic signal but also an ecological one. Although phylogenetically related taxa share several similarities between each other, the brain endocast morphology reflects some notable ecological trends: e.g. (i) fossorial species possess both reduced optic tectum and pituitary gland; (ii) both fossorial and marine species have cerebral hemispheres poorly developed laterally; (iii) cerebral hemispheres and optic tectum are more developed in arboreal and terrestrial species.
Collapse
Affiliation(s)
- Rémi Allemand
- Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements, CR2P - UMR 7207 - CNRS, MNHN, UPMC, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France.,Département Adaptations du Vivant, UMR 7179 - CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Renaud Boistel
- IPHEP-UMR CNRS 6046, UFR SFA, Université de Poitiers, Poitiers, France
| | - Gheylen Daghfous
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Zoé Blanchet
- Département Adaptations du Vivant, UMR 7179 - CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Raphaël Cornette
- Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Nathalie Bardet
- Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements, CR2P - UMR 7207 - CNRS, MNHN, UPMC, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Peggy Vincent
- Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements, CR2P - UMR 7207 - CNRS, MNHN, UPMC, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Alexandra Houssaye
- Département Adaptations du Vivant, UMR 7179 - CNRS/Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
6
|
Abstract
AbstractX-ray computed tomography (CT) provides a nondestructive means of studying the inside and outside of objects. It allows accurate visualization and measurement of internal features, that are otherwise impossible to obtain nondestructively, and is a lasting digital record that can be made available to future researchers, museums, and the general public. Here, an overview of CT scanning methodologies and protocol is provided, as well as some recent examples of how this technology is allowing paleontologists to make new inroads into understanding the ecology, evolution, and development of both extant and extinct organisms. Lastly, some frontiers and outstanding questions in the acquisition, processing, and storage of digital 3-D morphological data are highlighted.
Collapse
|
7
|
Balanoff AM, Bever GS, Colbert MW, Clarke JA, Field DJ, Gignac PM, Ksepka DT, Ridgely RC, Smith NA, Torres CR, Walsh S, Witmer LM. Best practices for digitally constructing endocranial casts: examples from birds and their dinosaurian relatives. J Anat 2016; 229:173-90. [PMID: 26403623 PMCID: PMC4948053 DOI: 10.1111/joa.12378] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2015] [Indexed: 11/28/2022] Open
Abstract
The rapidly expanding interest in, and availability of, digital tomography data to visualize casts of the vertebrate endocranial cavity housing the brain (endocasts) presents new opportunities and challenges to the field of comparative neuroanatomy. The opportunities are many, ranging from the relatively rapid acquisition of data to the unprecedented ability to integrate critically important fossil taxa. The challenges consist of navigating the logistical barriers that often separate a researcher from high-quality data and minimizing the amount of non-biological variation expressed in endocasts - variation that may confound meaningful and synthetic results. Our purpose here is to outline preferred approaches for acquiring digital tomographic data, converting those data to an endocast, and making those endocasts as meaningful as possible when considered in a comparative context. This review is intended to benefit those just getting started in the field but also serves to initiate further discussion between active endocast researchers regarding the best practices for advancing the discipline. Congruent with the theme of this volume, we draw our examples from birds and the highly encephalized non-avian dinosaurs that comprise closely related outgroups along their phylogenetic stem lineage.
Collapse
Affiliation(s)
- Amy M. Balanoff
- Department of Anatomical SciencesStony Brook UniversityStony BrookNYUSA
| | - G. S. Bever
- Department of AnatomyNew York Institute of TechnologyCollege of Osteopathic MedicineOld WestburyNYUSA
| | - Matthew W. Colbert
- Department of Geological SciencesThe University of Texas at AustinAustinTXUSA
| | - Julia A. Clarke
- Department of Geological SciencesThe University of Texas at AustinAustinTXUSA
| | - Daniel J. Field
- Department of Geology and GeophysicsYale UniversityNew HavenCTUSA
| | - Paul M. Gignac
- Department of Anatomy and Cell BiologyOklahoma State University Center for Health SciencesTulsaOKUSA
| | | | - Ryan C. Ridgely
- Department of Biomedical SciencesHeritage College of Osteopathic MedicineOhio UniversityAthensOHUSA
| | - N. Adam Smith
- Department of Earth SciencesThe Field Museum of Natural HistoryChicagoILUSA
| | | | - Stig Walsh
- Department of Natural SciencesNational Museums ScotlandEdinburghUK
| | - Lawrence M. Witmer
- Department of Biomedical SciencesHeritage College of Osteopathic MedicineOhio UniversityAthensOHUSA
| |
Collapse
|
8
|
Racicot RA, Gearty W, Kohno N, Flynn JJ. Comparative anatomy of the bony labyrinth of extant and extinct porpoises (Cetacea: Phocoenidae). Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12857] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Rachel A. Racicot
- The Dinosaur Institute; Natural History Museum of Los Angeles County; Los Angeles CA USA
- Smithsonian Institution; P. O. Box 37012 MRC 121 Washington DC 20013-7012 USA
| | - William Gearty
- Department of Geological Sciences; Stanford University; Stanford CA USA
| | - Naoki Kohno
- Department of Geology and Paleontology; Division of Biotic Evolution; National Museum of Nature and Science; Tokyo Japan
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Japan
| | - John J. Flynn
- Department of Vertebrate Paleontology; Division of Paleontology; American Museum of Natural History; New York NY USA
- Richard Gilder Graduate School; American Museum of Natural History; New York NY USA
| |
Collapse
|
9
|
Intraspecific Variation of Endocranial Structures in Extant Equus: A Prelude to Endocranial Studies in Fossil Equoids. J MAMM EVOL 2015. [DOI: 10.1007/s10914-015-9293-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Ahrens HE. Morphometric study of phylogenetic and ecologic signals in procyonid (mammalia: carnivora) endocasts. Anat Rec (Hoboken) 2014; 297:2318-30. [PMID: 25066912 DOI: 10.1002/ar.22996] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/30/2014] [Indexed: 11/09/2022]
Abstract
Endocasts provide a proxy for brain morphology but are rarely incorporated in phylogenetic analyses despite the potential for new suites of characters. The phylogeny of Procyonidae, a carnivoran family with relatively limited taxonomic diversity, is not well resolved because morphological and molecular data yield conflicting topologies. The presence of phylogenetic and ecologic signals in the endocasts of procyonids will be determined using three-dimensional geometric morphometrics. Endocasts of seven ingroup species and four outgroup species were digitally rendered and 21 landmarks were collected from the endocast surface. Two phylogenetic hypotheses of Procyonidae will be examined using methods testing for phylogenetic signal in morphometric data. In analyses of all taxa, there is significant phylogenetic signal in brain shape for both the morphological and molecular topologies. However, the analyses of ingroup taxa recover a significant phylogenetic signal for the morphological topology only. These results indicate support for the molecular outgroup topology, but not the ingroup topology given the brain shape data. Further examination of brain shape using principal components analysis and wireframe comparisons suggests procyonids possess more developed areas of the brain associated with motor control, spatial perception, and balance relative to the basal musteloid condition. Within Procyonidae, similar patterns of variation are present, and may be associated with increased arboreality in certain taxa. Thus, brain shape derived from endocasts may be used to test for phylogenetic signal and preliminary analyses suggest an association with behavior and ecology.
Collapse
Affiliation(s)
- Heather E Ahrens
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| |
Collapse
|