1
|
Tateiwa D, Iwamoto M, Kodama J, Ukon Y, Hirai H, Ikuta M, Kitahara T, Furuichi T, Bun M, Otsuru S, Okada S, Kaito T. A synthetic retinoic acid receptor γ antagonist (7C)-loaded nanoparticle enhances bone morphogenetic protein-induced bone regeneration in a rat spinal fusion model. Spine J 2024; 24:899-908. [PMID: 38092193 DOI: 10.1016/j.spinee.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/19/2023] [Accepted: 11/27/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND CONTEXT Bone morphogenetic proteins (BMPs) have potent osteoinductivity and have been applied clinically for challenging musculoskeletal conditions. However, the supraphysiological doses of BMPs used in clinical settings cause various side effects that prevent widespread use, and therefore the BMP dosage needs to be reduced. PURPOSE To address this problem, we synthesized 7C, a retinoic acid receptor γ antagonist-loaded nanoparticle (NP), and investigated its potential application in BMP-based bone regeneration therapy using a rat spinal fusion model. STUDY DESIGN An experimental animal study. METHODS Fifty-three male 8-week-old Sprague-Dawley rats underwent posterolateral spinal fusion and were divided into the following five treatment groups: (1) no recombinant human (rh)BMP-2 and blank-NP (Control), (2) no rhBMP-2 and 1 μg 7C-NP (7C group), (3) low-dose rhBMP-2 (0.5 μg) and 1 μg blank-NP (L-BMP group), (4) low-dose rhBMP-2 (0.5 μg) and 1 μg 7C-NP (L-BMP + 7C group), and (5) high-dose rhBMP-2 (5.0 μg) and 1 μg blank-NP (H-BMP group). Micro-computed tomography and histologic analysis were performed 2 and 6 weeks after the surgery. RESULTS The spinal fusion rates of the Control and 7C groups were both 0%, and those of the L-BMP, L-BMP + 7C, and H-BMP groups were 55.6%, 94.4%, and 100%, respectively. The L-BMP + 7C group markedly promoted cartilaginous tissue formation during BMP-induced endochondral bone formation that resulted in a significantly better spinal fusion rate and bone formation than in the L-BMP group. Although spinal fusion was slower in the L-BMP + 7C group, the L-BMP + 7C group formed a spinal fusion mass with better bone quality than the spinal fusion mass in the H-BMP group. CONCLUSIONS The combined use of 7C-NP with rhBMP-2 in a rat posterolateral lumbar fusion model increased spinal fusion rate and new bone volume without deteriorating the quality of newly formed bone. CLINICAL SIGNIFICANCE 7C-NP potentiates BMP-2-induced bone regeneration and has the potential for efficient bone regeneration with low-dose BMP-2, which can reduce the dose-dependent side effects of BMP-2 in clinical settings.
Collapse
Affiliation(s)
- Daisuke Tateiwa
- Department of Orthopaedic Surgery, Osaka General Medical Center, 3-1-56, Mandaihigashi, Sumiyoshi, Osaka, Japan
| | - Masahiro Iwamoto
- Department of Orthopaedic, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, USA
| | - Joe Kodama
- Department of Orthopaedic, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, USA
| | - Yuichiro Ukon
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiromasa Hirai
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masato Ikuta
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Kitahara
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takuya Furuichi
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masayuki Bun
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoru Otsuru
- Department of Orthopaedic, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, USA
| | - Seiji Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takashi Kaito
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Kawai MY, Yoshida T, Kato T, Watanabe T, Kashiwagi M, Yamanaka S, Yamamoto H, Nagahiro S, Iwamoto T, Masud K, Aoki K, Ohura K, Nakao K. bmp-2 Gene-Transferred Skeletal Muscles with Needle-Type Electrodes as Efficient and Reliable Biomaterials for Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2024; 17:880. [PMID: 38399131 PMCID: PMC10890310 DOI: 10.3390/ma17040880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Bone morphogenetic protein-2 (bmp-2) has a high potential to induce bone tissue formation in skeletal muscles. We developed a bone induction system in skeletal muscles using the bmp-2 gene through in vivo electroporation. Natural bone tissues with skeletal muscles can be considered potential candidates for biomaterials. However, our previous system using plate-type electrodes did not achieve a 100% success rate in inducing bone tissues in skeletal muscles. In this study, we aimed to enhance the efficiency of bone tissue formation in skeletal muscles by using a non-viral bmp-2 gene expression plasmid vector (pCAGGS-bmp-2) and needle-type electrodes. METHODS We injected the bmp-2 gene with pCAGGS-bmp-2 into the skeletal muscles of rats' legs and immediately placed needle-type electrodes there. Skeletal tissues were then observed on the 21st day after gene transfer using soft X-ray and histological analyses. RESULTS The use of needle-type electrodes resulted in a 100% success rate in inducing bone tissues in skeletal muscles. In contrast, the plate-type electrodes only exhibited a 33% success rate. Thus, needle-type electrodes can be more efficient and reliable for transferring the bmp-2 gene to skeletal muscles, making them potential biomaterials for repairing bone defects.
Collapse
Affiliation(s)
- Mariko Yamamoto Kawai
- Department of Welfare, Kansai Women’s College, Osaka 582-0026, Japan
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (T.Y.); (T.K.); (T.W.); (M.K.); (S.Y.); (H.Y.); (K.N.)
| | - Takeshi Yoshida
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (T.Y.); (T.K.); (T.W.); (M.K.); (S.Y.); (H.Y.); (K.N.)
| | - Tomoki Kato
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (T.Y.); (T.K.); (T.W.); (M.K.); (S.Y.); (H.Y.); (K.N.)
| | - Takuma Watanabe
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (T.Y.); (T.K.); (T.W.); (M.K.); (S.Y.); (H.Y.); (K.N.)
| | - Marina Kashiwagi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (T.Y.); (T.K.); (T.W.); (M.K.); (S.Y.); (H.Y.); (K.N.)
| | - Shigeki Yamanaka
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (T.Y.); (T.K.); (T.W.); (M.K.); (S.Y.); (H.Y.); (K.N.)
| | - Hiromitsu Yamamoto
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (T.Y.); (T.K.); (T.W.); (M.K.); (S.Y.); (H.Y.); (K.N.)
| | - Shigeki Nagahiro
- Department of Pediatric Dentistry/Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan; (S.N.); (T.I.)
| | - Tsutomu Iwamoto
- Department of Pediatric Dentistry/Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan; (S.N.); (T.I.)
| | - Khan Masud
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan; (K.M.); (K.A.)
| | - Kazuhiro Aoki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan; (K.M.); (K.A.)
| | - Kiyoshi Ohura
- Department of Nursing, Taisei Gakuin University, Osaka 587-8555, Japan;
- Graduate School, Division of Dental Research, Osaka Dental University, Osaka 573-1121, Japan
| | - Kazumasa Nakao
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (T.Y.); (T.K.); (T.W.); (M.K.); (S.Y.); (H.Y.); (K.N.)
| |
Collapse
|
3
|
Kawai MY, Ozasa R, Ishimoto T, Nakano T, Yamamoto H, Kashiwagi M, Yamanaka S, Nakao K, Maruyama H, Bessho K, Ohura K. Periodontal Tissue as a Biomaterial for Hard-Tissue Regeneration following bmp-2 Gene Transfer. MATERIALS 2022; 15:ma15030993. [PMID: 35160948 PMCID: PMC8840059 DOI: 10.3390/ma15030993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 01/25/2023]
Abstract
The application of periodontal tissue in regenerative medicine has gained increasing interest since it has a high potential to induce hard-tissue regeneration, and is easy to handle and graft to other areas of the oral cavity or tissues. Additionally, bone morphogenetic protein-2 (BMP-2) has a high potential to induce the differentiation of mesenchymal stem cells into osteogenic cells. We previously developed a system for a gene transfer to the periodontal tissues in animal models. In this study, we aimed to reveal the potential and efficiency of periodontal tissue as a biomaterial for hard-tissue regeneration following a bmp-2 gene transfer. A non-viral expression vector carrying bmp-2 was injected into the palate of the periodontal tissues of Wistar rats, followed by electroporation. The periodontal tissues were analyzed through bone morphometric analyses, including mineral apposition rate (MAR) determination and collagen micro-arrangement, which is a bone quality parameter, before and after a gene transfer. The MAR was significantly higher 3-6 d after the gene transfer than that before the gene transfer. Collagen orientation was normally maintained even after the bmp-2 gene transfer, suggesting that the bmp-2 gene transfer has no adverse effects on bone quality. Our results suggest that periodontal tissue electroporated with bmp-2 could be a novel biomaterial candidate for hard-tissue regeneration therapy.
Collapse
Affiliation(s)
- Mariko Yamamoto Kawai
- Department of Welfare, Kansai Women’s College, Osaka 582-0026, Japan
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
- Correspondence: ; Tel.: +81-72-977-6561; Fax: +81-72-977-9564
| | - Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan; (R.O.); (T.I.); (T.N.)
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan; (R.O.); (T.I.); (T.N.)
- Center for Aluminum and Advanced Materials Research and International Collaboration, School of Sustainable Design, University of Toyama, Toyama 930-8555, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan; (R.O.); (T.I.); (T.N.)
| | - Hiromitsu Yamamoto
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Marina Kashiwagi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Shigeki Yamanaka
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Kazumasa Nakao
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Hiroki Maruyama
- Department of Clinical Nephroscience, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata 951-8501, Japan;
| | - Kazuhisa Bessho
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Kiyoshi Ohura
- Department of Nursing, Taisei Gakuin University, Osaka 587-8555, Japan;
| |
Collapse
|
4
|
Russow G, Jahn D, Appelt J, Märdian S, Tsitsilonis S, Keller J. Anabolic Therapies in Osteoporosis and Bone Regeneration. Int J Mol Sci 2018; 20:ijms20010083. [PMID: 30587780 PMCID: PMC6337474 DOI: 10.3390/ijms20010083] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/09/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis represents the most common bone disease worldwide and results in a significantly increased fracture risk. Extrinsic and intrinsic factors implicated in the development of osteoporosis are also associated with delayed fracture healing and impaired bone regeneration. Based on a steadily increasing life expectancy in modern societies, the global implications of osteoporosis and impaired bone healing are substantial. Research in the last decades has revealed several molecular pathways that stimulate bone formation and could be targeted to treat both osteoporosis and impaired fracture healing. The identification and development of therapeutic approaches modulating bone formation, rather than bone resorption, fulfils an essential clinical need, as treatment options for reversing bone loss and promoting bone regeneration are limited. This review focuses on currently available and future approaches that may have the potential to achieve these aims.
Collapse
Affiliation(s)
- Gabriele Russow
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
| | - Denise Jahn
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
| | - Jessika Appelt
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
| | - Sven Märdian
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
| | - Serafeim Tsitsilonis
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
- Berlin Institute of Health, 13353 Berlin, Germany.
| | - Johannes Keller
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
- Berlin Institute of Health, 13353 Berlin, Germany.
| |
Collapse
|
5
|
Controlled Non-Viral Gene Delivery in Cartilage and Bone Repair: Current Strategies and Future Directions. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Kawai M, Kataoka Y, Sonobe J, Yamamoto H, Maruyama H, Yamamoto T, Bessho K, Ohura K. Analysis of mineral apposition rates during alveolar bone regeneration over three weeks following transfer of BMP-2/7 gene via in vivo electroporation. Eur J Histochem 2018; 62. [PMID: 30089353 PMCID: PMC6119816 DOI: 10.4081/ejh.2018.2947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/31/2018] [Indexed: 02/01/2023] Open
Abstract
Alveolar bone is not spontaneously regenerated following trauma or periodontitis. We previously proposed an animal model for new alveolar bone regeneration therapy based on the non-viral BMP-2/7 gene expression vector and in vivo electroporation, which induced the formation of new alveolar bone over the course of a week. Here, we analysed alveolar bone during a period of three weeks following gene transfer to periodontal tissue. Non-viral plasmid vector pCAGGS-BMP-2/7 or pCAGGS control was injected into palatal periodontal tissue of the first molar of the rat maxilla and immediately electroporated with 32 pulses of 50 V for 50 msec. Over the following three weeks, rats were double bone-stained by calcein and tetracycline every three days and mineral apposition rates (MAR) were measured. Double bonestaining revealed that MAR of alveolar bone was at similar level three days before BMP-2/7 gene transfer as three days after gene transfer. However, from 3 to 6 days, 6 to 9 days, 9 to 12 days, 12 to 15 days, 15 to 18 days, and 18 to 20 days after, MARs were significantly higher than prior to gene transfer. Our proposed gene therapy for alveolar bone regeneration combining nonviral BMP-2/7 gene expression vector and in vivo electroporation could increase alveolar bone regeneration potential in the targeted area for up to three weeks.
Collapse
Affiliation(s)
- Mariko Kawai
- Osaka Dental University, Department of Pharmacology, Japan
| | - Yohei Kataoka
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Department of Oral Morphology, Japan
| | - Junya Sonobe
- Department of Oral and Maxillofacial Surgery, Kyoto University, Japan
| | | | - Hiroki Maruyama
- Niigata University Graduate School of Medicine and Dental Sciences, Department of Clinical Nephroscience, Japan
| | - Toshio Yamamoto
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Department of Oral Morphology, Japan
| | - Kazuhisa Bessho
- Department of Oral and Maxillofacial Surgery, Kyoto University, Japan
| | - Kiyoshi Ohura
- Osaka Dental University, Department of Pharmacology, Japan
| |
Collapse
|
7
|
Schindeler A, Mills RJ, Bobyn JD, Little DG. Preclinical models for orthopedic research and bone tissue engineering. J Orthop Res 2018; 36:832-840. [PMID: 29205478 DOI: 10.1002/jor.23824] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/27/2017] [Indexed: 02/04/2023]
Abstract
In this review, we broadly define and discuss the preclinical rodent models that are used for orthopedics and bone tissue engineering. These range from implantation models typically used for biocompatibility testing and high-throughput drug screening, through to fracture and critical defect models used to model bone healing and severe orthopedic injuries. As well as highlighting the key methods papers describing these techniques, we provide additional commentary based on our substantive practical experience with animal surgery and in vivo experimental design. This review also briefly touches upon the descriptive and functional outcome measures and power calculations that are necessary for an informative study. Obtaining informative and relevant research outcomes can be very dependent on the model used, and we hope this evaluation of common models will serve as a primer for new researchers looking to undertake preclinical bone studies. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:832-840, 2018.
Collapse
Affiliation(s)
- Aaron Schindeler
- Orthopedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, Sydney, New South Wales, 2145, Australia.,Discipline of Pediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Rebecca J Mills
- Orthopedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, Sydney, New South Wales, 2145, Australia
| | - Justin D Bobyn
- Orthopedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, Sydney, New South Wales, 2145, Australia.,Discipline of Pediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - David G Little
- Orthopedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, Sydney, New South Wales, 2145, Australia.,Discipline of Pediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| |
Collapse
|
8
|
Kawai M, Ohmori YK, Nishino M, Yoshida M, Tabata K, Hirota DS, Ryu-Mon A, Yamamoto H, Sonobe J, Kataoka YH, Shiotsu N, Ikegame M, Maruyama H, Yamamoto T, Bessho K, Ohura K. Determination of cell fate in skeletal muscle following BMP gene transfer by in vivo electroporation. Eur J Histochem 2017; 61:2772. [PMID: 28735515 PMCID: PMC5641669 DOI: 10.4081/ejh.2017.2772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 11/23/2022] Open
Abstract
We previously developed a novel method for gene transfer, which combined a non-viral gene expression vector with transcutaneous in vivo electroporation. We applied this method to transfer the bone morphogenetic protein (BMP) gene and induce ectopic bone formation in rat skeletal muscles. At present, it remains unclear which types of cells can differentiate into osteogenic cells after BMP gene transfer by in vivo electroporation. Two types of stem cells in skeletal muscle can differentiate into osteogenic cells: muscle-derived stem cells, and bone marrow-derived stem cells in the blood. In the present study, we transferred the BMP gene into rat skeletal muscles. We then stained tissues for several muscle-derived stem cell markers (e.g., Pax7, M-cadherin), muscle regeneration-related markers (e.g., Myod1, myogenin), and an inflammatory cell marker (CD68) to follow cell differentiation over time. Our results indicate that, in the absence of BMP, the cell population undergoes muscle regeneration, whereas in its presence, it can differentiate into osteogenic cells. Commitment towards either muscle regeneration or induction of ectopic bone formation appears to occur five to seven days after BMP gene transfer.
Collapse
|
9
|
Sustained delivery of rhBMP-2 by means of poly(lactic-co-glycolic acid) microspheres: cranial bone regeneration without heterotopic ossification or craniosynostosis. Plast Reconstr Surg 2014; 134:51-59. [PMID: 24622573 DOI: 10.1097/prs.0000000000000287] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Commercially available recombinant human bone morphogenetic protein 2 (rhBMP2) has demonstrated efficacy in bone regeneration, but not without significant side effects. The authors used rhBMP2 encapsulated in poly(lactic-co-glycolic acid) (PLGA) microspheres placed in a rabbit cranial defect model to test whether low-dose, sustained delivery can effectively induce bone regeneration. METHODS The rhBMP2 was encapsulated in 15% PLGA using a double-emulsion, solvent extraction/evaporation technique, and its release kinetics and bioactivity were tested. Two critical-size defects (10 mm) were created in the calvaria of New Zealand white rabbits (5 to 7 months of age, male and female) and filled with a collagen scaffold containing either (1) no implant, (2) collagen scaffold only, (3) PLGA-rhBMP2 (0.1 μg per implant), or (4) free rhBMP2 (0.1 μg per implant). After 6 weeks, the rabbits were killed and defects were analyzed by micro-computed tomography, histology, and finite element analysis. RESULTS The rhBMP2 delivered by means of bioactive PLGA microspheres resulted in higher volumes and surface area coverage of new bone than an equal dose of free rhBMP2 by micro-computed tomography (p=0.025 and p=0.025). Finite element analysis indicated that the mechanical competence using the regional elastic modulus did not differ with rhBMP2 exposure (p=0.70). PLGA-rhBMP2 did not demonstrate heterotopic ossification, craniosynostosis, or seroma formation. CONCLUSIONS Sustained delivery by means of PLGA microspheres can significantly reduce the rhBMP2 dose required for de novo bone formation. Optimization of the delivery system may be a key to reducing the risk for recently reported rhBMP2-related adverse effects.
Collapse
|
10
|
Heterotopic bone formation about the hip undergoes endochondral ossification: a rabbit model. Clin Orthop Relat Res 2013; 471:1584-92. [PMID: 23361932 PMCID: PMC3613540 DOI: 10.1007/s11999-013-2801-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 01/11/2013] [Indexed: 01/31/2023]
Abstract
BACKGROUND Heterotopic ossification (HO) occurs most commonly after trauma and surgery about the hip and may compromise subsequent function. Currently available animal models describing the cellular progression of HO are based on exogenous osteogenic induction agents and may not reflect the processes following trauma. QUESTIONS/PURPOSES We therefore sought to characterize the histologic progression of heterotopic bone formation in an animal model that recapitulates the human condition without the addition of exogenous osteogenic material. METHODS We used a rabbit model that included intramedullary instrumentation of the upper femur and ischemic crush injury of the gluteal muscle. Bilateral surgical induction procedures were performed on 30 animals with the intention of inciting the process of HO; no supplemental osteogenic stimulants were used. Three animals were sacrificed at each of 10 predetermined times between 1 day and 26 weeks postoperatively and the progression of tissue maturation was graded histologically using a five-item scale. RESULTS Heterotopic bone reliably formed de novo and consistently followed a pathway of endochondral ossification. Chondroid elements were found in juxtaposition with immature woven bone in all sections that contained mature osseous elements. CONCLUSIONS These results establish that HO occurs in an animal model mimicking the human condition following surgical trauma about the hip; it is predictable in its histologic progression and follows a pathway of endochondral bone formation. CLINICAL RELEVANCE By showing a consistent pathway of endochondral ossification leading to ectopic bone formation, this study provides a basis for understanding the mechanisms by which HO might be mitigated by interventions.
Collapse
|
11
|
Im GI. Nonviral gene transfer strategies to promote bone regeneration. J Biomed Mater Res A 2013; 101:3009-18. [PMID: 23554051 DOI: 10.1002/jbm.a.34576] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/02/2013] [Indexed: 11/10/2022]
Abstract
Despite the inherent ability of bone to regenerate itself, there are a number of clinical situations in which complete bone regeneration fails to occur. In view of shortcomings of conventional treatment, gene therapy may have a place in cases of critical-size bone loss that cannot be properly treated with current medical or surgical treatment. The purpose of this review is to provide an overview of gene therapy in general, nonviral techniques of gene transfer including physical and chemical methods, RNA-based therapy, therapeutic genes to be transferred for bone regeneration, route of application including ex vivo application, and direct gene therapy approaches to regenerate bone.
Collapse
Affiliation(s)
- Gun-Il Im
- Department of Orthopaedics, Dongguk University Ilsan Hospital, Korea
| |
Collapse
|
12
|
Ishihara A, Bertone AL. Cell-mediated and direct gene therapy for bone regeneration. Expert Opin Biol Ther 2012; 12:411-23. [PMID: 22324829 DOI: 10.1517/14712598.2012.661709] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Bone regeneration is required for the treatment of fracture non/delayed-unions and bone defects. However, most current treatment modalities have limited efficacy, and newer therapeutic strategies, such as gene therapy, have substantial benefit for bone repair and regeneration. AREAS COVERED This review discusses experimental and clinical applications of cell-mediated and direct gene therapy for bone regeneration. The review covers literature on this subject from 2000 to February 2012. EXPERT OPINION Direct gene therapy using various viral and non-viral vectors of cell-mediated genes has been demonstrated to induce bone regeneration, although use of such vectors has shown some risk in human application. Osteoinductive capability of a number of progenitor cells isolated from bone marrow, fat, muscle and skin tissues, has been demonstrated by genetic modification with osteogenic genes. Cell-mediated gene therapy using such osteogenic gene-expressing progenitor cells has shown promising results in promoting bone regeneration in extensive animal work in recent years.
Collapse
Affiliation(s)
- Akikazu Ishihara
- The Ohio State University, Department of Veterinary Clinical Sciences, Comparative Orthopedic Research Laboratories, Columbus, OH 43210, USA
| | | |
Collapse
|
13
|
Costa RPD, Han SW, Pochini ADC, Reginato RD. Terapia gênica para osteoporose. ACTA ORTOPEDICA BRASILEIRA 2011. [DOI: 10.1590/s1413-78522011000100012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A osteoporose é considerada um dos problemas de saúde mais comuns e sérios da população idosa mundial. É uma doença crônica e progressiva, caracterizada pela diminuição da massa óssea e deterioração da microarquitetura do tecido ósseo. A terapia gênica representa uma nova abordagem para o tratamento da osteoporose e tem como princípio devolver a função comprometida pelo metabolismo. Esta revisão visa focar os trabalhos relevantes desenvolvidos nos últimos anos, disponibilizados nas bases de dados médicas, e que utilizaram a terapia gênica para o tratamento da osteoporose em modelos animais, bem como, as perspectivas futuras desta terapia. A maioria dos estudos utiliza os genes BMPs, PTH e OPG na tentativa de restabelecer a massa óssea. Apesar da carência de novas moléculas, todos os genes empregados nos estudos se mostraram eficientes no tratamento da doença. Os benefícios que a terapia gênica proporcionará aos pacientes no futuro devem contribuir substancialmente para o aumento na qualidade de vida dos idosos. Em breve, protocolos clínicos envolvendo humanos irão beneficiar os indivíduos com osteoporose.
Collapse
|
14
|
Kimelman-Bleich N, Pelled G, Zilberman Y, Kallai I, Mizrahi O, Tawackoli W, Gazit Z, Gazit D. Targeted gene-and-host progenitor cell therapy for nonunion bone fracture repair. Mol Ther 2010; 19:53-9. [PMID: 20859259 DOI: 10.1038/mt.2010.190] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nonunion fractures present a challenge to orthopedics with no optimal solution. In-vivo DNA electroporation is a gene-delivery technique that can potentially accelerate regenerative processes. We hypothesized that in vivo electroporation of an osteogenic gene in a nonunion radius bone defect site would induce fracture repair. Nonunion fracture was created in the radii of C3H/HeN mice, into which a collagen sponge was placed. To allow for recruitment of host progenitor cells (HPCs) into the implanted sponge, the mice were housed for 10 days before electroporation. Mice were electroporated with either bone morphogenetic protein 9 (BMP-9) plasmid, Luciferase plasmid or injected with BMP-9 plasmid but not electroporated. In vivo bioluminescent imaging indicated that gene expression was localized to the defect site. Microcomputed tomography (µCT) and histological analysis of murine radii electroporated with BMP-9 demonstrated bone formation bridging the bone gap, whereas in the control groups the defect remained unbridged. Population of the implanted collagen sponge by HPCs transfected with the injected plasmid following electroporation was noted. Our data indicate that regeneration of nonunion bone defect can be attained by performing in vivo electroporation with an osteogenic gene combined with recruitment of HPCs. This gene therapy approach may pave the way for regeneration of other skeletal tissues.
Collapse
Affiliation(s)
- Nadav Kimelman-Bleich
- Skeletal Biotech Laboratory, Hebrew University-Hadassah Medical Center, Faculty of Dental Medicine, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Pelled G, Ben-Arav A, Hock C, Reynolds DG, Yazici C, Zilberman Y, Gazit Z, Awad H, Gazit D, Schwarz EM. Direct gene therapy for bone regeneration: gene delivery, animal models, and outcome measures. TISSUE ENGINEERING PART B-REVIEWS 2010; 16:13-20. [PMID: 20143927 DOI: 10.1089/ten.teb.2009.0156] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
While various problems with bone healing remain, the greatest clinical change is the absence of an effective approach to manage large segmental defects in limbs and craniofacial bones caused by trauma or cancer. Thus, nontraditional forms of medicine, such as gene therapy, have been investigated as a potential solution. The use of osteogenic genes has shown great potential in bone regeneration and fracture healing. Several methods for gene delivery to the fracture site have been described. The majority of them include a cellular component as the carrying vector, an approach known as cell-mediated gene therapy. Yet, the complexity involved with cell isolation and culture emphasizes the advantages of direct gene delivery as an alternative strategy. Here we review the various approaches of direct gene delivery for bone repair, the choice of animal models, and the various outcome measures required to evaluate the efficiency and safety of each technique. Special emphasis is given to noninvasive, quantitative, in vivo monitoring of gene expression and biodistribution in live animals. Research efforts should aim at inducing a transient, localized osteogenic gene expression within a fracture site to generate an effective therapeutic approach that would eventually lead to clinical use.
Collapse
Affiliation(s)
- Gadi Pelled
- Skeletal Biotechnology Laboratory, Hebrew University of Jerusalem-Hadassah Medical Campus, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Pelled G, Ben-Arav A, Hock C, Reynolds DG, Yazici C, Zilberman Y, Gazit Z, Awad H, Gazit D, Schwarz EM. Direct Gene Therapy for Bone Regeneration: Gene Delivery, Animal Models, and Outcome Measures. Tissue Eng Part A 2009. [DOI: 10.1089/ten.tea.2009.0156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
17
|
Axelrad TW, Steen B, Lowenberg DW, Creevy WR, Einhorn TA. Heterotopic ossification after the use of commercially available recombinant human bone morphogenetic proteins in four patients. ACTA ACUST UNITED AC 2008; 90:1617-22. [PMID: 19043134 DOI: 10.1302/0301-620x.90b12.20975] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Heterotopic ossification occurring after the use of commercially available bone morphogenetic proteins has not been widely reported. We describe four cases of heterotopic ossification in patients treated with either recombinant bone morphogenetic protein 2 or recombinant bone morphogenetic protein 7. We found that while some patients were asymptomatic, heterotopic ossification which had occurred around a joint often required operative excision with good results.
Collapse
Affiliation(s)
- T W Axelrad
- Boston University Medical Center, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
18
|
Kimelman N, Pelled G, Helm GA, Huard J, Schwarz EM, Gazit D. Review: gene- and stem cell-based therapeutics for bone regeneration and repair. ACTA ACUST UNITED AC 2007; 13:1135-50. [PMID: 17516852 DOI: 10.1089/ten.2007.0096] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many clinical conditions require regeneration or implantation of bone. This is one focus shared by neurosurgery and orthopedics. Current therapeutic options (bone grafting and protein-based therapy) do not provide satisfying solutions to the problem of massive bone defects. In the past few years, gene- and stem cell-based therapy has been extensively studied to achieve a viable alternative to current solutions offered by modern medicine for bone-loss repair. The use of adult stem cells for bone regeneration has gained much focus. This unique population of multipotential cells has been isolated from various sources, including bone marrow, adipose, and muscle tissues. Genetic engineering of adult stem cells with potent osteogenic genes has led to fracture repair and rapid bone formation in vivo. It is hypothesized that these genetically modified cells exert both an autocrine and a paracrine effects on host stem cells, leading to an enhanced osteogenic effect. The use of direct gene delivery has also shown much promise for in vivo bone repair. Several viral and nonviral methods have been used to achieve substantial bone tissue formation in various sites in animal models. To advance these platforms to the clinical setting, it will be mandatory to overcome specific hurdles, such as control over transgene expression, viral vector toxicity, and prolonged culture periods of therapeutic stem cells. This review covers a prospect of cell and gene therapy for bone repair as well as some very recent advancements in stem cell isolation, genetic engineering, and exogenous control of transgene expression.
Collapse
Affiliation(s)
- Nadav Kimelman
- Skeletal Biotech Lab, The Hebrew University of Jerusalem-Hadassah Medical Campus, Ein Kerem, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|