1
|
Yu SY, Kim SH, Choo JH, Jang S, Kim J, Ahn K, Hwang SY. Potential Effects of Low-Level Toluene Exposure on the Nervous System of Mothers and Infants. Int J Mol Sci 2024; 25:6215. [PMID: 38892402 PMCID: PMC11172598 DOI: 10.3390/ijms25116215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
In day-to-day living, individuals are exposed to various environmentally hazardous substances that have been associated with diverse diseases. Exposure to air pollutants can occur during breathing, posing a considerable risk to those with environmental health vulnerabilities. Among vulnerable individuals, maternal exposure can negatively impact the mother and child in utero. The developing fetus is particularly vulnerable to environmentally hazardous substances, with potentially greater implications. Among air pollutants, toluene is neurotoxic, and its effects have been widely explored. However, the impact of low-level toluene exposure in daily life remains unclear. Herein, we evaluated 194 mothers and infants from the Growing children's health and Evaluation of Environment (GREEN) cohort to determine the possible effects of early-life toluene exposure on the nervous system. Using Omics experiments, the effects of toluene were confirmed based on epigenetic changes and altered mRNA expression. Various epigenetic changes were identified, with upregulated expression potentially contributing to diseases such as glioblastoma and Alzheimer's, and downregulated expression being associated with structural neuronal abnormalities. These findings were detected in both maternal and infant groups, suggesting that maternal exposure to environmental hazardous substances can negatively impact the fetus. Our findings will facilitate the establishment of environmental health policies, including the management of environmentally hazardous substances for vulnerable groups.
Collapse
Affiliation(s)
- So Yeon Yu
- Institute of Natural Science & Technology, Hanyang University ERICA, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea;
| | - Seung Hwan Kim
- Department of Bio-Nanotechnology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea;
| | - Jeong Hyeop Choo
- Department of Molecular & Life Science, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea;
| | - Sehun Jang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (S.J.)
| | - Jihyun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (S.J.)
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Seoul 06355, Republic of Korea
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (S.J.)
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Seoul 06355, Republic of Korea
| | - Seung Yong Hwang
- Department of Medicinal and Life Sciences, Hanyang University ERICA, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
- Department of Applied Artificial Intelligence, Hanyang University ERICA, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| |
Collapse
|
2
|
Lim JH, Chung BH, Lee SH, Jung HY, Choi JY, Cho JH, Park SH, Kim YL, Kim CD. Omics-based biomarkers for diagnosis and prediction of kidney allograft rejection. Korean J Intern Med 2022; 37:520-533. [PMID: 35417937 PMCID: PMC9082440 DOI: 10.3904/kjim.2021.518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/11/2022] [Indexed: 11/27/2022] Open
Abstract
Kidney transplantation is the preferred treatment for patients with end-stage kidney disease, because it prolongs survival and improves quality of life. Allograft biopsy is the gold standard for diagnosing allograft rejection. However, it is invasive and reactive, and continuous monitoring is unrealistic. Various biomarkers for diagnosing allograft rejection have been developed over the last two decades based on omics technologies to overcome these limitations. Omics technologies are based on a holistic view of the molecules that constitute an individual. They include genomics, transcriptomics, proteomics, and metabolomics. The omics approach has dramatically accelerated biomarker discovery and enhanced our understanding of multifactorial biological processes in the field of transplantation. However, clinical application of omics-based biomarkers is limited by several issues. First, no large-scale prospective randomized controlled trial has been conducted to compare omics-based biomarkers with traditional biomarkers for rejection. Second, given the variety and complexity of injuries that a kidney allograft may experience, it is likely that no single omics approach will suffice to predict rejection or outcome. Therefore, integrated methods using multiomics technologies are needed. Herein, we introduce omics technologies and review the latest literature on omics biomarkers predictive of allograft rejection in kidney transplant recipients.
Collapse
Affiliation(s)
- Jeong-Hoon Lim
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - Byung Ha Chung
- Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Sang-Ho Lee
- Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul,
Korea
| | - Hee-Yeon Jung
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - Ji-Young Choi
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - Jang-Hee Cho
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - Sun-Hee Park
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - Yong-Lim Kim
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - Chan-Duck Kim
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| |
Collapse
|
3
|
New Insights from Metabolomics in Pediatric Renal Diseases. CHILDREN 2022; 9:children9010118. [PMID: 35053744 PMCID: PMC8774568 DOI: 10.3390/children9010118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 12/11/2022]
Abstract
Renal diseases in childhood form a spectrum of different conditions with potential long-term consequences. Given that, a great effort has been made by researchers to identify candidate biomarkers that are able to influence diagnosis and prognosis, in particular by using omics techniques (e.g., metabolomics, lipidomics, genomics, and transcriptomics). Over the past decades, metabolomics has added a promising number of ‘new’ biomarkers to the ‘old’ group through better physiopathological knowledge, paving the way for insightful perspectives on the management of different renal diseases. We aimed to summarize the most recent omics evidence in the main renal pediatric diseases (including acute renal injury, kidney transplantation, chronic kidney disease, renal dysplasia, vesicoureteral reflux, and lithiasis) in this narrative review.
Collapse
|
4
|
Singh R, Singh PK, Kumar R, Kabir MT, Kamal MA, Rauf A, Albadrani GM, Sayed AA, Mousa SA, Abdel-Daim MM, Uddin MS. Multi-Omics Approach in the Identification of Potential Therapeutic Biomolecule for COVID-19. Front Pharmacol 2021; 12:652335. [PMID: 34054532 PMCID: PMC8149611 DOI: 10.3389/fphar.2021.652335] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/21/2021] [Indexed: 02/05/2023] Open
Abstract
COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has a disastrous effect on mankind due to the contagious and rapid nature of its spread. Although vaccines for SARS-CoV-2 have been successfully developed, the proven, effective, and specific therapeutic molecules are yet to be identified for the treatment. The repurposing of existing drugs and recognition of new medicines are continuously in progress. Efforts are being made to single out plant-based novel therapeutic compounds. As a result, some of these biomolecules are in their testing phase. During these efforts, the whole-genome sequencing of SARS-CoV-2 has given the direction to explore the omics systems and approaches to overcome this unprecedented health challenge globally. Genome, proteome, and metagenome sequence analyses have helped identify virus nature, thereby assisting in understanding the molecular mechanism, structural understanding, and disease propagation. The multi-omics approaches offer various tools and strategies for identifying potential therapeutic biomolecules for COVID-19 and exploring the plants producing biomolecules that can be used as biopharmaceutical products. This review explores the available multi-omics approaches and their scope to investigate the therapeutic promises of plant-based biomolecules in treating SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Pradhyumna Kumar Singh
- Plant Molecular Biology and Biotechnology Division, Council of Scientific and Industrial Research- National Botanical Research Institute (CSIR-NBRI), Lucknow, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | | | - Mohammad Amjad Kamal
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoics, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| |
Collapse
|
5
|
Singh R, Singh PK, Kumar R, Kabir MT, Kamal MA, Rauf A, Albadrani GM, Sayed AA, Mousa SA, Abdel-Daim MM, Uddin MS. Multi-Omics Approach in the Identification of Potential Therapeutic Biomolecule for COVID-19. Front Pharmacol 2021. [PMID: 34054532 DOI: 10.3389/fphar2021652335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has a disastrous effect on mankind due to the contagious and rapid nature of its spread. Although vaccines for SARS-CoV-2 have been successfully developed, the proven, effective, and specific therapeutic molecules are yet to be identified for the treatment. The repurposing of existing drugs and recognition of new medicines are continuously in progress. Efforts are being made to single out plant-based novel therapeutic compounds. As a result, some of these biomolecules are in their testing phase. During these efforts, the whole-genome sequencing of SARS-CoV-2 has given the direction to explore the omics systems and approaches to overcome this unprecedented health challenge globally. Genome, proteome, and metagenome sequence analyses have helped identify virus nature, thereby assisting in understanding the molecular mechanism, structural understanding, and disease propagation. The multi-omics approaches offer various tools and strategies for identifying potential therapeutic biomolecules for COVID-19 and exploring the plants producing biomolecules that can be used as biopharmaceutical products. This review explores the available multi-omics approaches and their scope to investigate the therapeutic promises of plant-based biomolecules in treating SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Pradhyumna Kumar Singh
- Plant Molecular Biology and Biotechnology Division, Council of Scientific and Industrial Research- National Botanical Research Institute (CSIR-NBRI), Lucknow, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | | | - Mohammad Amjad Kamal
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoics, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| |
Collapse
|
6
|
Sutherland MR. Introduction to a special issue on kidney development and disease. Anat Rec (Hoboken) 2020; 303:2507-2510. [PMID: 32613692 DOI: 10.1002/ar.24467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
Enriching our understanding of the anatomy of the kidneys, in development, health, and disease, has been the primary focus of Professor John Bertram's distinguished research career to date. Among other notable achievements, his landmark analyses of nephron number in over 400 human kidneys (the Monash Series), and his refinement of stereological techniques for renal structural analyses, have proven him an international leader in renal anatomy research. In this Special Issue, we (some of John's collaborators, colleagues, and former students) celebrate John's career with a series of 20 review and original research articles relevant to his expertise: (a) renal anatomy, physiology, and pathology, (b) kidney development, podocyte biology, and applications of renal stem cells, (c) renal developmental programming, and (d) contemporary methodologies in renal research; his accomplishments as a Head (Chair) of an Anatomy Department are also illustrated. We hope that this collection will serve as both an important resource, and a source of inspiration, to renal anatomy researchers and educators alike.
Collapse
Affiliation(s)
- Megan R Sutherland
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|