1
|
Ren S, Sun C, Zhai W, Wei W, Liu J. Gaining new insights into the etiology of ulcerative colitis through a cross-tissue transcriptome-wide association study. Front Genet 2024; 15:1425370. [PMID: 39092429 PMCID: PMC11291327 DOI: 10.3389/fgene.2024.1425370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Background Genome-wide association studies (GWASs) have identified 38 loci associated with ulcerative colitis (UC) susceptibility, but the risk genes and their biological mechanisms remained to be comprehensively elucidated. Methods Multi-marker analysis of genomic annotation (MAGMA) software was used to annotate genes on GWAS summary statistics of UC from FinnGen database. Genetic analysis was performed to identify risk genes. Cross-tissue transcriptome-wide association study (TWAS) using the unified test for molecular signatures (UTMOST) was performed to compare GWAS summary statistics with gene expression matrix (from Genotype-Tissue Expression Project) for data integration. Subsequently, we used FUSION software to select key genes from the individual tissues. Additionally, conditional and joint analysis was conducted to improve our understanding on UC. Fine-mapping of causal gene sets (FOCUS) software was employed to accurately locate risk genes. The results of the four genetic analyses (MAGMA, UTMOST, FUSION and FOCUS) were combined to obtain a set of UC risk genes. Finally, Mendelian randomization (MR) analysis and Bayesian colocalization analysis were conducted to determine the causal relationship between the risk genes and UC. To test the robustness of our findings, the same approaches were taken to verify the GWAS data of UC on IEU. Results Multiple correction tests screened PIM3 as a risk gene for UC. The results of Bayesian colocalization analysis showed that the posterior probability of hypothesis 4 was 0.997 and 0.954 in the validation dataset. MR was conducted using the inverse variance weighting method and two single nucleotide polymorphisms (SNPs, rs28645887 and rs62231924) were included in the analysis (p < 0.001, 95%CI: 1.45-1.89). In the validation dataset, MR result was p < 0.001, 95%CI: 1.19-1.72, indicating a clear causal relationship between PIM3 and UC. Conclusion Our study validated PIM3 as a key risk gene for UC and its expression level may be related to the risk of UC, providing a novel reference for further improving the current understanding on the genetic structure of UC.
Collapse
Affiliation(s)
- Shijie Ren
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Chaodi Sun
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Wenjing Zhai
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Wenli Wei
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jianping Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Department of Gastroenterology, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| |
Collapse
|
2
|
Li T, Liu F, Tan Y, Peng Y, Xu X, Yang Y. PIM3 regulates myocardial ischemia/reperfusion injury via ferroptosis. Genes Genomics 2024; 46:161-170. [PMID: 38148455 DOI: 10.1007/s13258-023-01475-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Myocardial ischemia/reperfusion (I/R) injury is closely related with cardiovascular diseases; however, the underlying pathogenic mechanisms remain not fully understood. This study sought to investigate the effect and mechanisms of PIM3 implicated in myocardial I/R injury using a rat model of myocardial I/R injury and a cell model of oxygen-glucose deprivation/reoxygenation (OGD/R) induction. METHODS The morphology changes were detected by HE staining while cell viability was accessed by the CCK-8 method. The characteristics of ferroptosis were evaluated by ROS production, MDA content, SOD level, iron content, TfR1, FTH1, and GPX4 expression. RESULTS Myocardial I/R operation increased myocardial tissue damage in rats, while OGD/R treatment reduced the viability of H9c2 cells. Both myocardial I/R operation and OGD/R stimulation increased ferroptosis, as demonstrated by elevated ROS, MDA, iron content, decreased SOD level, upregulation of TfR1, and downregulation of FTH1 and GPX4. Additionally, myocardial I/R modeling or OGD/R treatment enhanced the expression of PIM3. Silencing of PIM3 inhibited ferroptosis, which resulted in alleviated myocardial I/R-induced damage and improved H9c2 cell survival. CONCLUSIONS Our findings highlight a vital role of PIM3 in myocardial I/R injury, indicating that PIM3-targeting ferroptosis may be a promising target for the development of novel therapies of myocardial I/R injury-associated diseases.
Collapse
Affiliation(s)
- Ting Li
- Department of Cardiovascular Medicine, The First Affiliated Hosptal, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Fangyao Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hosptal, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Ying Tan
- Department of Cardiovascular Medicine, The First Affiliated Hosptal, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Yutao Peng
- Department of Cardiovascular Medicine, The First Affiliated Hosptal, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Xuefeng Xu
- Department of Cardiovascular Medicine, The First Affiliated Hosptal, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Yushan Yang
- School of Resource, Environment and Safety Engineering, Univerity of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
3
|
Feng F, Yang J, Chen A, Cui M, Li L. Long non-coding RNA long intergenic non-protein coding RNA 1232 promotes cell proliferation, migration and invasion in bladder cancer via modulating miR-370-5p/PIM3 axis. J Tissue Eng Regen Med 2022; 16:575-585. [PMID: 35338769 DOI: 10.1002/term.3291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/10/2022] [Accepted: 02/04/2022] [Indexed: 11/08/2022]
Abstract
Increasing evidences have suggested that long non-coding RNAs are critical regulators in the progression of tumor growth. Long intergenic non-protein coding RNA 1232 (LINC01232) was verified as an oncogene in multiple cancers. Nevertheless, its function in bladder cancer (BC) remains to be uncovered. In the current study, we detected LINC01232 expression utilizing quantitative real-time polymerase chain reaction (RT-qPCR) and discovered that LINC01232 was overexpressed in BC cell lines versus normal cell line. Besides, the effect of LINC01232 on BC cell behaviors was measured by colony formation, Cell Counting Kit-8 (CCK-8), transwell, TdT-mediated dUTP Nick-End Labeling and caspase-3/8 activity assays. Functionally, LINC01232 deficiency suppressed cell proliferation, migration and invasion. Next, miR-370-5p was proved to bind with LINC01232 by RNA pull down, RNA-binding protein immunoprecipitation (RIP) and luciferase reporter assays. Furthermore, PIM3 expression was negatively modulated by miR-370-5p and markedly increased in BC cell lines. Moreover, PIM3 silence repressed proliferation, migration and invasion but triggered apoptosis of BC cells. The rescue assays validated that upregulation of PIM3 recovered the effects of LINC01232 silence on the growth of BC cells. To summarize, our study manifested that LINC01232 accelerates BC progression by targeting miR-370-5p/PIM3 axis. Targeting LINC01232 might offer novel insight into BC treatment.
Collapse
Affiliation(s)
- Feng Feng
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Jing Yang
- Department of Central Sterile Supply, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Aiping Chen
- Department of Gastroenterology, Liaocheng People's Hospital, Liao Cheng, Shandong, China
| | - Meng Cui
- Department of Gynecology, Shandong Provincial Maternity and Childcare Hospital, Jinan, Shandong, China
| | - Lianjun Li
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
4
|
Crocco M, Panciroli M, Milanaccio C, Morerio C, Verrico A, Garrè ML, Di Iorgi N, Capra V. Case Report: The Emerging Role of Ring Chromosome 22 in Phelan-McDermid Syndrome With Atypical Teratoid/Rhabdoid Tumor: The First Child Treated With Growth Hormone. Front Neurol 2021; 12:741062. [PMID: 34777208 PMCID: PMC8585933 DOI: 10.3389/fneur.2021.741062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/04/2021] [Indexed: 01/05/2023] Open
Abstract
Atypical teratoid/rhabdoid tumors (AT/RTs) in the rhabdoid tumor predisposition syndromes are most often caused by germline mutations of the SMARCB1 gene located in chromosome 22q11.2. Although rarely, it can also result from the constitutional ring chromosome 22 (r22): during mitosis the ring chromosome may lead to an increased rate of somatic mutations, resulting in rhabdoid tumor predispositions when the tumor-suppressor gene SMARCB1 is involved. Individuals with r22 may present similar features as those with Phelan-McDermid syndrome (PMDS) due to 22q13.3 deletion, including the SHANK3 gene. Despite several reports on AT/RT in children with r22 and/or PMDS have been published, the role of constitutional r22 as new oncogenic mechanism for AT/RT is still under investigation. There is not a lot of data available on therapeutic and prognostic implications of r22 in AT/RT and PMDS. Herein, we present the first case of a child with constitutional r22, PMDS and AT/RT of the brain, who is a long term survivor and is been treated with growth hormone. We also describe an unexpected adverse reaction to midazolam.
Collapse
Affiliation(s)
- Marco Crocco
- Neuro-Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico Giannina Gaslini Institute, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Child and Maternal Health, University of Genova, Genoa, Italy
| | - Marta Panciroli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Child and Maternal Health, University of Genova, Genoa, Italy
| | - Claudia Milanaccio
- Neuro-Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico Giannina Gaslini Institute, Genoa, Italy
| | - Cristina Morerio
- Laboratory of Human Genetics, Istituto di Ricovero e Cura a Carattere Scientifico Giannina Gaslini Institute, Genoa, Italy
| | - Antonio Verrico
- Neuro-Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico Giannina Gaslini Institute, Genoa, Italy
| | - Maria Luisa Garrè
- Neuro-Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico Giannina Gaslini Institute, Genoa, Italy
| | - Natascia Di Iorgi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Child and Maternal Health, University of Genova, Genoa, Italy.,Department of Pediatrics, Istituto di Ricovero e Cura a Carattere Scientifico Giannina Gaslini Institute, Genoa, Italy
| | - Valeria Capra
- Medical Genetics Unit, Istituto di Ricovero e Cura a Carattere Scientifico Giannina Gaslini Institute, Genoa, Italy
| |
Collapse
|
5
|
Song W, Shi C. LncRNA RGMB-AS1 facilitates pancreatic cancer cell proliferation and migration but inhibits cell apoptosis via miR-574-3p/PIM3 axis. Am J Physiol Gastrointest Liver Physiol 2021; 321:G477-G488. [PMID: 34468207 DOI: 10.1152/ajpgi.00443.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 08/23/2021] [Indexed: 01/31/2023]
Abstract
Pancreatic cancer (PC) is among the most notorious malignancies worldwide. Long noncoding RNA (lncRNA) repulsive guidance molecule bone morphogenetic protein (BMP) coreceptor b antisense RNA 1 (RGMB-AS1) was an oncogene in glioma. However, the RGMB-AS1 function in PC remains largely unknown. Herein, quantitative real-time polymerase chain reaction was performed to analyze the expression of RGMB-AS1. We determined RGMB-AS1 influence on PC cell malignant behaviors via functional assays. Besides, we applied subcellular fractionation and fluorescence in situ hybridization (FISH) assays to confirm the cellular distribution of RGMB-AS1 in PC cells. We used mechanism assays to detect the regulatory axis of RGMB-AS1 in PC cells. Briefly, the level of RGMB-AS1 expression in PC cells was abnormally high. RGMB-AS1 knockdown impeded PC cell proliferation and migration, but induced cell apoptosis, and RGMB-AS1 overexpression led the opposite consequences. RGMB-AS1 acted as a competing endogenous RNA (ceRNA) to sequester miR-574-3p and thereby regulated Pim-3 proto-oncogene, serine/threonine kinase (PIM3) expression. Conclusively, our work revealed the cancer-promoting function of RGMB-AS1 in PC and that the regulatory mechanism of the RGMB-AS1/miR-574-3p/PIM3 axis might contribute to novel biomarker development in PC treatment.NEW & NOTEWORTHY RGMB-AS1 promotes PC cell proliferation, elevates PC cell migration capacity, inhibits PC cell apoptosis, and promotes PC cell proliferation and migration but inhibits cell apoptosis via targeting miR-574-3p. PIM3 is directly targeted by miR-574-3p.
Collapse
Affiliation(s)
- Wenchong Song
- Gastroenterology Division, Weihai Municipal Hospital, Weihai, China
| | - Chengjian Shi
- Department of Biliary Pancreatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Retraction. Anat Rec (Hoboken) 2021; 304:2897. [PMID: 34705328 DOI: 10.1002/ar.24809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Zhou Y, Zhou YN, Liu SX, Wang J, Ji R, Yan X. Effects of PIM3 in prognosis of colon cancer. Clin Transl Oncol 2021; 23:2163-2170. [PMID: 33928496 DOI: 10.1007/s12094-021-02624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/13/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE PIM kinase is called proto-oncogene, but there are less research on PIM family in colon cancer. This study was designed to explore the prognosis of PIM3 in colon cancer. METHODS In this study, we downloaded RNA-seq and clinical information of colon cancer from the Gene Expression Omnibus (GEO) database. Kaplan-Meier method was used for analyzing the impact of PIM3 on the survival of patients with colon cancer. Single-factor and multi-factor cox regression analysis were used for verifying the prognostic value of PIM3. Spearman correlation analysis was used for screening PIM3 related genes. Functional enrichment analysis was used for analyzing the biological functions and pathways in which PIM3 related genes may be involved. STRING online tools were used for building a co-expression network. Cytoscape was used for co-expression network visualization. RESULTS Compared with the low expression group, the patients in the PIM3 high expression group lived longer time. Single-factor and multi-factor cox regression analysis indicated that PIM3 was an independent prognostic factor for colon cancer. Sixty-two PIM3 related genes were screened, and GO and KEGG enrichment analyses suggested that PIM3 related genes might be involved in the MAPK and WNT pathways. The co-expression network showed a strong correlation between PIM3 and MLKL, MYL5, PPP3R1 and other genes. CONCLUSIONS PIM3 is an independent prognostic factor of colon cancer and may be a target for the diagnosis and treatment of colon cancer.
Collapse
Affiliation(s)
- Y Zhou
- Department of Geriatrics (II), The First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Y N Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, No.1 Donggangxi Road, Chengguan District, Lanzhou, 730000, People's Republic of China.
| | - S X Liu
- Department of Geriatrics (II), The First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - J Wang
- Department of Geriatrics (II), The First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - R Ji
- Department of Gastroenterology, The First Hospital of Lanzhou University, No.1 Donggangxi Road, Chengguan District, Lanzhou, 730000, People's Republic of China
| | - X Yan
- Department of Geriatrics (II), The First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| |
Collapse
|
8
|
Motylewska E, Braun M, Stępień H. High Expression of NEK2 and PIM1, but Not PIM3, Is Linked to an Aggressive Phenotype of Bronchopulmonary Neuroendocrine Neoplasms. Endocr Pathol 2020; 31:264-273. [PMID: 32504181 PMCID: PMC7395916 DOI: 10.1007/s12022-020-09629-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dysregulations of the NEK2 and PIM1-3 kinase signaling axes have been implicated in the pathogenesis of several cancers, including those with a neuroendocrine phenotype. However, their impact on bronchopulmonary neuroendocrine neoplasms (BP-NENs) has not been investigated. The aim of this pilot study was to determine mRNA and protein levels of NEK2, PIM1, and PIM3 in a group of 49 patients with BP-NENs: 11 typical carcinoids, 5 atypical carcinoids, 11 large cell neuroendocrine carcinomas, 22 small cell lung carcinomas (SCLC). The expression was measured using TaqMan-based RT-PCR and immunohistochemistry. NEK2 and PIM1 mRNA levels were higher in the SCLC patients than in the other BP-NEN groups (p < 0.001). There was an association between NEK2 mRNA and protein expression (p = 0.023) and elevated NEK2 mRNA levels were related to reduced survival in BP-NEN patients (p = 0.015). Patients with higher PIM1 protein expression had also diminished survival comparing with those with weak or no PIM1 expression (p = 0.037). Elevated NEK2 and PIM1 expression were related to aggressive tumor phenotype and indirectly affected the overall survival of BP-NEN patients. Our pilot study supports the need for future investigation of the biological function of NEK2 and PIM1 in BP-NEN transformation to verify the clinical value of our findings.
Collapse
Affiliation(s)
- Ewelina Motylewska
- Department of Immunoendocrinology, Chair of Endocrinology, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland.
| | - Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Henryk Stępień
- Department of Immunoendocrinology, Chair of Endocrinology, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| |
Collapse
|