1
|
Arya SK, Goodman CL, Stanley D, Palli SR. A database of crop pest cell lines. In Vitro Cell Dev Biol Anim 2022; 58:719-757. [PMID: 35994130 DOI: 10.1007/s11626-022-00710-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/13/2022] [Indexed: 11/27/2022]
Abstract
We have developed an online database describing the known cell lines from Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera that were developed from agricultural pests. Cell line information has been primarily obtained from previous compilations of insect cell lines. We conducted in-depth Internet literature searches and drew on Internet sources such as the Cellosaurus database (https://web.expasy.org/cellosaurus/), and inventories from cell line depositories. Here, we report on a new database of insect cell lines, which covers 719 cell lines from 86 species. We have not included cell lines developed from Drosophila because they are already known from published databases, such as https://dgrc.bio.indiana.edu/cells/Catalog. We provide the designation, tissue and species of origin, cell line developer, unique characteristics, its use in various applications, publications, and patents, and, when known, insect virus susceptibility. This information has been assembled and organized into a searchable database available at the link https://entomology.ca.uky.edu/aginsectcellsdatabase which will be updated on an ongoing basis.
Collapse
Affiliation(s)
- Surjeet Kumar Arya
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Cynthia L Goodman
- Biological Control of Insects Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Columbia, Missouri, 65203, USA
| | - David Stanley
- Biological Control of Insects Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Columbia, Missouri, 65203, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
2
|
Qi L, Qiu X, Yang S, Li R, Wu B, Cao X, He T, Ding X, Xia L, Sun Y. Cry1Ac Protoxin and Its Activated Toxin from Bacillus thuringiensis Act Differentially during the Pathogenic Process. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5816-5824. [PMID: 32379448 DOI: 10.1021/acs.jafc.0c01172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Although the new dual model of the Bacillus thuringiensis insecticidal mechamism indicated that both Cry1A protoxin and activated toxin have the potency to kill insects, the difference in the toxic pathways elicited by the protoxin and activated toxin was less understood at the molecular level. Through utilizing the CF-203 cell line derived from the midgut of Choristoneura fumiferana, we found that there existed obvious differences in the binding sites and endocytosis pathways for the two forms of Cry1Ac. In addition, it was revealed that Cry1Ac protoxin existed predominantly in the midgut of Plutella xylostella at the early stage after ingesting Cry1Ac crystals, which brought about obvious damage to the midgut epithelium and exhibited different binding sites on the brush border membrane vesicle compared to the toxin. These findings supported the dual mode of action of B. thuringiensis Cry1A proteins and improved our understanding of the molecular features that contribute to the protoxin toxicity.
Collapse
Affiliation(s)
- Lingling Qi
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Xianfeng Qiu
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Sisi Yang
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Ran Li
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Binbin Wu
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Xiaomei Cao
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Ting He
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Xuezhi Ding
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Liqiu Xia
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Yunjun Sun
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, People's Republic of China
| |
Collapse
|
3
|
Li X, Zhao F, Qiu X, Ren X, Mo X, Ding X, Xia L, Sun Y. The full-length Cry1Ac protoxin without proteolytic activation exhibits toxicity against insect cell line CF-203. J Invertebr Pathol 2018; 152:25-29. [PMID: 29408155 DOI: 10.1016/j.jip.2018.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/06/2018] [Accepted: 01/17/2018] [Indexed: 11/19/2022]
Abstract
The new dual model for Bacillus thuringiensis insecticidal mechanism proposed that Cry1A protoxins without proteolytic activation could bind to insect midgut receptors to exert toxicity. To evaluate insecticidal potency of Cry1Ac protoxin at precluding interference of midgut proteases, the cytotoxicity of Cry1Ac protoxin against midgut cell line CF-203 derived from Choristoneura fumiferana was analyzed. It was revealed that Cry1Ac protoxin was toxic to CF-203 cells and there existed certain differences in the cytological changes when treated with protoxin and toxin. Our cell-based study provided direct evidence for the proposed dual model and shed light on exploring the difference between two toxic pathways elicited by intact protoxin and activated toxin.
Collapse
Affiliation(s)
- Xiaodi Li
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Feng Zhao
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Xianfeng Qiu
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Xiaomeng Ren
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Xiangtao Mo
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Xuezhi Ding
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Liqiu Xia
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Yunjun Sun
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China.
| |
Collapse
|
4
|
Wen F, Caputo G, Hooey S, Bowman S, Pinkney K, Krell PJ, Arif B, Doucet D. Establishment of a cell line from the ash and privet borer beetle Tylonotus bimaculatus Haldeman and assessment of its sensitivity to diacylhydrazine insecticides. In Vitro Cell Dev Biol Anim 2015; 51:905-14. [PMID: 25952767 DOI: 10.1007/s11626-015-9917-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/14/2015] [Indexed: 12/18/2022]
Abstract
A novel cell line, NRCAN-Tb521, was developed from larvae of the longhorn beetle Tylonotus bimaculatus (Coleoptera: Cerambycidae), a pest of North American ash trees. The cell line has been successfully passaged more than 50 times and displayed very strong attachment to the substrate and a modal chromosomal count distribution of 19. Sequencing of a 649 bp fragment of the mitochondrial cytochrome oxidase I gene confirmed the identity of NRCAN-Tb521 as T. bimaculatus. The response of the cell line to 20-hydroxyecdysone and diacylhydrazine ecdysone agonist insecticides was also studied. At 10(-6) M, 20-hydroxyecdysone, tebufenozide, methoxyfenozide and halofenozide triggered the production of numerous filamentous cytoplasmic extensions, and the cells tended to form aggregates, indicative of a cell differentiation response. This response was followed by a strong decrease in viability after 4 d. Reverse transcription polymerase chain reaction (PCR) experiments and sequencing of PCR fragments showed that the 20E receptor gene EcR is expressed in the cells and that 20E, tebufenozide, methoxyfenozide and halofenozide also induce the expression of the nuclear hormone receptor gene HR3. This report establishes that NRCAN-Tb521 is a valuable in vitro model to study effects of ecdysone agonists in wood-boring cerambycids.
Collapse
Affiliation(s)
- Fayuan Wen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1.,Canadian Forest Service, Natural Resources Canada, 1219 Queen St. East, Sault Ste Marie, ON, Canada, P6A 2E5
| | - Guido Caputo
- Canadian Forest Service, Natural Resources Canada, 1219 Queen St. East, Sault Ste Marie, ON, Canada, P6A 2E5
| | - Sharon Hooey
- Canadian Forest Service, Natural Resources Canada, 1219 Queen St. East, Sault Ste Marie, ON, Canada, P6A 2E5
| | - Susan Bowman
- Canadian Forest Service, Natural Resources Canada, 1219 Queen St. East, Sault Ste Marie, ON, Canada, P6A 2E5
| | - Kristine Pinkney
- Canadian Forest Service, Natural Resources Canada, 1219 Queen St. East, Sault Ste Marie, ON, Canada, P6A 2E5
| | - Peter J Krell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Basil Arif
- Canadian Forest Service, Natural Resources Canada, 1219 Queen St. East, Sault Ste Marie, ON, Canada, P6A 2E5
| | - Daniel Doucet
- Canadian Forest Service, Natural Resources Canada, 1219 Queen St. East, Sault Ste Marie, ON, Canada, P6A 2E5.
| |
Collapse
|
5
|
Swevers L, Soin T, Mosallanejad H, Iatrou K, Smagghe G. Ecdysteroid signaling in ecdysteroid-resistant cell lines from the polyphagous noctuid pest Spodoptera exigua. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:825-833. [PMID: 18675909 DOI: 10.1016/j.ibmb.2008.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 06/04/2008] [Accepted: 06/17/2008] [Indexed: 05/26/2023]
Abstract
Although dibenzoylhydrazine-type non-steroidal ecdysone agonists such as methoxyfenozide (RH-2485) have an excellent performance record, the emergence of resistance could severely compromise the efficacy of these compounds in integrated pest management programs. To investigate possible mechanisms of resistance, cell lines derived from the polyphagous noctuid pest Spodoptera exigua (Se4 cells) were selected for continuous growth in the presence of high concentrations of 20-hydroxyecdysone (20E) or methoxyfenozide. Here we describe an analysis of ecdysteroid receptor signaling in the ecdysteroid-resistant Se4 cell lines. In contrast to other ecdysteroid-resistant cell lines described in literature, our data support the existence of a normal functioning ecdysteroid receptor complex in the resistant Se4 cell lines: (1) using a recombinant BmNPV baculovirus as a transduction tool, activation of an ecdysone-responsive luciferase cassette was demonstrated; (2) the early gene HR3 is constitutively expressed in the resistant cell lines that are grown in the presence of 20E or methoxyfenozide. Quantitative RT-PCR experiments indicated that expression levels of SeEcR mRNA were comparable among sensitive and resistant cell lines. Sequencing of PCR fragments also revealed the presence of SeEcR mRNA with a wild-type ligand-binding domain in resistant cells. Finally, a possible role for the gene FTZ-F1, whose expression correlates with the absence of circulating ecdysteroids during insect development, in the resistance mechanism was investigated. However, it was observed that FTZ-F1, in contrast to what is observed during insect development, is constitutively expressed in Se4 cells and that its expression is not regulated by the addition of ecdysteroid. It is proposed that the resistance mechanism in Se4 cells resides at the coupling between the conserved hierarchical cascade of early and early-late gene expression and the differentiation program in the Se4 cell line. The use of insect cell lines for the investigation of resistance against dibenzoylhydrazine ecdysone agonists and their relevance for uncovering resistance mechanisms in insects during pest control programs is discussed.
Collapse
Affiliation(s)
- Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biology, National Centre for Scientific Research "Demokritos", Aghia Paraskevi Attikis, Athens, Greece
| | | | | | | | | |
Collapse
|
6
|
Mosallanejad H, Soin T, Smagghe G. Selection for resistance to methoxyfenozide and 20-hydroxyecdysone in cells of the beet armyworm, Spodoptera exigua. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2008; 67:36-49. [PMID: 18044724 DOI: 10.1002/arch.20220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In this report with an ecdysteroid-responsive cell line of the beet armyworm, Spodoptera exigua (Se4) selection for resistance against methoxyfenozide and the insect moulting hormone (20-hydroxyecdysone, 20E) was carried out to analyze the resulting resistant cells in order to elucidate possible mechanisms of resistance towards these compounds. From these cultures, five methoxyfenozide- and four 20E-resistant subclones were selected starting from 0.1 nM methoxyfenozide up to 100 microM and from 10 nM 20E up to 100 microM, respectively. To date, the selected cells kept their loss of susceptibility for 100 microM. Here we evaluated two processes known to be important in insecticide resistance, namely metabolism and pharmacokinetics, in the selected methoxyfenozide- and 20E-resistant subclones. Synergism experiments with piperonyl butoxide, S,S,S-tributyl phosphorotrithioate, and diethyl maleate, which are respective inhibitors of monooxygenases, esterases, and gluthation-S-transferases, did not affect the level of the resistance. To check the possible existence of active transport in the resistant cells, we used ouabain, an inhibitor of active membrane transport. In parallel, the absorption profile was studied in resistant and susceptible cells with use of 14C-methoxyfenozide. Interestingly, resistant subclones showed cross-resistance towards methoxyfenozide and 20E. The resistance was irreversible even after the compounds were removed from the medium.
Collapse
Affiliation(s)
- Hadi Mosallanejad
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | | |
Collapse
|
7
|
Malausa T, Salles M, Marquet V, Guillemaud T, Alla S, Marion-Poll F, Lapchin L. Within-species variability of the response to 20-hydroxyecdysone in peach-potato aphid (Myzus persicae Sulzer). JOURNAL OF INSECT PHYSIOLOGY 2006; 52:480-6. [PMID: 16516909 DOI: 10.1016/j.jinsphys.2006.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 01/17/2006] [Accepted: 01/22/2006] [Indexed: 05/06/2023]
Abstract
Phytoecdysteroids have been proposed as new tools for controlling crop pests because of their endocrine disruption and deterrent effects on insects and nematodes. There is increasing evidence of variability between taxa in sensitivity to phytoecdysteroids, but the genetic variability of this sensitivity within species is unknown. However, knowledge about this intraspecies variability is required for predicting evolution of the pest's response to new control methods. We assessed the variability of the response of the aphid Myzus persicae Sulzer, a major agricultural pest, to 20-hydroxyecdysone (20E). We determined the number of nymphs produced by six clones of M. persicae exposed to various concentrations of 20E and the capacity of these clones to detect 20E in choice experiments. High concentrations of 20E significantly decreased the number of nymphs produced for two clones and both increases and decreases in the number of offspring were detected at low concentrations. Two clones significantly avoided food with 20E, while one significantly preferred it, suggesting that 20E does not always act as a deterrent in this species. We conclude that genetic variability in the response to 20E exists in natural populations of M. persicae. The consequences of this finding on the sustainability of control methods using 20E are discussed.
Collapse
Affiliation(s)
- Thibaut Malausa
- Biologie des Populations en Interaction, U.M.R. 1112 INRA-UNSA, 400 Route des Chappes. BP167, 06903 Sophia Antipolis cedex, France.
| | | | | | | | | | | | | |
Collapse
|
8
|
Qin W, Walker VK. Tenebrio molitor antifreeze protein gene identification and regulation. Gene 2005; 367:142-9. [PMID: 16316726 DOI: 10.1016/j.gene.2005.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 10/03/2005] [Accepted: 10/05/2005] [Indexed: 11/29/2022]
Abstract
The yellow mealworm, Tenebrio molitor, is a freeze susceptible, stored product pest. Its winter survival is facilitated by the accumulation of antifreeze proteins (AFPs), encoded by a small gene family. We have now isolated 11 different AFP genomic clones from 3 genomic libraries. All the clones had a single coding sequence, with no evidence of intervening sequences. Three genomic clones were further characterized. All have putative TATA box sequences upstream of the coding regions and multiple potential poly(A) signal sequences downstream of the coding regions. A TmAFP regulatory region, B1037, conferred transcriptional activity when ligated to a luciferase reporter sequence and after transfection into an insect cell line. A 143 bp core promoter including a TATA box sequence was identified. Its promoter activity was increased 4.4 times by inserting an exotic 245 bp intron into the construct, similar to the enhancement of transgenic expression seen in several other systems. The addition of a duplication of the first 120 bp sequence from the 143 bp core promoter decreased promoter activity by half. Although putative hormonal response sequences were identified, none of the five hormones tested enhanced reporter activity. These studies on the mechanisms of AFP transcriptional control are important for the consideration of any transfer of freeze-resistance phenotypes to beneficial hosts.
Collapse
Affiliation(s)
- Wensheng Qin
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | |
Collapse
|
9
|
Auzoux-Bordenave S, Solvar M, Queguiner I, Bozzolan F, Mottier V, Siaussat D, Porcheron P, Debernard S. Comparative effects of a non-steroidal ecdysone agonist RH-5992 and 20-hydroxyecdysone in a lepidopteran cell line (IAL-PID2). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:1033-42. [PMID: 15979003 DOI: 10.1016/j.ibmb.2005.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 04/22/2005] [Accepted: 04/26/2005] [Indexed: 05/03/2023]
Abstract
The non-steroidal ecdysone agonist, RH-5992, exhibits ecdysteroid activities in vivo as well as in vitro more effectively than 20-hydroxyecdysone (20E). Using the IAL-PID2 cells derived from imaginal wing discs of last larval instar of Plodia interpunctella, we investigated the action of RH-5992 in the control of cell growth. Its effects on the proliferative activity of IAL-PID2 cells, the induction level in G2/M arrest and on the expression rate of Plodia B cyclin (PcycB), ecdysone B1-isoform (PIEcR-B1) and Ultraspiracle-2 isoform (PIUSP-2) were examined. From these cellular and molecular assays, our results brought evidence that RH-5992, like 20E, induced an inhibition on cell proliferation by blocking IAL-PID2 cells in G2/M phase. Moreover, this G2/M arrest was preceded by a decrease in the expression level of PcycB and a high induction of PIEcR-B1, PIUSP-2 mRNAs. Dose-response experiments revealed that RH-5992 was even more potent than 20E. On these parameters, we therefore suggest that the differential observed in the expression level of USP and EcR by RH-5992 and 20E could contribute to the difference observed for the biological potency of these two compounds.
Collapse
Affiliation(s)
- Stéphanie Auzoux-Bordenave
- UMR 1272 Physiologie de l'insecte: Signalisation et Communication, Université Pierre et Marie Curie, 12 rue Cuvier, 75005 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Nonsteroidal ecdysone agonists are novel compounds that have become attractive candidates not only as pest control agents in agriculture but also as tools for research. Their narrow spectrum of activity makes them relatively safe as pesticides, and their mode of action as ligands for gene expression has found application in gene therapy and inducing transgenic gene expression in plants. These diacylhydrazines (DAHs) are potent nonsteroidal ecdysone agonists, and four of them, tebufenozide, methoxyfenozide, chromafenozide, and halofenozide, have been developed as insecticides. Although these compounds are very toxic to insects, they are safe for mammals and are environmentally benign. Their action on insects is also selective, the first three are effective against Lepidoptera but weakly active or inactive on Diptera and Coleoptera. On the other hand, halofenozide is effective on Coleoptera but mildly active on Lepidoptera. Previous reviews on ecdysone agonists have concentrated on the biological response of some DAHs and their effects on pests. In this review, the chemistry, biological effects and their modes of action at the molecular level will be covered. In addition, a few studies on other nonsteroidal ecdysone agonists, such as 3,5-di-tert-butyl-4-hydroxy-N-iso-butylbenzamide, acylaminoketones, and benzoyl-1,2,3,4-tetrahydroquinolines, will be briefly reviewed.
Collapse
Affiliation(s)
- Yoshiaki Nakagawa
- Division of Applied Life Sciences, Graduate School of Agriculture Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
11
|
Beckage NE, Marion KM, Walton WE, Wirth MC, Tan FF. Comparative larvicidal toxicities of three ecdysone agonists on the mosquitoes Aedes aegypti, Culex quinquefasciatus, and Anopheles gambiae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2004; 57:111-122. [PMID: 15484259 DOI: 10.1002/arch.20021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Ecdysone agonists are hormonally active insect growth regulators that disrupt development of pest insects and have potential for development as insecticides. Their effects have been particularly well-studied in Lepidoptera and Coleoptera, but significantly less is known about their effects on dipterans, particularly aquatic species. The potency of three ecdysone agonists on larvae of 3 mosquito species, Aedes aegypti, Anopheles gambiae, and Culex quinquefasciatus, was examined. Anopheles gambiae was the most susceptible species and Ae. aegypti was the most resistant species to the effects of the three compounds tested. Potency, in descending order, was RH-2485 > RH-5992 > RH-5849. Dose-response relationships were determined for the three agonists; RH-2485 was found to be the most effective endocrine disruptor against all three species. The observed biological effects of these compounds were similar to those reported for other insects, and mosquitoes initiated molting and apolysis but did not complete a molt. In some cases, mosquito larvae synthesized a new cuticle that appeared to be normally sclerotized but the larvae failed to ecdyse and shed the exuvium. These compounds may prove to be valuable insect growth regulators for control of mosquitoes to decrease the frequency of pathogen transmission to humans. Prospects for using these compounds to control mosquitoes in the field are discussed, along with possible impacts on non-target arthropods in mosquito habitats.
Collapse
Affiliation(s)
- Nancy E Beckage
- Department of Entomology, University of California, Riverside, CA 92521, USA.
| | | | | | | | | |
Collapse
|