1
|
Wu S, Liu K, Huang X, Sun Q, Wu X, Mehmood K, Li Y, Zhang H. Molecular mechanism of miR-203a targeting Runx2 to regulate thiram induced-chondrocyte development. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105817. [PMID: 38582587 DOI: 10.1016/j.pestbp.2024.105817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/14/2024] [Accepted: 02/06/2024] [Indexed: 04/08/2024]
Abstract
Thiram is a kind of organic compound, which is commonly used for sterilization, insecticidal and deodorization in daily life. Its toxicology has been broadly studied. Recently, more and more microRNAs have been shown to participate in the regulation of cartilage development. However, the potential mechanism by which microRNA regulates chondrocyte growth is still unclear. Our experiments have demonstrated that thiram can hamper chondrocytes development and cause a significant increase in miR-203a content in vitro and in vivo trials. miR-203a mimic significantly decrease in mRNA and protein expression of Wnt4, Runx2, COL2A1, β-catenin and ALP, and significantly enhance the mRNA and protein levels of GSK-3β. It has been observed that overexpression of miR-203a hindered chondrocytes development. In addition, Runx2 was confirmed to be a direct target of miR-203a by dual luciferase report gene assay. Transfection of si-Runx2 into chondrocytes reveals that significant downregulation of genes is associated with cartilage development. Overall, these results suggest that overexpression of miR-203a inhibits the expression of Runx2. These findings are conducive to elucidate the mechanism of chondrocytes dysplasia induced by thiram and provide new research ideas for the toxicology of thiram.
Collapse
Affiliation(s)
- Shouyan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Kai Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojuan Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Qiuyu Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaomei Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Pakistan 63100
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Xia ZY, Liu L, Kuok CF, Wang XL, Shi D, Ma Q, Cheng XY, Wang GL, Li MJ, Zheng QS, Liu XN, Li DF, Li BH. Loureirin A Promotes Cell Differentiation and Suppresses Migration and Invasion of Melanoma Cells via WNT and AKT/mTOR Signaling Pathways. Biol Pharm Bull 2024; 47:486-498. [PMID: 38199251 DOI: 10.1248/bpb.b23-00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Resina Draconis is a traditional Chinese medicine, with the in-depth research, its medicinal value in anti-tumor has been revealed. Loureirin A is extracted from Resina Draconis, however, research on the anti-tumor efficacy of Loureirin A is rare. Herein, we investigated the function of Loureirin A in melanoma. Our research demonstrated that Loureirin A inhibited the proliferation of and caused G0/G1 cell cycle arrest in melanoma cells in a concentration-dependent manner. Further study showed that the melanin content and tyrosinase activity was enhanced after Loureirin A treatment, demonstrated that Loureirin A promoted melanoma cell differentiation, which was accompanied with the reduce of WNT signaling pathway. Meanwhile, we found that Loureirin A suppressed the migration and invasion of melanoma cells through the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway. Taken together, this study demonstrated for the first time the anti-tumor effects of Loureirin A in melanoma cells, which provided a novel therapeutic strategy against melanoma.
Collapse
Affiliation(s)
- Zi-Yi Xia
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University
| | - Ling Liu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University
| | - Chiu-Fai Kuok
- Faculty of Health Sciences and Sports, Macao Polytechnic University
| | - Xue-Li Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University
| | - Dan Shi
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University
| | - Quan Ma
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University
| | - Xiao-Yang Cheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University
| | - Guo-Li Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University
| | - Min-Jing Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University
| | - Qiu-Sheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University
| | - Xiao-Na Liu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University
| | - De-Fang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University
| | - Bo-Han Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University
| |
Collapse
|
3
|
Ye S, Si W, Qin W, Yang L, Luo Z, Li Z, Xie Y, Pan H, Li X, Huang Z, Zhu M, Chen D. Atractylodes lancea volatile oils target ADAR2-miR-181a-5p signaling to mesenchymal stem cell chondrogenic differentiation. Anat Rec (Hoboken) 2023; 306:3006-3020. [PMID: 35446511 DOI: 10.1002/ar.24930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/17/2022] [Accepted: 03/20/2022] [Indexed: 11/07/2022]
Abstract
Atractylodeslancea Rhizoma (Rhizoma atractylodis [RA]) has long been recommended for the treatment of arthritis in traditional Chinese medicine, but its mechanism of action is still unclear. RA contains a large amount of Atractylodes lancea volatile oils (Atr). In this study, we investigated whether Atr can promote mesenchymal stem cells (MSCs) chondrogenic differentiation. The Atr were extracted from RA by steam distillation method, and the effect of Atr on MSCs was detected by the CCK8 assay. The optimal concentration of Atr for MSCs cultivation was 3 μg/ml. The differentially expressed miR-181a-5p was screened by miRNA microarray assay, and its mimics and inhibitors were transfected into MSCs. It was found that the inhibitor of miR-181a-5p could upregulate cartilage-specific genes such as SOX9, COL2A1, and ACAN. Meanwhile, we also found that the expression of gene editing enzyme ADAR2 was significantly increased in the chondrogenic differentiation of MSCs induced by Atr, and the bases of precursor sequence of miR-181a-5p were changed from A to G. After ADAR2 deletion, the expression of cartilage-specific genes was significantly down-regulated and the precursor sequence bases of miR-181a-5p were not changed. Bioinformatics analysis revealed that the predicted target gene of miR-181a-5p was yingyang1 (YY1), and the targeting relationship was verified by dual-luciferase reporter assay. After deleting YY1, the expression of cartilage-specific genes was significantly down-regulated. In conclusion, our study demonstrated that Atr can promote chondrogenic differentiation of MSC through regulation of the ADAR2-miR-181a-5p signaling pathway. This may provide a new insight into the possible mechanism of traditional Chinese medicine (Atr) in treating inflammatory joint diseases.
Collapse
Affiliation(s)
- Shanyu Ye
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Wenwen Si
- Shenzhen BaoAn Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Wei Qin
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Yang
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziwei Luo
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhen Li
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yulu Xie
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hao Pan
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinrong Li
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zifeng Huang
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Meiling Zhu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Dongfeng Chen
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Wang H, Xu W. A Promotion Role of MIR31 in the Process of Vocal Fold Wound Healing. PPAR Res 2023; 2023:4672827. [PMID: 37588448 PMCID: PMC10427237 DOI: 10.1155/2023/4672827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/16/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023] Open
Abstract
The role of MIR31 in the wound healing process, specifically in vocal fold wound healing (VFWH), remains uncertain despite its potential to facilitate the process. In this study, we first constructed a literature-based pathway to examine both the positive and negative effects of MIR31 on wound healing. We then conducted animal experiments on 20 rats to investigate MIR31 expression at different time points (1, 4, and 8 weeks) after vocal fold injury. Co-expression analysis and pathway analysis were performed to explore the potential function of MIR31 in VFWH. The literature-based pathway suggested that MIR31 could both impede and promote the wound healing process by regulating 14 and 47 wound healing upstream regulators, respectively. However, the rat experiment indicated that MIR31 expression significantly increased after vocal fold injury (p < 5.65 × 10-5) but decreased in the late stage of VFWH compared with the early and middle stages (p < 5.40 × 10-3. Strong co-expression was observed between MIR31 and 17 VFWH-significant genes (Pearson correlation coefficient ∈ (0.63, 0.83)), primarily involved in collagen production. Overall, our findings suggest that MIR31 plays a critical role in VFWH, particularly in collagen synthesis and other biological processes, which warrant further investigation.
Collapse
Affiliation(s)
- Haizhou Wang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Otolaryngology-Head and Neck Surgery, Ministry of Education of China, Beijing, China
| | - Wen Xu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Otolaryngology-Head and Neck Surgery, Ministry of Education of China, Beijing, China
| |
Collapse
|
5
|
Yang H, Xu H, Wang Z, Li X, Wang P, Cao X, Xu Z, Lv D, Rong Y, Chen M, Tang B, Hu Z, Deng W, Zhu J. Analysis of miR-203a-3p/SOCS3-mediated induction of M2 macrophage polarization to promote diabetic wound healing based on epidermal stem cell-derived exosomes. Diabetes Res Clin Pract 2023; 197:110573. [PMID: 36764461 DOI: 10.1016/j.diabres.2023.110573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/16/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND The development of therapeutic strategies to improve wound healing in individual diabetic patients remains challenging. Stem cell-derived exosomes represent a promising nanomaterial, and microRNAs (miRNAs) can be isolated from them. It is important to identify the potential therapeutic role of specific miRNAs, given that miRNAs can play a therapeutic role. METHODS qPCR, flow cytometry, and western blotting were used to verify the effect of epidermal stem cell-derived exosomes (EpiSC-EXOs) on M2 macrophage polarization and SOCS3 expression. By screening key miRNAs targeting SOCS3 in EpiSC-EXOs by high-throughput sequencing, we verified the mechanism in vitro. Finally, an animal model was used to verify the effect of promoting healing. RESULTS The use of EpiSC-EXOs reduced SOCS3 expression and promoted M2 macrophage polarization. The abundant miR-203a-3p present in the EpiSC-EXOs specifically bound to SOCS3 and activated the JAK2/STAT3 signaling pathway to induce M2 macrophage polarization. Treatment of the db/db mouse wound model with miR-203a-3p agomir exerted a pro-healing effect. CONCLUSIONS Our results demonstrated that the abundant miR-203a-3p present in EpiSC-EXOs can promote M2 macrophage polarization by downregulating SOCS3 and suggested that diabetic wounds can obtain better healing effects through this mechanism.
Collapse
Affiliation(s)
- Hao Yang
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Hailin Xu
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Zhiyong Wang
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Xiaohui Li
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Peng Wang
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Xiaoling Cao
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Zhongye Xu
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Dongming Lv
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Yanchao Rong
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Miao Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Bing Tang
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Zhicheng Hu
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China.
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| | - Jiayuan Zhu
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China.
| |
Collapse
|
6
|
miR-27a Targeting PIK3R3 Regulates the Proliferation and Apoptosis of Sheep Hair Follicle Stem Cells. Animals (Basel) 2022; 13:ani13010141. [PMID: 36611750 PMCID: PMC9817964 DOI: 10.3390/ani13010141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
Micro RNAs are regulatory factors in tissue development, organ formation, cell growth, apoptosis and other biological processes. In particular, several miRNAs are related to the development of hair follicles. Here, we investigated the effect of the targeting of PIK3R3 by miR-27a on the AKT/MTOR pathway and on the proliferation and apoptosis of hair follicle stem cells (HFSCs) in sheep. Knockdown of the expression of PIK3R3 was found to significantly inhibit the proliferation and promote the apoptosis of HFSCs. Similarly, a miR-27a mimic significantly inhibited the proliferation and promoted the apoptosis of HFSCs. The miR-27a mimic was also shown to significantly inhibit the expression of PIK3R3, AKT, and MTOR and the phosphorylation of AKT and MTOR, while a miR-27a inhibitor increased the expression of these genes. The presence of an miR-27a binding site in the 3' UTR of PIK3R3 was identified by a bioinformatics analysis, and the interaction was verified with a dual-luciferase reporter assay. The expression of PIK3R3 mRNA and protein was negatively correlated with the presence of miR-27a, which suggests that this interaction may be involved in the biological impacts on proliferation and apoptosis. Thus, this study demonstrates that miR-27a plays a potential role in the proliferation and apoptosis of sheep hair follicle stem cells by targeting PIK3R3, which can be used to design new methods to improve sheep wool.
Collapse
|
7
|
Wu X, Wang J, Kang Y, Wang Q, Qu J, Sun X, Ji D, Li Y. Regulation of Proliferation and Apoptosis of Hair Follicle Stem Cells by miR-145-5p in Yangtze River Delta White Goats. Genes (Basel) 2022; 13:1973. [PMID: 36360210 PMCID: PMC9689699 DOI: 10.3390/genes13111973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/14/2024] Open
Abstract
Yangtze River Delta white goats are the sole goat breed producing brush hair of high quality. The gene DUSP6 has been extensively studied in tumor cells but rarely in hair follicle stem cells (HFSCs). Per the previous sequencing data, it was determined that DUSP6 expression was up-regulated in superior-quality brush hair tissues, confirming it as a candidate gene associated with this trait. The targeting relationship of miR-145-5p with DUSP6 was determined based on online database prediction and was authenticated using a dual-luciferase gene reporter assay and quantitative reverse-transcription PCR (RT-qPCR). The regulatory effect of miR-145-5p on the growth of HFSCs was determined by targeting DUSP6 with RT-qPCR, 5-ethynyl-2'-deoxyuridine assays, Western blotting, and flow cytometry. The proliferation of HFSCs was inhibited and their apoptosis capacity was enhanced due to the presence of miR-145-5p. Therefore, it was proposed that this may have occurred through a repression effect of DUSP6 on the MAPK signaling pathway. The regulatory network of the HFSCs can be further understood using the theoretical basis established by the findings derived from this study.
Collapse
Affiliation(s)
- Xi Wu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jian Wang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yan Kang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qiang Wang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jingwen Qu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaomei Sun
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Dejun Ji
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yongjun Li
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
8
|
Jiang Y, Liu H, Zou Q, Li S, Ding X. miR-29a-5p Inhibits Prenatal Hair Placode Formation Through Targeting EDAR by ceRNA Regulatory Network. Front Cell Dev Biol 2022; 10:902026. [PMID: 35646897 PMCID: PMC9133881 DOI: 10.3389/fcell.2022.902026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Hair placode formation is an important stage of hair follicle morphogenesis and it is a complex process facilitated by non-coding RNAs. In this study, we conducted whole transcriptome sequencing analysis of skin, heart, liver, lung, and kidney tissues of day 41 (E41) normal and hairless pig embryos, and respectively detected 15, 8, and 515 skin-specific differentially expressed (DE) lncRNAs, miRNAs, and mRNAs. Furthermore, 18 competing endogenous RNA (ceRNA) networks were constructed. Following weighted gene co-expression network analysis (WGCNA) of stages E39, E41, E45, E52, and E60, between normal and hairless pig embryos, only two ceRNAs (lncRNA2162.1/miR-29a-5p/BMPR1b and lncRNA627.1/miR-29a-5p/EDAR) that showed period-specific differential expression in E41 skin were retained. Dual-luciferase reporter assays further indicated that EDAR was a direct, functioning target of miR-29a-5p and that no binding site was found in BMPR1b. Moreover, miR-29a-5p overexpression inhibited the mRNA and protein expression of EDAR while no significant differential expression of BMPR1b was detected. In addition, over-expressed lncRNA627.1 reduces the expression of miR-29a-5p and increase EDAR expression while inhibits lncRNA627.1 resulted in a opposite expression trend. Cell proliferation result demonstrated that lower expression of EDAR and lncRNA627.1 inhibited hair placode precursor cells (HPPCs) proliferation in a manner similar to that shown by over-expressed miR-29a-5p. This study identified that miR-29a-5p inhibited HPPCs proliferation via the suppression of EDAR expression in the EDA/EDAR signaling pathway, while lncRNA627.1 rescues EDAR expression. Our study provides a basis for a better understanding of the mechanisms underlying the ceRNA complex, miR29a-5p/EDAR/lncRNA627.1, that could regulate hair placode formation, which may help decipher diseases affecting human hair.
Collapse
Affiliation(s)
- Yao Jiang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Huatao Liu
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Quan Zou
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shujuan Li
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangdong Ding
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Xiangdong Ding,
| |
Collapse
|
9
|
Kong J, Zhou X, Lu J, Han Q, Ouyang X, Chen D, Liu A. Maclurin Promotes the Chondrogenic Differentiation of Bone Marrow Mesenchymal Stem Cells by Regulating miR-203a-3p/Smad1. Cell Reprogram 2022; 24:9-20. [PMID: 35180001 DOI: 10.1089/cell.2021.0122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) differentiate into chondrocytes under appropriate conditions, providing a method for the treatment of bone- and joint-related diseases. Previously, we found that mulberry (Morus nigra) promoted the chondrogenic differentiation of BMSCs. Although the mechanism of action and active ingredients remain unknown, several studies describe the involvement of micro-RNAs. We obtained BMSCs from the bone marrow of Sprague Dawley rats. Cell Counting Kit-8 assays showed that maclurin (25 μg/mL) treatment was not toxic to BMSCs, and compared with untreated controls, maclurin upregulated Sox9 and Col2a expression. Quantitative-PCR revealed that miR-203a-3p levels decreased significantly during chondrogenic differentiation of BMSCs promoted by maclurin. Compared with treatment with an miR-203a-3p inhibitor, miR-203a-3p mimic inhibited expression of Sox9 and Col2a as evidenced by immunofluorescence staining and Western blotting. Smad1 was identified as a key target gene of miR-203a-3p according to biological-prediction software, and miR-203a-3p negatively regulated its transcription and translation in the dual-luciferase reporter gene assay and Western blotting. Sox9 and Col2a expression was downregulated following transfection of short interfering Smad1 (siSmad1) plasmids into BMSCs. We elucidated how maclurin promotes the chondrogenic differentiation of BMSCs by regulating miR-203a-3p/Smad1, which provides a strategy for future exploration of osteoarthritis therapy through cell transplantation.
Collapse
Affiliation(s)
- Jiechen Kong
- Center for Experimental Teaching, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xianxi Zhou
- Center for Experimental Teaching, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jianghua Lu
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qianting Han
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiyan Ouyang
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Dongfeng Chen
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Aijun Liu
- Center for Experimental Teaching, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Yan H, Jin M, Li Y, Gao Y, Ding Q, Wang X, Zeng W, Chen Y. miR-1 Regulates Differentiation and Proliferation of Goat Hair Follicle Stem Cells by Targeting IGF1R and LEF1 Genes. DNA Cell Biol 2022; 41:190-201. [PMID: 35007429 DOI: 10.1089/dna.2021.0288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hair follicle stem cells (HFSCs) play a significant role in hair development. miR-1 has been reported as an important regulatory factor that affects hair follicle growth and development, but its regulatory mechanism on HFSC development remains unknown. In this study, the molecular mechanism of miR-1 in regulating HFSC proliferation and differentiation was investigated. High-throughput RNA-seq and integrated analysis were performed to identify differentially transcribed mRNAs and microRNAs (miRNAs) in HFSCs co-cultured with dermal papilla cells (named dHFSCs) and control HFSCs. We then determined the molecular function of miR-1 in HFSCs. Compared with HFSCs, 13 differentially transcribed miRNAs were identified in dHFSCs. The in vitro results indicated that the overtranscription of miR-1 inhibited HFSC proliferation, but enhanced HFSC differentiation by targeting IGF1R and LEF1 genes. This study provides new insights into the molecular mechanisms of HFSC development. Approval ID (2014ZX08008-002).
Collapse
Affiliation(s)
- Hailong Yan
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, China
- Shanxi key Laboratory of Inflammatory Neurodegenerative Disease, Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Miaohan Jin
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yan Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ye Gao
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, China
- Shanxi key Laboratory of Inflammatory Neurodegenerative Disease, Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Qiang Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wenxian Zeng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
11
|
Papukashvili D, Rcheulishvili N, Liu C, Xie F, Tyagi D, He Y, Wang PG. Perspectives on miRNAs Targeting DKK1 for Developing Hair Regeneration Therapy. Cells 2021; 10:2957. [PMID: 34831180 PMCID: PMC8616136 DOI: 10.3390/cells10112957] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 02/08/2023] Open
Abstract
Androgenetic alopecia (AGA) remains an unsolved problem for the well-being of humankind, although multiple important involvements in hair growth have been discovered. Up until now, there is no ideal therapy in clinical practice in terms of efficacy and safety. Ultimately, there is a strong need for developing a feasible remedy for preventing and treating AGA. The Wnt/β-catenin signaling pathway is critical in hair restoration. Thus, AGA treatment via modulating this pathway is rational, although challenging. Dickkopf-related protein 1 (DKK1) is distinctly identified as an inhibitor of canonical Wnt/β-catenin signaling. Thus, in order to stimulate the Wnt/β-catenin signaling pathway, inhibition of DKK1 is greatly demanding. Studying DKK1-targeting microRNAs (miRNAs) involved in the Wnt/β-catenin signaling pathway may lay the groundwork for the promotion of hair growth. Bearing in mind that DKK1 inhibition in the balding scalp of AGA certainly makes sense, this review sheds light on the perspectives of miRNA-mediated hair growth for treating AGA via regulating DKK1 and, eventually, modulating Wnt/β-catenin signaling. Consequently, certain miRNAs regulating the Wnt/β-catenin signaling pathway via DKK1 inhibition might represent attractive candidates for further studies focusing on promoting hair growth and AGA therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunjiao He
- School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China; (D.P.); (N.R.); (C.L.); (F.X.); (D.T.)
| | - Peng George Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China; (D.P.); (N.R.); (C.L.); (F.X.); (D.T.)
| |
Collapse
|