1
|
Gurian KN, Guatelli‐Steinberg D, McGraw WS, Rychel J, O'Hara MC. Inter-Observer Processing and Measurement Error Are Low for 2D Dental Measurements on Shared microCT Scans. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2025; 186:e70001. [PMID: 39888217 PMCID: PMC11783346 DOI: 10.1002/ajpa.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/02/2025] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
OBJECTIVES Sharing micro-computed tomographic (μCT) scans of teeth increases data accessibility and reduces the need for repeated scans of any given specimen. However, the use of the same TIFF stacks or DICOMs by multiple individuals has the potential to introduce new sources of error. Here, we explore whether use of the same μCT scans by different persons produces comparable results. MATERIALS AND METHODS Worn (N = 11) and unworn (N = 4) Cercocebus atys upper molars (UM1 N = 8, UM2 N = 7) were μCT scanned using a Bruker Skyscan 1172 High Resolution Ex Vivo Scanner at a resolution of 22 μm. Two individuals (K.N.G. and M.C.O.) created a 2D mesial slice for each TIFF stack (tooth). Worn teeth were reconstructed by K.N.G. and M.C.O. Three researchers (M.C.O., K.N.G., and J.R.) measured tooth shape, linear enamel thickness, average enamel thickness, and relative enamel thickness (AET and RET). Inter-observer percent error was calculated for each measurement. Univariate ANOVAs were calculated to evaluate variance due to slice maker, reconstructor, tooth, and measurer when percent error averaged > 5%. RESULTS For unworn teeth, error was generally low and largely due to the person doing the measurement. For worn teeth, wear reconstructor was a statistically significant source of variation for AET and RET. DISCUSSION We found that (1) inter-observer error was generally low, (2) linear measurements are prone to error, (3) worn teeth did not present an additional source of error as compared to unworn teeth, and (4) different people can use the same μCT scans to reliably reconstruct, slice, and measure teeth.
Collapse
Affiliation(s)
- Kaita N. Gurian
- Department of AnthropologyOhio State UniversityColumbusOhioUSA
| | | | - W. Scott McGraw
- Department of AnthropologyOhio State UniversityColumbusOhioUSA
| | - Jess Rychel
- School of MedicineWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Mackie C. O'Hara
- Department of SociologyPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
2
|
Lozano M, Soler J, López-Onaindia D, Solés A, Julià R, Ceperuelo D, Lorenzo C, Soler N. Middle Pleistocene teeth from Arbreda Cave (Serinyà, northeastern Iberian Peninsula). AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e25037. [PMID: 39523570 DOI: 10.1002/ajpa.25037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES We report the discovery and description of three human teeth from the Middle Paleolithic archaeological levels of Arbreda Cave (Serinyà, Catalonia, NE Iberian Peninsula). MATERIALS AND METHODS The teeth, two molars (one right dm2 and one right M2) from Level N (older than 120 kyr) and one P3 from Level J (dated between 71 and 44 kyr), were morphologically described based on microCT images and compared with Neanderthal and Homo sapiens specimens. RESULTS The teeth belong to a minimum of three individuals: one adult and one infant from Level N and one juvenile from Level J. The premolar from Mousterian Level J, the best preserved of the three teeth, exhibits characteristics to those from our comparative sample of Homo neanderthalensis, such as the crown measurements, EDJ traits, enamel thickness and volume of the pulp cavity. DISCUSSION In contrast to the clear Neanderthal characteristics observed in the P3 from Level J, the high degree of dental wear and poor state of preservation precludes definitive taxonomic designations of the two teeth from Level N. However, the crown dimensions and some tissue proportions are consistent with a probable assignation to Homo neanderthalensis. The teeth from Level N come from a context of long and recurrent occupations of the cave, whereas the archaeological context of the tooth from Level J is indicative of short and seasonal occupations of the cave, which may indicate a change in the lifestyle strategies of the last Neanderthals of the Iberian Peninsula.
Collapse
Affiliation(s)
- Marina Lozano
- Geociencies Barcelona-CSIC, Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Barcelona, Spain
- Department of History and History of Art, Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Joaquim Soler
- Edifici Pia Almoina, Institut Català de Recerca en Patrimoni Cultural (ICRPC-CERCA), Girona, Spain
- Facultat de Lletres, Institut de Recerca Històrica, Universitat de Girona, Girona, Spain
| | | | - Alba Solés
- Facultat de Lletres, Institut de Recerca Històrica, Universitat de Girona, Girona, Spain
| | | | - Dolors Ceperuelo
- Department of Restorative Dentistry and Endodontics, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Carlos Lorenzo
- Geociencies Barcelona-CSIC, Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Barcelona, Spain
- Department of History and History of Art, Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Narcís Soler
- Facultat de Lletres, Institut de Recerca Històrica, Universitat de Girona, Girona, Spain
| |
Collapse
|
3
|
Yi Z, Zanolli C, Liao W, Liang H, Yao Y, Tian C, Wang K, Xu G, Wang W. Enamel thickness in the deciduous postcanine dentition of fossil and extant Pongo. J Hum Evol 2024; 191:103493. [PMID: 38714076 DOI: 10.1016/j.jhevol.2024.103493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 05/09/2024]
Affiliation(s)
- Zhixing Yi
- Institute of Cultural Heritage, Shandong University, Qingdao, 266237, China; Guangxi Academy of Sciences, Nanning, 530007, China
| | - Clément Zanolli
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, F-33600, Pessac, France
| | - Wei Liao
- Institute of Cultural Heritage, Shandong University, Qingdao, 266237, China
| | - Hua Liang
- Institute of Cultural Heritage, Shandong University, Qingdao, 266237, China
| | - Yanyan Yao
- Institute of Cultural Heritage, Shandong University, Qingdao, 266237, China; Anthropology Museum of Guangxi, Nanning, 530012, China
| | - Chun Tian
- Institute of Cultural Heritage, Shandong University, Qingdao, 266237, China
| | - Kun Wang
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, 221116, China
| | - Guilin Xu
- Guangxi Academy of Sciences, Nanning, 530007, China; Key Laboratory of Beibu Gulf Environment Change and Resources Utilization of Ministry of Education, Nanning Normal University, Nanning, 530001, China.
| | - Wei Wang
- Institute of Cultural Heritage, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
4
|
Cohen KE, Fitzpatrick AR, Huie JM. Dental Dynamics: A Fast New Tool for Quantifying Tooth and Jaw Biomechanics in 3D Slicer. Integr Org Biol 2024; 6:obae015. [PMID: 39045422 PMCID: PMC11263487 DOI: 10.1093/iob/obae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/07/2024] [Accepted: 05/08/2024] [Indexed: 07/25/2024] Open
Abstract
Teeth reveal how organisms interact with their environment. Biologists have long looked at the diverse form and function of teeth to study the evolution of feeding, fighting, and development. The exponential rise in the quantity and accessibility of computed tomography (CT) data has enabled morphologists to study teeth at finer resolutions and larger macroevolutionary scales. Measuring tooth function is no easy task, in fact, much of our mechanical understanding is derived from dental shape. Categorical descriptors of tooth shape such as morphological homodonty and heterodonty, overlook nuances in function by reducing tooth diversity for comparative analysis. The functional homodonty method quantitatively assesses the functional diversity of whole dentitions from tooth shape. This method uses tooth surface area and position to calculate the transmission of stress and estimates a threshold for functionally homodont teeth through bootstrapping and clustering techniques. However, some vertebrates have hundreds or thousands of teeth and measuring the shape and function of every individual tooth can be a painstaking task. Here, we present Dental Dynamics, a module for 3D Slicer that allows for the fast and precise quantification of dentitions and jaws. The tool automates the calculation of several tooth traits classically used to describe form and function (i.e., aspect ratio, mechanical advantage, force, etc.). To demonstrate the usefulness of our module we used Dental Dynamics to quantify 780 teeth across 20 salamanders that exhibit diverse ecologies. We coupled these data with the functional homodonty method to investigate the hypothesis that arboreal Aneides salamanders have novel tooth functions. Dental Dynamics provides a new and fast way to measure teeth and increases the accessibility of the functional homodonty method. We hope Dental Dynamics will encourage further theoretical and methodological development for quantifying and studying teeth.
Collapse
Affiliation(s)
- K E Cohen
- California State University Fullerton, Biological Science, Fullerton, CA 98231, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- University of Florida, Museum of Natural History, Gainesville, FL 32611, USA
| | - A R Fitzpatrick
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - J M Huie
- Department of Biology, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
5
|
Guatelli-Steinberg D, Gurian K, McGraw WS. Differences in maxillary premolar form between Cercocebus and Lophocebus. J Hum Evol 2024; 186:103467. [PMID: 37992631 DOI: 10.1016/j.jhevol.2023.103467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023]
Affiliation(s)
- Debbie Guatelli-Steinberg
- Department of Anthropology, The Ohio State University, 174 West 18th Ave, Columbus, OH, 43210, USA; School of Anthropology and Conservation, University of Kent, Canterbury, Kent, CT2 7NR, UK.
| | - Kaita Gurian
- Department of Anthropology, The Ohio State University, 174 West 18th Ave, Columbus, OH, 43210, USA
| | - W Scott McGraw
- Department of Anthropology, The Ohio State University, 174 West 18th Ave, Columbus, OH, 43210, USA
| |
Collapse
|
6
|
Guatelli-Steinberg D, Renteria C, Grimm JR, Maeret Carpenter I, Arola DD, McGraw WS. How mangabey molar form differs under routine vs. fallback hard-object feeding regimes. PeerJ 2023; 11:e16534. [PMID: 38099313 PMCID: PMC10720418 DOI: 10.7717/peerj.16534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023] Open
Abstract
Background Components of diet known as fallback foods are argued to be critical in shaping primate dental anatomy. Such foods of low(er) nutritional quality are often non-preferred, mechanically challenging resources that species resort to during ecological crunch periods. An oft-cited example of the importance of dietary fallbacks in shaping primate anatomy is the grey-cheeked mangabey Lophocebus albigena. This species relies upon hard seeds only when softer, preferred resources are not available, a fact which has been linked to its thick dental enamel. Another mangabey species with thick enamel, the sooty mangabey Cercocebus atys, processes a mechanically challenging food year-round. That the two mangabey species are both thickly-enameled suggests that both fallback and routine consumption of hard foods are associated with the same anatomical feature, complicating interpretations of thick enamel in the fossil record. We anticipated that aspects of enamel other than its thickness might differ between Cercocebus atys and Lophocebus albigena. We hypothesized that to function adequately under a dietary regime of routine hard-object feeding, the molars of Cercocebus atys would be more fracture and wear resistant than those of Lophocebus albigena. Methods Here we investigated critical fracture loads, nanomechanical properties of enamel, and enamel decussation in Cercocebus atys and Lophocebus albigena. Molars of Cercopithecus, a genus not associated with hard-object feeding, were included for comparison. Critical loads were estimated using measurements from 2D µCT slices of upper and lower molars. Nanomechanical properties (by nanoindentation) and decussation of enamel prisms (by SEM-imaging) in trigon basins of one upper second molar per taxon were compared. Results Protocone and protoconid critical fracture loads were significantly greater in Cercocebus atys than Lophocebus albigena and greater in both than in Cercopithecus. Elastic modulus, hardness, and elasticity index in most regions of the crown were greater in Cercocebus atys than in the other two taxa, with the greatest difference in the outer enamel. All taxa had decussated enamel, but that of Cercocebus atys uniquely exhibited a bundle of transversely oriented prisms cervical to the radial enamel. Quantitative comparison of in-plane and out-of-plane prism angles suggests that decussation in trigon basin enamel is more complex in Cercocebus atys than it is in either Lophocebus albigena or Cercopithecus cephus. These findings suggest that Cercocebus atys molars are more fracture and wear resistant than those of Lophocebus albigena and Cercopithecus. Recognition of these differences between Cercocebus atys and Lophocebus albigena molars sharpens our understanding of associations between hard-object feeding and dental anatomy under conditions of routine vs. fallback hard-object feeding and provides a basis for dietary inference in fossil primates, including hominins.
Collapse
Affiliation(s)
- Debbie Guatelli-Steinberg
- Department of Anthropology, The Ohio State University, Columbus, OH, United States of America
- School of Anthropology and Conservation, University of Kent, Canterbury, Kent, United Kingdom
| | - Cameron Renteria
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, United States of America
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States of America
| | - Jack R. Grimm
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, United States of America
| | - Izabela Maeret Carpenter
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, United States of America
| | - Dwayne D. Arola
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, United States of America
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States of America
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States of America
- Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, WA, United States of America
| | - W. Scott McGraw
- Department of Anthropology, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
7
|
Guatelli-Steinberg D, Schwartz GT, O'Hara MC, Gurian K, Rychel J, Dunham N, Cunneyworth PMK, Donaldson A, McGraw WS. Aspects of molar form and dietary proclivities of African colobines. J Hum Evol 2023; 180:103384. [PMID: 37201412 DOI: 10.1016/j.jhevol.2023.103384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/04/2023] [Accepted: 04/09/2023] [Indexed: 05/20/2023]
Abstract
This study investigates aspects of molar form in three African colobine species: Colobus polykomos, Colobus angolensis, and Piliocolobus badius. Our samples of C. polykomos and P. badius are from the Taï Forest, Ivory Coast; our sample of C. angolensis is from Diani, Kenya. To the extent that protective layers surrounding seeds are hard, we predicted that molar features related to hard-object feeding would be more pronounced in Colobus than they are Piliocolobus, as seed-eating generally occurs at higher frequencies in species of the former. We further predicted that among the colobines we studied, these features would be most pronounced in Taï Forest C. polykomos, which feeds on Pentaclethra macrophylla seeds encased within hard and tough seed pods. We compared overall enamel thickness, enamel thickness distribution, absolute crown strength, cusp tip geometry, and flare among molar samples. Sample sizes per species and molar type varied per comparison. We predicted differences in all variables except overall enamel thickness, which we expected would be invariant among colobines as a result of selection for thin enamel in these folivorous species. Of the variables we examined, only molar flare differed significantly between Colobus and Piliocolobus. Our findings suggest that molar flare, an ancient feature of cercopithecoid molars, was retained in Colobus but not in Piliocolobus, perhaps as a result of differences in the seed-eating proclivities of the two genera. Contrary to predictions, none of the aspects of molar form we investigated tracked current dietary differences in seed-eating between the two Colobus species. Finally, we explored the possibility that molar flare and absolute crown strength, when analyzed together, might afford greater differentiation among these colobine species. A multivariate t test of molar flare and absolute crown strength differentiated C. polykomos and P. badius, possibly reflecting known niche divergence between these two sympatric Taï Forest species.
Collapse
Affiliation(s)
- Debbie Guatelli-Steinberg
- Department of Anthropology, The Ohio State University, 174 West 18th Ave, Columbus, OH, 43210, USA; School of Anthropology and Conservation, University of Kent, Canterbury, Kent, CT2 7NR, UK.
| | - Gary T Schwartz
- Institute of Human Origins & School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, 85287, USA
| | - Mackie C O'Hara
- Department of Anthropology, The Ohio State University, 174 West 18th Ave, Columbus, OH, 43210, USA; School of Anthropology and Conservation, University of Kent, Canterbury, Kent, CT2 7NR, UK
| | - Kaita Gurian
- Department of Anthropology, The Ohio State University, 174 West 18th Ave, Columbus, OH, 43210, USA
| | - Jess Rychel
- Department of Anthropology, The Ohio State University, 174 West 18th Ave, Columbus, OH, 43210, USA
| | - Noah Dunham
- Division of Conservation and Science, Cleveland Metroparks Zoo, 4200 Wildlife Way, Cleveland, OH, 44109, USA; Department of Biology, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH, 44106, USA
| | | | - Andrea Donaldson
- Colobus Conservation, P.O. Box 5380-80401, Diani, Kenya; Department of Anthropology, Durham University, Durham, DH1 3LE, UK
| | - W Scott McGraw
- Department of Anthropology, The Ohio State University, 174 West 18th Ave, Columbus, OH, 43210, USA
| |
Collapse
|
8
|
Guatelli‐Steinberg D, Schwartz GT, O'Hara MC, Gurian K, Rychel J, McGraw WS. Molar form, enamel growth, and durophagy in Cercocebus and Lophocebus. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 179:386-404. [PMCID: PMC9796247 DOI: 10.1002/ajpa.24592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/20/2022] [Accepted: 06/29/2022] [Indexed: 05/29/2023]
Abstract
Objectives To test the hypothesis that differences in crown structure, enamel growth, and crown geometry in Cercocebus and Lophocebus molars covary with differences in the feeding strategies (habitual vs. fallback durophagy, respectively) of these two genera. Relative to Lophocebus molars, Cercocebus molars are predicted to possess features associated with greater fracture resistance and to differ in enamel growth parameters related to these features. Materials and Methods Sample proveniences are as follows: Cercocebus atys molars are from the Taï Forest, Ivory Coast; Lophocebus albigena molars are from a site north of Makoua, Republic of Congo; and a Lophocebus atterimus molar is from the Lomako Forest, Democratic Republic of Congo. For μCT scans on which aspects of molar form were measured, sample sizes ranged from 5 to 35 for Cercocebus and 3 to 12 for Lophocebus. A subsample of upper molars was physically sectioned to measure enamel growth variables. Results Partly as a function of their larger size, Cercocebus molars had significantly greater absolute crown strength (ACS) than Lophocebus molars, supporting the hypothesis. Greater crown heights in Cercocebus are achieved through faster enamel extension rates. Also supporting the hypothesis, molar flare and proportional occlusal basin enamel thickness were significantly greater in Cercocebus. Relative enamel thickness (RET), however, was significantly greater in Lophocebus. Discussion If ACS is a better predictor of fracture resistance than RET, then Cercocebus molars may be more fracture resistant than those of Lophocebus. Greater molar flare and proportional occlusal basin thickness might also afford Cercocebus molars greater fracture resistance.
Collapse
Affiliation(s)
| | - Gary T. Schwartz
- School of Human Evolution and Social Change and Institute of Human OriginsArizona State UniversityTempeArizonaUSA
| | - Mackie C. O'Hara
- Department of AnthropologyThe Ohio State UniversityColumbusOhioUSA
- School of Anthropology and ConservationUniversity of KentCanterburyUK
| | - Kaita Gurian
- Department of AnthropologyThe Ohio State UniversityColumbusOhioUSA
| | - Jess Rychel
- Department of AnthropologyThe Ohio State UniversityColumbusOhioUSA
| | - W. Scott McGraw
- Department of AnthropologyThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
9
|
O'Hara MC, Guatelli-Steinberg D. Reconstructing tooth crown heights and enamel caps: A comparative test of three existing methods with recommendations for their use. Anat Rec (Hoboken) 2022; 305:123-143. [PMID: 33843152 DOI: 10.1002/ar.24637] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 01/05/2023]
Abstract
Studies of enamel growth and thickness, whether in paleoanthropology, bioarchaeology, or primatology, require measurements of crown height (CH), cuspal enamel thickness (CET), average (AET), and/or regional enamel thickness (RegAET) on complete, unworn crowns. Yet because fully unworn crowns are uncommon, three methods to bolster sample sizes by reconstructing slightly worn teeth have been developed: Profile, Polynomial, and Pen Tool. Although these methods have been tested for accuracy, no study has yet directly compared the three methods to assess their performance across CH, CET, AET, and RegAET measurements. Moreover, it is currently unclear how accurate the methods are when reconstructing crowns with varying degrees of wear. The present study addresses this gap in our understanding of how these methods perform on four key dental measurements, evaluates the degree of wear for which accurate crown reconstructions can be completed, and offers recommendations for applying these methods. Here, the methods are compared on Paranthropus robustus mandibular molars, a sample chosen because it exhibits variable morphology, presenting a challenge for reconstruction methods. For minimally worn teeth, Profile, Polynomial, and Pen Tool methods can be employed (in that order) for all measurements except CET, which cannot be reliably measured on reconstructions. For teeth with wear that obliterates the nadir of the occlusal basin or dentin horns, CH and AET can be measured using Profile and Polynomial reconstructions; however, no other measurements or methods were reliable. Recommendations provided here will make it possible to increase sample sizes and replicability, enhancing studies of enamel thickness and growth.
Collapse
Affiliation(s)
- Mackie C O'Hara
- Department of Anthropology, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
10
|
Edgar HJH, Moes E, Willermet C, S Ragsdale C. Conventional microscopy makes perikymata count and spacing data feasible for large samples. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 176:321-331. [PMID: 34272873 DOI: 10.1002/ajpa.24369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/13/2021] [Accepted: 06/27/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Current methods of quantifying defects of dental enamel (DDE) include either gross or low-level examination for linear enamel hypoplasia, histological analysis of striae of Retzius, or scanning electron microscopy (SEM) of a tooth or a tooth cast. Gross examination has been shown to miss many defects. Other methods can be destructive, require transporting samples, and are expensive. Here, we show that digital light microscopy (DLM) can be used for the analysis of DDE as indicated by widened perikymata spacing (WPS). This method takes advantage of high-power (100×) microscopy, but is non-destructive, can be implemented almost anywhere, and is inexpensive. MATERIALS AND METHODS As proof of concept, we created photomontages of labial surfaces of five human canines from images made using DLM and SEM. We counted and measured the widths of all visible perikymata for each imaging modality and fit measurements to a negative curve representing the expected values for each tooth. We calculated residuals for each measurement. WPS were defined when R2 was in the 90th percentile, and were considered matched in DLM and SEM images when observed within the same decile of the tooth surface. RESULTS There were more WPS detected in the images derived from DLM than from SEM. Overall, the data derived from the two imaging modalities provided similar information about the frequency and timing of stress during dental development. CONCLUSIONS The method described here allows for DDE data acquisition as WPS from large samples, making feasible population-level studies that reflect sophisticated understanding of dental development.
Collapse
Affiliation(s)
- Heather J H Edgar
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, USA.,Office of the Medical Investigator, University of New Mexico, Albuquerque, New Mexico, USA
| | - Emily Moes
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Cathy Willermet
- Department of Sociology, Anthropology, and Social Work, Central Michigan University, Mt. Pleasant, Michigan, USA
| | - Corey S Ragsdale
- Department of Anthropology, Southern Illinois University, Edwardsville, Illinois, USA
| |
Collapse
|
11
|
Chai H. Determining primates bite force from histological tooth sections. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 171:683-703. [PMID: 31912901 DOI: 10.1002/ajpa.24003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 10/06/2019] [Accepted: 12/16/2019] [Indexed: 11/09/2022]
Abstract
OBJECTIVES The ability to accurately estimate bite force (BF) in extant and fossil primates is valuable to biological anthropologists. BF is generally evaluated using complex jaw musculature and lever arm analyses employing numerous assumptions and requiring complete cranial morphology. Here, a simple method to determine BF from data measured on histological sections of fossil teeth is proposed. METHODS Published sections of molar teeth encompassing 27 different extinct and extant primates dating back to as early as 17 million years ago were examined. Focusing on the cusp region, the extracted data include characteristic enamel thickness dc and dentin horn angle φ. The occlusal force needed to fracture a cusp, PF , was determined from these variables with the aid of a finite element stress analysis similarly to a previous study on postcanine human teeth. The bite force was obtained by linking BF to PF using a universal constant. RESULTS The measured variables dc and φ are conclusively linked. This link produces a virtually constant fracture force PF and in turn bite force BF for all cusps in the molar row. An explicit formula tying BF to dc and φ was derived. For nonhominin taxa the bite force, molar crown area, and body mass are found to be intimately related. The case of hominins is more involved. The so determined BF is gender-averaged, with the bite force of males estimated to be ≈12% greater than that of females. CONCLUSIONS The use of "fracture mechanics" concepts from mechanics of materials facilitates determination of critical bite force in primates based on characteristic enamel thickness dc and dentin horn angle φ as extracted from histological sections of molar teeth. This novel approach enables quantitative insight into the role played by crown area, body mass and bite force on evolutionary trends. The conclusive link between cuspal enamel thickness and dentin horn angle facilitates optimal food processing without hindering cusp resilience. The proposed approach may be extended to mammals having asymmetric cusp structures.
Collapse
Affiliation(s)
- Herzl Chai
- School of Mechanical Engineering, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|