1
|
Esteban JM, Martín-Serra A, Pérez-Ramos A, Rybczynski N, Jones K, Figueirido B. The influence of the land-to-sea macroevolutionary transition on vertebral column disparification in Pinnipedia. Proc Biol Sci 2024; 291:20232752. [PMID: 38593849 PMCID: PMC11003777 DOI: 10.1098/rspb.2023.2752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
The repeated returns of vertebrates to the marine ecosystems since the Triassic serve as an evolutionary model to understand macroevolutionary change. Here we investigate the effects of the land-to-sea transition on disparity and constraint of the vertebral column in aquatic carnivorans (Carnivora; Pinnipedia) to assess how their functional diversity and evolutionary innovations influenced major radiations of crown pinnipeds. We use three-dimensional geometric morphometrics and multivariate analysis for high-dimensional data under a phylogenetic framework to quantify vertebral size and shape in living and extinct pinnipeds. Our analysis demonstrates an important shift in vertebral column evolution by 10-12 million years ago, from an unconstrained to a constrained evolutionary scenario, a point of time that coincides with the major radiation of crown pinnipeds. Moreover, we also demonstrate that the axial skeleton of phocids and otariids followed a different path of morphological evolution that was probably driven by their specialized locomotor strategies. Despite this, we found a significant effect of habitat preference (coastal versus pelagic) on vertebral morphology of crown taxa regardless of the family they belong. In summary, our analysis provides insights into how the land-to-sea transition influenced the complex evolutionary history of pinniped vertebral morphology.
Collapse
Affiliation(s)
- Juan Miguel Esteban
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| | - Alberto Martín-Serra
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| | - Alejandro Pérez-Ramos
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| | - Natalia Rybczynski
- Department of Palaeobiology, Canadian Museum of Nature, Ottawa, ON, Canada K1P 6P4
- Department of Earth Sciences & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - Katrina Jones
- Department of Earth and Environmental Sciences, University of Manchester, Williamson Building, Oxford Road, Manchester M13 9PL, UK
| | - Borja Figueirido
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| |
Collapse
|
2
|
Blanco A. Importance of the postcranial skeleton in eusuchian phylogeny: Reassessing the systematics of allodaposuchid crocodylians. PLoS One 2021; 16:e0251900. [PMID: 34106925 PMCID: PMC8189472 DOI: 10.1371/journal.pone.0251900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/04/2021] [Indexed: 11/19/2022] Open
Abstract
Our current knowledge on the crocodyliform evolution is strongly biased towards the skull morphology, and the postcranial skeleton is usually neglected in many taxonomic descriptions. However, it is logical to expect that it can contribute with its own phylogenetic signal. In this paper, the changes in the tree topology caused by the addition of the postcranial information are analysed for the family Allodaposuchidae, the most representative eusuchians in the latest Cretaceous of Europe. At present, different phylogenetic hypotheses have been proposed for this group without reaching a consensus. The results of this paper evidence a shift in the phylogenetic position when the postcranium is included in the dataset, pointing to a relevant phylogenetic signal in the postcranial elements. Finally, the phylogenetic relationships of allodaposuchids within Eusuchia are reassessed; and the internal relationships within Allodaposuchidae are also reconsidered after an exhaustive revision of the morphological data. New and improved diagnoses for each species are here provided.
Collapse
Affiliation(s)
- Alejandro Blanco
- Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain
- Bayerische Staatssammlung für Paläontologie und Geologie, München, Germany
| |
Collapse
|
3
|
Groh SS, Upchurch P, Barrett PM, Day JJ. The phylogenetic relationships of neosuchian crocodiles and their implications for the convergent evolution of the longirostrine condition. Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Since their origin in the Late Triassic, crocodylomorphs have had a long history of evolutionary change. Numerous studies examined their phylogeny, but none have attempted to unify their morphological characters into a single, combined dataset. Following a comprehensive review of published character sets, we present a new dataset for the crocodylomorph clade Neosuchia consisting of 569 morphological characters for 112 taxa. For the first time in crocodylian phylogenetic studies, quantitative variation was treated as continuous data (82 characters). To provide the best estimate of neosuchian relationships, and to investigate the origins of longirostry, these data were analysed using a variety of approaches. Our results show that equally weighted parsimony and Bayesian methods cluster unrelated longirostrine forms together, producing a topology that conflicts strongly with their stratigraphic distributions. By contrast, applying extended implied weighting improves stratigraphic congruence and removes longirostrine clustering. The resulting topologies resolve the major neosuchian clades, confirming several recent hypotheses regarding the phylogenetic placements of particular species (e.g. Baryphracta deponiae as a member of Diplocynodontinae) and groups (e.g. Tethysuchia as non-eusuchian neosuchians). The longirostrine condition arose at least three times independently by modification of the maxilla and premaxilla, accompanied by skull roof changes unique to each longirostrine clade.
Collapse
Affiliation(s)
- Sebastian S Groh
- Department of Earth Sciences, University College London, London, UK
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Paul Upchurch
- Department of Earth Sciences, University College London, London, UK
| | - Paul M Barrett
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Julia J Day
- Department of Genetics, Environment and Evolution, University College London, London, UK
| |
Collapse
|
4
|
Godoy PL. Crocodylomorph cranial shape evolution and its relationship with body size and ecology. J Evol Biol 2019; 33:4-21. [DOI: 10.1111/jeb.13540] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/23/2019] [Accepted: 09/05/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Pedro L. Godoy
- Department of Anatomical Sciences Stony Brook University Stony Brook NY USA
| |
Collapse
|
5
|
Iijima M, Kubo T. Comparative morphology of presacral vertebrae in extant crocodylians: taxonomic, functional and ecological implications. Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zly096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Masaya Iijima
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, China
- Department of Natural History Sciences, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Tai Kubo
- The University Museum, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
6
|
Iijima M, Kubo T, Kobayashi Y. Comparative limb proportions reveal differential locomotor morphofunctions of alligatoroids and crocodyloids. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171774. [PMID: 29657781 PMCID: PMC5882705 DOI: 10.1098/rsos.171774] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/02/2018] [Indexed: 05/13/2023]
Abstract
Although two major clades of crocodylians (Alligatoroidea and Crocodyloidea) were split during the Cretaceous period, relatively few morphological and functional differences between them have been known. In addition, interaction of multiple morphofunctional systems that differentiated their ecology has barely been assessed. In this study, we examined the limb proportions of crocodylians to infer the differences of locomotor functions between alligatoroids and crocodyloids, and tested the correlation of locomotor and feeding morphofunctions. Our analyses revealed crocodyloids including Gavialis have longer stylopodia (humerus and femur) than alligatoroids, indicating that two groups may differ in locomotor functions. Fossil evidence suggested that alligatoroids have retained short stylopodia since the early stage of their evolution. Furthermore, rostral shape, an indicator of trophic function, is correlated with limb proportions, where slender-snouted piscivorous taxa have relatively long stylopodia and short overall limbs. In combination, trophic and locomotor functions might differently delimit the ecological opportunity of alligatoroids and crocodyloids in the evolution of crocodylians.
Collapse
Affiliation(s)
- Masaya Iijima
- Department of Natural History Sciences, Hokkaido University, N10W8 Kita-ku, Sapporo, Hokkaido, Japan
- Author for correspondence: Masaya Iijima e-mail:
| | - Tai Kubo
- The University Museum, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yoshitsugu Kobayashi
- Hokkaido University Museum, Hokkaido University, N10W8 Kita-ku, Sapporo, Hokkaido, Japan
| |
Collapse
|
7
|
Tschopp E. Nomenclature of Vertebral Laminae in Lizards, with Comments on Ontogenetic and Serial Variation in Lacertini (Squamata, Lacertidae). PLoS One 2016; 11:e0149445. [PMID: 26907769 PMCID: PMC4764367 DOI: 10.1371/journal.pone.0149445] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/01/2016] [Indexed: 11/19/2022] Open
Abstract
Vertebral laminae are bony ridges or sheets that connect important morphological landmarks on the vertebrae, like diapophyses or zygapophyses. They usually exhibit some serial variation throughout the column. A consistent terminology facilitates the morphological description of this variation, and the recognition of patterns that could be taxonomically significant and could serve as phylogenetic characters. Such a terminology was designed for saurischian dinosaurs, and has also been applied to other members of Archosauriformes. Herein, this terminology is applied for the first time to lizards (Squamata). Probably due to their generally smaller size compared to saurischian dinosaurs, lizards have less developed vertebral laminae. Some laminae could not be recognized in this group and others require new names to account for differences in basic vertebral morphology. For instance, the fusion of diapophysis and parapophysis in lacertids into a structure called synapophysis necessitates the creation of the new term synapophyseal laminae for both diapophyseal and parapophyseal laminae. An assessment of occurrence and serial variation in a number of lacertid species shows that some laminae develop throughout ontogeny or only occur in large-sized species, whereas the distribution of other laminae might prove to be taxonomically significant in future.
Collapse
Affiliation(s)
- Emanuel Tschopp
- Dipartimento di Scienze della Terra, Università di Torino, Torino, Italy
- GeoBioTec, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa, Caparica, Portugal
- Museu da Lourinhã, Lourinhã, Portugal
| |
Collapse
|