1
|
Du L, Gao X, Zhao L, Zhu X, Wang L, Zhang K, Li D, Ji J, Luo J, Cui J. Assessment of the risk of imidaclothiz to the dominant aphid parasitoid Binodoxys communis (Hymenoptera: Braconidae). ENVIRONMENTAL RESEARCH 2023; 238:117165. [PMID: 37739156 DOI: 10.1016/j.envres.2023.117165] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
The neonicotinoid of imidaclothiz insecticide with low resistance and high efficiency, has great potential for application in pest control in specifically cotton field. In this systematically evaluate the effects of sublethal doses of imidaclothiz (LC10: 11.48 mg/L; LC30: 28.03 mg/L) on the biology, transcriptome, and microbiome of Binodoxys communis, the predominant primary parasitic natural enemy of aphids. The findings indicated that imidaclothiz has significant deleterious effects on the survival rate, parasitic rate, and survival time of B. communis. Additionally, there was a marked reduction in the survival rate and survival time of the F1 generation, that is, the negative effect of imidaclothiz on B. communis was continuous and trans-generational. Transcriptome analysis revealed that imidaclothiz treatment elicited alterations in the expression of genes associated with energy and detoxification metabolism. In addition, 16S rRNA analysis revealed a significant increase in the relative abundance of Rhodococcus and Pantoea, which are associated with detoxification metabolism, due to imidaclothiz exposure. These findings provide evidence that B. communis may regulate gene expression in conjunction with symbiotic bacteria to enhance adaptation to imidaclothiz. Finally, this study precise evaluation of imidaclothiz's potential risk to B. communis and provides crucial theoretical support for increasing the assessment of imidaclothiz in integrated pest management.
Collapse
Affiliation(s)
- Lingen Du
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xueke Gao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Likang Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiangzhen Zhu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Li Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Kaixin Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Dongyang Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jichao Ji
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Junyu Luo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Jinjie Cui
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
2
|
Huang Q, Chen J, Lv Q, Long M, Pan G, Zhou Z. Germination of Microsporidian Spores: The Known and Unknown. J Fungi (Basel) 2023; 9:774. [PMID: 37504762 PMCID: PMC10381864 DOI: 10.3390/jof9070774] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Microsporidia are a large group of mysterious obligate intracellular eukaryotic parasites. The microsporidian spore can survive in the absence of nutrients for years under harsh conditions and germinate within seconds under the stimulation of environmental changes like pH and ions. During germination, microsporidia experience an increase in intrasporal osmotic pressure, which leads to an influx of water into the spore, followed by swelling of the polaroplasts and posterior vacuole, which eventually fires the polar filament (PF). Infectious sporoplasm was transported through the extruded polar tube (PT) and delivered into the host cell. Despite much that has been learned about the germination of microsporidia, there are still several major questions that remain unanswered, including: (i) There is still a lack of knowledge about the signaling pathways involved in spore germination. (ii) The germination of spores is not well understood in terms of its specific energetics. (iii) Limited understanding of how spores germinate and how the nucleus and membranes are rearranged during germination. (iv) Only a few proteins in the invasion organelles have been identified; many more are likely undiscovered. This review summarizes the major resolved and unresolved issues concerning the process of microsporidian spore germination.
Collapse
Affiliation(s)
- Qingyuan Huang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Jie Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Qing Lv
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Mengxian Long
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Zeyang Zhou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
- Key Laboratory of Conservation and Utilization of Pollinator Insect of the upper reaches of the Yangtze River (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Chongqing Normal University, Chongqing 400047, China
| |
Collapse
|
3
|
Fan X, Zhang W, Zhang K, Zhang J, Long Q, Wu Y, Zhang K, Zhu L, Chen D, Guo R. In-depth investigation of microRNA-mediated cross-kingdom regulation between Asian honey bee and microsporidian. Front Microbiol 2022; 13:1003294. [PMID: 36246221 PMCID: PMC9557207 DOI: 10.3389/fmicb.2022.1003294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Asian honey bee Apis cerana is the original host for Nosema ceranae, a unicellular fungal parasite that causes bee nosemosis throughout the world. Currently, interaction between A. cerana and N. ceranae is largely unknown. Our group previously prepared A. c. cerana workers’ midguts at 7 days post inoculation (dpi) and 10 dpi with N. ceranae spores as well as corresponding un-inoculated workers’ midguts, followed by cDNA library construction and a combination of RNAs-seq and small RNA-seq. Meanwhile, we previously prepared clean spores of N. ceranae, which were then subjected to cDNA library construction and deep sequencing. Here, based on the gained high-quality transcriptome datasets, N. ceranae differentially expressed mRNAs (DEmiRNAs) targeted by host DEmiRNAs, and A. c. cerana DEmRNAs targeted by microsporidian DEmiRNAs were deeply investigated, with a focus on targets involved in N. ceranae glycolysis/glyconeogenesis as well as virulence factors, and A. c. cerana energy metabolism and immune response. In A. c. cerana worker’s midguts at 7 (10) dpi (days post inoculation), eight (seven) up-regulated and six (two) down-regulated miRNAs were observed to target 97 (44) down-regulated and 60 (15) up-regulated N. ceranae mRNAs, respectively. Additionally, two up-regulated miRNAs (miR-60-y and miR-676-y) in host midgut at 7 dpi could target genes engaged in N. ceranae spore wall protein and glycolysis/gluconeogenesis, indicating potential host miRNA-mediated regulation of microsporidian virulence factor and energy metabolism. Meanwhile, in N. ceranae at 7 (10) dpi, 121 (110) up-regulated and 112 (104) down-regulated miRNAs were found to, respectively, target 343 (247) down-regulated and 138 (110) down-regulated mRNAs in A. c. cerana workers’ midguts. These targets in host were relevant to several crucial cellular and humoral immune pathways, such as phagasome, endocytosis, lysosomes, regulation of autophagy, and Jak–STAT signaling pathway, indicative of the involvement of N. ceranae DEmiRNAs in regulating these cellular and humoral immune pathways. In addition, N. ceranae miR-21-x was up-regulated at 7 dpi and had a target relative to oxidative phosphorylation, suggesting that miR-21-x may be used as a weapon to modulate this pivotal energy metabolism pathway. Furthermore, potential targeting relationships between two pairs of host DEmiRNAs-microsporidian DEmRNAs and two pairs of microsporidian DEmiRNAs-host DEmRNAs were validated using RT-qPCR. Our findings not only lay a foundation for exploring the molecular mechanism underlying cross-kingdom regulation between A. c. cerana workers and N. ceranae, but also offer valuable insights into Asian honey bee-microsporidian interaction.
Collapse
Affiliation(s)
- Xiaoxue Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wende Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Kaiyao Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jiaxin Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qi Long
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ying Wu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Kuihao Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Leran Zhu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Dafu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- *Correspondence: Rui Guo,
| |
Collapse
|
4
|
Luo J, Xu J, Xie C, Zhao Z, Guo J, Wen Y, Li T, Zhou Z. Microsporidia Promote Host Mitochondrial Fragmentation by Modulating DRP1 Phosphorylation. Int J Mol Sci 2022; 23:ijms23147746. [PMID: 35887094 PMCID: PMC9321008 DOI: 10.3390/ijms23147746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Microsporidia are obligate intracellular parasites that infect a wide variety of hosts ranging from invertebrates to vertebrates. These parasites have evolved strategies to directly hijack host mitochondria for manipulating host metabolism and immunity. However, the mechanism of microsporidia interacting with host mitochondria is unclear. In the present study, we show that microsporidian Encephalitozoon greatly induce host mitochondrial fragmentation (HMF) in multiple cells. We then reveal that the parasites promote the phosphorylation of dynamin 1-like protein (DRP1) at the 616th serine (Ser616), and dephosphorylation of the 637th serine (Ser637) by highly activating mitochondrial phosphoglycerate mutase 5 (PGAM5). These phosphorylation modifications result in the translocation of DRP1 from cytosol to the mitochondrial outer membrane, and finally lead to HMF. Furthermore, treatment with mitochondrial division inhibitor 1 (Mdivi1) significantly reduced microsporidian proliferation, indicating that the HMF are crucial for microsporidian replication. In summary, our findings reveal the mechanism that microsporidia manipulate HMF and provide references for further understanding the interactions between these ubiquitous pathogens with host mitochondria.
Collapse
Affiliation(s)
- Jian Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (J.L.); (J.X.); (C.X.); (Z.Z.); (J.G.); (Y.W.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Jinzhi Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (J.L.); (J.X.); (C.X.); (Z.Z.); (J.G.); (Y.W.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Chaolu Xie
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (J.L.); (J.X.); (C.X.); (Z.Z.); (J.G.); (Y.W.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Zuoming Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (J.L.); (J.X.); (C.X.); (Z.Z.); (J.G.); (Y.W.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Junrui Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (J.L.); (J.X.); (C.X.); (Z.Z.); (J.G.); (Y.W.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Yuan Wen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (J.L.); (J.X.); (C.X.); (Z.Z.); (J.G.); (Y.W.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Tian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (J.L.); (J.X.); (C.X.); (Z.Z.); (J.G.); (Y.W.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
- Correspondence: (T.L.); (Z.Z.)
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (J.L.); (J.X.); (C.X.); (Z.Z.); (J.G.); (Y.W.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
- College of Life Science, Chongqing Normal University, Chongqing 400047, China
- Correspondence: (T.L.); (Z.Z.)
| |
Collapse
|
5
|
Luo J, He Q, Xu JZ, Xu C, Han YZ, Gao HL, Meng XZ, Pan GQ, Li T, Zhou ZY. Microsporidia infection upregulates host energy metabolism but maintains ATP homeostasis. J Invertebr Pathol 2021; 186:107596. [PMID: 33910037 DOI: 10.1016/j.jip.2021.107596] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/09/2021] [Accepted: 04/17/2021] [Indexed: 12/23/2022]
Abstract
Microsporidia are a group of obligate intracellular parasites which lack mitochondria and have highly reduced genomes. Therefore, they are unable to produce ATP via the tricarboxylic acid (TCA) cycle and oxidative phosphorylation. Instead, they have evolved strategies to obtain and manipulate host metabolism to acquire nutrients. However, little is known about how microsporidia modulate host energy metabolisms. Here, we present the first targeted metabolomics study to investigate changes in host energy metabolism as a result of infection by a microsporidian. Metabolites of silkworm embryo cell (BmE) were measured 48 h post infection by Nosema bombycis. Thirty metabolites were detected, nine of which were upregulated and mainly involved in glycolysis (glucose 6-phosphate, fructose 1,6-bisphosphate) and the TCA cycle (succinate, α-ketoglutarate, cis-aconitate, isocitrate, citrate, fumarate). Pathway enrichment analysis suggested that the upregulated metabolites could promote the synthesization of nucleotides, fatty acids, and amino acids by the host. ATP concentration in host cells, however, was not significantly changed by the infection. This ATP homeostasis was also found in Encephalitozoon hellem infected mouse macrophage RAW264.7, human monocytic leukemia THP-1, human embryonic kidney 293, and human foreskin fibroblast cells. These findings suggest that microsporidia have evolved strategies to maintain levels of ATP in the host while stimulating metabolic pathways to provide additional nutrients for the parasite.
Collapse
Affiliation(s)
- Jian Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Qiang He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Jin-Zhi Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Chen Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Yin-Ze Han
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Hai-Long Gao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Xian-Zhi Meng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Guo-Qing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Tian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China.
| | - Ze-Yang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China; College of Life Science, Chongqing Normal University, Chongqing 400047, China.
| |
Collapse
|
6
|
Glupov VV, Kryukova NA. Physiological and biochemical aspects of interactions between insect parasitoids and their hosts. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s0013873816050018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Vidau C, Panek J, Texier C, Biron DG, Belzunces LP, Le Gall M, Broussard C, Delbac F, El Alaoui H. Differential proteomic analysis of midguts from Nosema ceranae-infected honeybees reveals manipulation of key host functions. J Invertebr Pathol 2014; 121:89-96. [DOI: 10.1016/j.jip.2014.07.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 06/20/2014] [Accepted: 07/08/2014] [Indexed: 01/14/2023]
|
8
|
Kermani N, Abu Hassan ZA, Suhaimi A, Abuzid I, Ismail NF, Attia M, Ghani IA. Parasitism performance and fitness of Cotesia vestalis (Hymenoptera: Braconidae) infected with Nosema sp. (Microsporidia: Nosematidae): implications in integrated pest management strategy. PLoS One 2014; 9:e100671. [PMID: 24968125 PMCID: PMC4072679 DOI: 10.1371/journal.pone.0100671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 05/30/2014] [Indexed: 11/19/2022] Open
Abstract
The diamondback moth (DBM) Plutella xylostella (L.) has traditionally been managed using synthetic insecticides. However, the increasing resistance of DBM to insecticides offers an impetus to practice integrated pest management (IPM) strategies by exploiting its natural enemies such as pathogens, parasitoids, and predators. Nevertheless, the interactions between pathogens and parasitoids and/or predators might affect the effectiveness of the parasitoids in regulating the host population. Thus, the parasitism rate of Nosema-infected DBM by Cotesia vestalis (Haliday) (Hym., Braconidae) can be negatively influenced by such interactions. In this study, we investigated the effects of Nosema infection in DBM on the parasitism performance of C. vestalis. The results of no-choice test showed that C. vestalis had a higher parasitism rate on non-infected host larvae than on Nosema-treated host larvae. The C. vestalis individuals that emerged from Nosema-infected DBM (F1) and their progeny (F2) had smaller pupae, a decreased rate of emergence, lowered fecundity, and a prolonged development period compared to those of the control group. DBM infection by Nosema sp. also negatively affected the morphometrics of C. vestalis. The eggs of female C. vestalis that developed in Nosema-infected DBM were larger than those of females that developed in non-infected DBM. These detrimental effects on the F1 and F2 generations of C. vestalis might severely impact the effectiveness of combining pathogens and parasitoids as parts of an IPM strategy for DBM control.
Collapse
Affiliation(s)
- Nadia Kermani
- School of Environmental and Natural Resource Sciences, University National Malaysia, Bangi, Malaysia
| | | | - Amalina Suhaimi
- School of Environmental and Natural Resource Sciences, University National Malaysia, Bangi, Malaysia
| | - Ismail Abuzid
- School of Environmental and Natural Resource Sciences, University National Malaysia, Bangi, Malaysia
| | - Noor Farehan Ismail
- School of Environmental and Natural Resource Sciences, University National Malaysia, Bangi, Malaysia
| | - Mansour Attia
- School of Environmental and Natural Resource Sciences, University National Malaysia, Bangi, Malaysia
| | - Idris Abd Ghani
- School of Environmental and Natural Resource Sciences, University National Malaysia, Bangi, Malaysia
| |
Collapse
|
9
|
Karlhofer J, Schafellner C, Hoch G. Reduced activity of juvenile hormone esterase in microsporidia-infected Lymantria dispar larvae. J Invertebr Pathol 2012; 110:126-8. [DOI: 10.1016/j.jip.2012.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 01/31/2012] [Accepted: 02/02/2012] [Indexed: 11/29/2022]
|
10
|
Sims K, Becnel JJ, Funderburk J. The morphology and biology of the entomophilic Thripinema fuscum(Tylenchida: Allantonematidae), and the histopathological effects of parasitism on the host Frankliniella fusca(Thysanoptera: Thripidae). J NAT HIST 2012. [DOI: 10.1080/00222933.2011.651654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Abstract
Microsporidia are intracellular parasites of all major animal lineages and have a described diversity of over 1200 species and an actual diversity that is estimated to be much higher. They are important pathogens of mammals, and are now one of the most common infections among immunocompromised humans. Although related to fungi, microsporidia are atypical in genomic biology, cell structure and infection mechanism. Host cell infection involves the rapid expulsion of a polar tube from a dormant spore to pierce the host cell membrane and allow the direct transfer of the spore contents into the host cell cytoplasm. This intimate relationship between parasite and host is unique. It allows the microsporidia to be highly exploitative of the host cell environment and cause such diverse effects as the induction of hypertrophied cells to harbour prolific spore development, host sex ratio distortion and host cell organelle and microtubule reorganization. Genome sequencing has revealed that microsporidia have achieved this high level of parasite sophistication with radically reduced proteomes and with many typical eukaryotic pathways pared-down to what appear to be minimal functional units. These traits make microsporidia intriguing model systems for understanding the extremes of reductive parasite evolution and host cell manipulation.
Collapse
Affiliation(s)
- Bryony A P Williams
- Centre for Eukaryotic Evolutionary Microbiology, School of Biosciences, Stocker Road, University of Exeter, Exeter, Devon EX4 4QD, UK.
| |
Collapse
|
12
|
Schafellner C, Marktl RC, Schopf A. Inhibition of juvenile hormone esterase activity in Lymantria dispar (Lepidoptera, Lymantriidae) larvae parasitized by Glyptapanteles liparidis (Hymenoptera, Braconidae). JOURNAL OF INSECT PHYSIOLOGY 2007; 53:858-68. [PMID: 17631309 DOI: 10.1016/j.jinsphys.2007.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 05/28/2007] [Accepted: 05/29/2007] [Indexed: 05/16/2023]
Abstract
Glyptapanteles liparidis is a gregarious, polydnavirus (PDV)-carrying braconid wasp that parasitizes larval stages of Lymantria dispar. In previous studies we showed that parasitized hosts dramatically increase juvenile hormone (JH) titers, whereas JH degradation is significantly inhibited in the hemolymph. Here we (i) quantified the effects of parasitism on JH esterase (JHE) activity in hemolymph and fat body of penultimate and final instars of L. dispar hosts and (ii) assessed the relative contribution of individual and combined wasp factors (PDV/venom, teratocytes, and wasp larvae) to the inhibition of host JHE activity. The effects of PDV/venom was investigated through the use of gamma-irradiated wasps, which lay non-viable eggs (leading to pseudoparasitization), while the effects of teratocytes and wasp larvae were examined by injection or insertion of these two components in either control or pseudoparasitized L. dispar larvae. Parasitism strongly suppressed host JHE activity in both hemolymph and fat body irrespective of whether the host was parasitized early (premolt-third instar) or late (mid-fourth instar). Down-regulation of JHE activity is primarily due to the injection of PDV/venom at the time of oviposition, with only very small additive effects of teratocytes and wasp larvae under certain experimental conditions. We compare the results with those reported earlier for L. dispar larvae parasitized by G. liparidis and discuss the possible role of JH alterations in host development disruption.
Collapse
Affiliation(s)
- Christa Schafellner
- Department of Forest and Soil Sciences, BOKU - University of Natural Resources and Applied Life Sciences, Hasenauerstrasse 38, 1190 Vienna, Austria.
| | | | | |
Collapse
|
13
|
Rivero A, Agnew P, Bedhomme S, Sidobre C, Michalakis Y. Resource depletion in Aedes aegypti mosquitoes infected by the microsporidia Vavraia culicis. Parasitology 2007; 134:1355-62. [PMID: 17634157 DOI: 10.1017/s0031182007002703] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYParasitic infection is often associated with changes in host life-history traits, such as host development. Many of these life-history changes are ultimately thought to be the result of a depletion or reallocation of the host's resources driven either by the host (to minimize the effects of infection) or by the parasite (to maximize its growth rate). In this paper we investigate the energetic budget of Aedes aegypti mosquito larvae infected by Vavraia culicis, a microsporidian parasite that transmits horizontally between larvae, and which has been previously shown to reduce the probability of pupation of its host. Our results show that infected larvae have significantly less lipids, sugars and glycogen than uninfected larvae. These differences in resources were not due to differences in larval energy intake (feeding rate) or expenditure (metabolic rate). We conclude that the lower energetic resources of infected mosquitoes are the result of the high metabolic demands that microsporidian parasites impose on their hosts. Given the fitness advantages for the parasite of maintaining the host in a larval stage, we discuss whether resource depletion may also be a parasite mechanism to prevent the pupation of the larvae and thus maximize its own transmission.
Collapse
Affiliation(s)
- A Rivero
- Génetique et Evolution des Maladies Infectieuses (CNRS-IRD UMR 2724), Montpellier 34394, France.
| | | | | | | | | |
Collapse
|
14
|
Pilarska DK, Solter LF, Kereselidze M, Linde A, Hoch G. Microsporidian infections in Lymantria dispar larvae: interactions and effects of multiple species infections on pathogen horizontal transmission. J Invertebr Pathol 2006; 93:105-13. [PMID: 16814805 DOI: 10.1016/j.jip.2006.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 05/09/2006] [Accepted: 05/12/2006] [Indexed: 11/20/2022]
Abstract
The interactions in multiple species infections and effects on the horizontal transmission of three microsporidian species, Vairimorpha disparis, Nosema lymantriae and Endoreticulatus schubergi, infecting Lymantria dispar were evaluated in the laboratory. Simultaneous and sequential inoculations of host larvae were performed and the resulting infections were evaluated. Test larvae were exposed to the inoculated larvae to measure horizontal transmission. Dual species infections demonstrated interspecific competition between Nosema and Vairimorpha in the host larvae, but no observable competition occurred between Endoreticulatus and either of the other microsporidian species. Timing of inoculation was an important factor determining the outcome of competition between Nosema and Vairimorpha. The species inoculated first showed a higher rate of successful establishment; a time lag of 7 days between inoculations allowed the first species to essentially exclude the second. The microsporidia differed in efficiency of horizontal transmission. Nosema and Endoreticulatus were transmitted at very high rates, close to 100%. Horizontal transmission of Vairimorpha was less efficient, ranging from 25% to a maximum of 75%. The patterns of infection observed in inoculated larvae were reflected in the test larvae that acquired infections in the horizontal transmission experiments. Competition with Vairimorpha suppressed horizontal transmission of Nosema after simultaneous and sequential inoculation. In simultaneous inoculation experiments Endoreticulatus had no effect on transmission of Nosema and Vairimorpha.
Collapse
Affiliation(s)
- Daniela K Pilarska
- Bulgarian Academy of Sciences, Institute of Zoology, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| | | | | | | | | |
Collapse
|
15
|
Gill TA, Fath-Goodin A, Maiti II, Webb BA. Potential Uses of Cys‐Motif and Other Polydnavirus Genes in Biotechnology. Adv Virus Res 2006; 68:393-426. [PMID: 16997018 DOI: 10.1016/s0065-3527(06)68011-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Exploiting the ability of insect pathogens, parasites, and predators to control natural and damaging insect populations is a cornerstone of biological control. Here we focus on an unusual group of viruses, the polydnaviruses (PDV), which are obligate symbionts of some hymenopteran insect parasitoids. PDVs have a variety of important pathogenic effects on their parasitized hosts. The genes controlling some of these pathogenic effects, such as inhibition of host development, induction of precocious metamorphosis, slowed or reduced feeding, and immune suppression, may have use for biotechnological applications. In this chapter, we consider the physiological functions of both wasp and viral genes with emphasis on the Cys-motif gene family and their potential use for insect pest control.
Collapse
Affiliation(s)
- Torrence A Gill
- Department of Entomology, S-225 Agricultural Science Building North University of Kentucky, Lexington, Kentucky 40546, USA
| | | | | | | |
Collapse
|
16
|
Kaeslin M, Pfister-Wilhelm R, Lanzrein B. Influence of the parasitoid Chelonus inanitus and its polydnavirus on host nutritional physiology and implications for parasitoid development. JOURNAL OF INSECT PHYSIOLOGY 2005; 51:1330-9. [PMID: 16203013 DOI: 10.1016/j.jinsphys.2005.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 08/10/2005] [Accepted: 08/11/2005] [Indexed: 05/04/2023]
Abstract
Chelonus inanitus is a solitary egg-larval endoparasitoid, which feeds on host haemolymph during its internal phase. Parasitization induces in the host Spodoptera littoralis a precocious onset of metamorphosis and a developmental arrest in the prepupal stage. At this stage the parasitoid larva emerges from the host and consumes it. We show here that parasitization and the co-injected polydnaviruses affect the nutritional physiology of the host mainly in the last larval instar. Polydnaviruses cause a reduced uptake of food and an increase in the concentration of free sugars in the haemolymph and of glycogen in whole body. The parasitoid larva, along with polydnaviruses, causes a reduction of proteins in the host's plasma and an accumulation of lipids in whole body. Dilution of host haemolymph led to a reduced concentration of lipid in parasitoid larvae and a reduced survival rate. Thus, a sufficient concentration of nutrients in the host's haemolymph appears to be crucial for successful parasitoid development. Altogether, the data show that the parasitoid and the polydnavirus differentially influence host nutritional physiology and that the accumulated lipids and glycogen are taken up by the parasitoid in its haematophagous stage as well as through the subsequent external host feeding.
Collapse
Affiliation(s)
- Martha Kaeslin
- Institute of Cell Biology, University of Berne, Switzerland
| | | | | |
Collapse
|
17
|
Down RE, Smethurst F, Bell HA, Edwards JP. Interactions between the solitary endoparasitoid, Meteorus gyrator (Hymenoptera: Braconidae) and its host, Lacanobia oleracea (Lepidoptera: Noctuidae), infected with the entomopathogenic microsporidium, Vairimorpha necatrix (Microspora: Microsporidia). BULLETIN OF ENTOMOLOGICAL RESEARCH 2005; 95:133-44. [PMID: 15877862 DOI: 10.1079/ber2004343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Infection of Lacanobia oleracea (Linnaeus) larvae with the microsporidium Vairimorpha necatrix (Kramer) resulted in significant effects on the survival and development of the braconid parasitoid, Meteorus gyrator (Thunberg). Female M. gyrator did not show any avoidance of V. necatrix-infected hosts when they were selecting hosts for oviposition. When parasitism occurred at the same time as infection by the pathogen, or up to four days later, no significant detrimental effects on the parasitoid were observed. However, when parasitism occurred six to eight days after infection, a greater proportion (12.5-14%) of hosts died before parasitoid larvae egressed. Successful eclosion of adult wasps was also reduced. When parasitism and infection were concurrent, parasitoid larval development was significantly faster in infected hosts, and cocoons were significantly heavier. However, as the time interval between infection and parasitism increased, parasitoid larval development was significantly extended by up to two days, and the cocoons formed were significantly (c. 20%) smaller. Vairimorpha necatrix spores were ingested by the developing parasitoid larvae, accumulated in the occluded midgut, and were excreted in the meconium upon pupation.
Collapse
Affiliation(s)
- R E Down
- Central Science Laboratory, Sand Hutton, York, YO41 1LZ, UK. r.down.csl.gov.uk
| | | | | | | |
Collapse
|
18
|
Nakamatsu Y, Tanaka T. Correlation between concentration of hemolymph nutrients and amount of fat body consumed in lightly and heavily parasitized hosts (Pseudaletia separata). JOURNAL OF INSECT PHYSIOLOGY 2004; 50:135-141. [PMID: 15019514 DOI: 10.1016/j.jinsphys.2003.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2003] [Revised: 10/20/2003] [Accepted: 10/20/2003] [Indexed: 05/24/2023]
Abstract
Two states of parasitization in the Pseudaletia separata-Cotesia kariyai system were examined: one that was lightly parasitized and one that was heavily parasitized. We predicted that the consumption of fat body and hemolymph nutrients depends on the number of parasitoid larvae in the host. Lightly parasitized hosts (average clutch size+/-S.E.: 42.5+/-16.2, N=15) and heavily parasitized hosts (average clutch size+/-S.E.: 230.2+/-8.8, N=15) were prepared artificially. Eight days after parasitization, perivisceral fat body was depleted in the heavily parasitized host, although peripheral fat body was not yet consumed, but by day 10 most of the peripheral fat body was consumed. In lightly parasitized hosts, perivisceral fat body was not consumed by day 10. The parasitoid larvae deplete the perivisceral fat body first and then consume the peripheral fat body in the heavily parasitized host. The amount of trehalose, the major carbohydrate in the hemolymph, was related to the number of parasitoid larvae developing in the host. In a heavily parasitized host, trehalose concentrations remained low. However, in lightly parasitized hosts, the amount of trehalose increased 8 days after parasitization and then decreased by day 10. Protein and total lipid concentrations in the hemolymph of the heavily parasitized host were significantly lower than in lightly parasitized host on day 10, suggesting that the large number of parasitoid larvae depleted the fat body and hemolymph nutrients by day 10. High concentrations of total lipid on day 8 and 10 in lightly parasitized hosts and on day 8 in heavily parasitized host are likely to be attributed to the teratocytes.
Collapse
Affiliation(s)
- Y Nakamatsu
- Laboratory of Applied Entomology, Graduate School of Bio-Agricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | | |
Collapse
|