1
|
Zhang X, Xu X. Serotonergic Modulation of Olfactory Processing in Locust Antennae. CURRENT OPINION IN INSECT SCIENCE 2024; 66:101238. [PMID: 39043333 DOI: 10.1016/j.cois.2024.101238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Abstract
Insects have sophisticated olfactory systems that enable them to detect and respond to complex exogenous chemical cues. The encoding mechanisms of these chemical signals have been studied both in their peripheral and central nervous systems (CNS). While many neuromodulators have been shown to play significant roles in olfactory processing within the antennal lobes of the brain, their roles in peripheral olfactory sensory systems, such as the antennae, are less understood. This review focuses on the role of serotonin (5-HT) receptor in the locust antenna, specifically the modulatory function of the serotonin receptor2 on odour inputs. We also review recent studies on the modulation of olfaction in the peripheral nervous systems of other insects and discuss potential directions for future research on the role of neuromodulators in insect peripheral olfactory systems.
Collapse
Affiliation(s)
- Xinyang Zhang
- Xianghu Laboratory, Hangzhou 311231, Zhejiang Province, China.
| | - Xiao Xu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong Province, China
| |
Collapse
|
2
|
Lehmann J, Günzel Y, Khosravian M, Cassau S, Kraus S, Libnow JS, Chang H, Hansson BS, Breer H, Couzin-Fuchs E, Fleischer J, Krieger J. SNMP1 is critical for sensitive detection of the desert locust aromatic courtship inhibition pheromone phenylacetonitrile. BMC Biol 2024; 22:150. [PMID: 38973001 PMCID: PMC11229289 DOI: 10.1186/s12915-024-01941-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Accurate detection of pheromones is crucial for chemical communication and reproduction in insects. In holometabolous flies and moths, the sensory neuron membrane protein 1 (SNMP1) is essential for detecting long-chain aliphatic pheromones by olfactory neurons. However, its function in hemimetabolous insects and its role for detecting pheromones of a different chemical nature remain elusive. Therefore, we investigated the relevance of SNMP1 for pheromone detection in a hemimetabolous insect pest of considerable economic importance, the desert locust Schistocerca gregaria, which moreover employs the aromatic pheromone phenylacetonitrile (PAN) to govern reproductive behaviors. RESULTS Employing CRISPR/Cas-mediated gene editing, a mutant locust line lacking functional SNMP1 was established. In electroantennography experiments and single sensillum recordings, we found significantly decreased electrical responses to PAN in SNMP1-deficient (SNMP1-/-) locusts. Moreover, calcium imaging in the antennal lobe of the brain revealed a substantially reduced activation of projection neurons in SNMP1-/- individuals upon exposure to PAN, indicating that the diminished antennal responsiveness to PAN in mutants affects pheromone-evoked neuronal activity in the brain. Furthermore, in behavioral experiments, PAN-induced effects on pairing and mate choice were altered in SNMP1-/- locusts. CONCLUSIONS Our findings emphasize the importance of SNMP1 for chemical communication in a hemimetabolous insect pest. Moreover, they show that SNMP1 plays a crucial role in pheromone detection that goes beyond long-chain aliphatic substances and includes aromatic compounds controlling reproductive behaviors.
Collapse
Affiliation(s)
- Joris Lehmann
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Yannick Günzel
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz, Germany
- International Max Planck Research School for Quantitative Behavior, Ecology and Evolution From Lab to Field, Konstanz, Germany
| | - Maryam Khosravian
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sina Cassau
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Susanne Kraus
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Johanna S Libnow
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Hetan Chang
- Department of Evolutionary Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bill S Hansson
- Department of Evolutionary Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Heinz Breer
- Department of Physiology (190V), Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Einat Couzin-Fuchs
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Joerg Fleischer
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - Jürgen Krieger
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
3
|
Boronat-Garcia A, Iben J, Dominguez-Martin E, Stopfer M. Identification and analysis of odorant receptors expressed in the two main olfactory organs, antennae and palps, of Schistocerca americana. Sci Rep 2022; 12:22628. [PMID: 36587060 PMCID: PMC9805433 DOI: 10.1038/s41598-022-27199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
Locusts depend upon their sense of smell and provide useful models for understanding olfaction. Extending this understanding requires knowledge of the molecular and structural organization of the olfactory system. Odor sensing begins with olfactory receptor neurons (ORNs), which express odorant receptors (ORs). In insects, ORNs are housed, in varying numbers, in olfactory sensilla. Because the organization of ORs within sensilla affects their function, it is essential to identify the ORs they contain. Here, using RNA sequencing, we identified 179 putative ORs in the transcriptomes of the two main olfactory organs, antenna and palp, of the locust Schistocerca americana. Quantitative expression analysis showed most putative ORs (140) are expressed in antennae while only 31 are in the palps. Further, our analysis identified one OR detected only in the palps and seven ORs that are expressed differentially by sex. An in situ analysis of OR expression suggested ORs are organized in non-random combinations within antennal sensilla. A phylogenetic comparison of OR predicted protein sequences revealed homologous relationships among two other Acrididae species. Our results provide a foundation for understanding the organization of the first stage of the olfactory system in S. americana, a well-studied model for olfactory processing.
Collapse
Affiliation(s)
- Alejandra Boronat-Garcia
- grid.420089.70000 0000 9635 8082Section on Sensory Coding and Neural Ensembles, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child and Human Development, Bethesda, MD USA
| | - James Iben
- grid.420089.70000 0000 9635 8082Molecular and Genomics Core, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child and Human Development, Bethesda, MD USA
| | - Eunice Dominguez-Martin
- grid.416870.c0000 0001 2177 357XBiochemistry Section, National Institutes of Health, National Institute of Neurological Disorders and Stroke, Bethesda, MD USA
| | - Mark Stopfer
- grid.420089.70000 0000 9635 8082Section on Sensory Coding and Neural Ensembles, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child and Human Development, Bethesda, MD USA
| |
Collapse
|
4
|
Nakano M, Morgan-Richards M, Clavijo-McCormick A, Trewick S. Abundance and distribution of antennal sensilla on males and females of three sympatric species of alpine grasshopper (Orthoptera: Acrididae: Catantopinae) in Aotearoa New Zealand. ZOOMORPHOLOGY 2022. [DOI: 10.1007/s00435-022-00579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AbstractBrachaspis nivalis, Sigaus australis and Paprides nitidus are grasshopper species endemic to Aotearoa, New Zealand where they are sympatric in several regions of South Island. On mountains of Kā Tiritiri o te Moana (Southern Alps), B. nivalis is more abundant on scree/rock habitat, whereas S. australis and P. nitidus are prevalent in alpine tussock and herbfields. It is expected, therefore, that these species have different sensory needs that are likely to be apparent in the type, abundance, and distribution of chemo-sensilla on their antennae. It is also likely that natural selection has resulted in sexual differences in sensilla. To test these hypotheses, abundance and distribution of the chemo-sensilla on the dorsal and ventral surfaces of their antennae were characterized in adult males and females of the three species. Five types of chemo-sensilla were identified on the distal portion of their antenna: chaetica, basiconica, trichoidea, coeloconica, and cavity. All species had significantly more chemo-sensilla on the ventral than the dorsal surface of antennae and a similar distribution pattern of chemo-sensilla. Despite having relatively short antenna, B. nivalis had the largest number of olfactory sensilla, but the fewest chaetica of the three species studied. A plausible explanation is that B. nivalis is abundant on less vegetated habitats compared to the other species, and therefore may rely more on olfaction (distance) than gustatory (contact) reception for finding food. No significant differences were observed between the sexes of B. nivalis and P. nitidus, however, S. australis males had significantly more basiconica sensilla than females.
Collapse
|
5
|
Nakano M, Morgan-Richards M, Trewick SA, Clavijo-McCormick A. Chemical Ecology and Olfaction in Short-Horned Grasshoppers (Orthoptera: Acrididae). J Chem Ecol 2022; 48:121-140. [PMID: 35001201 DOI: 10.1007/s10886-021-01333-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 01/26/2023]
Abstract
Chemoreception plays a crucial role in the reproduction and survival of insects, which often rely on their sense of smell and taste to find partners, suitable habitats, and food sources, and to avoid predators and noxious substances. There is a substantial body of work investigating the chemoreception and chemical ecology of Diptera (flies) and Lepidoptera (moths and butterflies); but less is known about the Orthoptera (grasshoppers, locusts, crickets, and wēta). Within the Orthoptera, the family Acrididae contains about 6700 species of short-horned grasshoppers. Grasshoppers are fascinating organisms to study due to their significant taxonomic and ecological divergence, however, most chemoreception and chemical ecology studies have focused on locusts because they are agricultural pests (e.g., Schistocerca gregaria and Locusta migratoria). Here we review studies of chemosensory systems and chemical ecology of all short-horned grasshoppers. Applications of genome editing tools and entomopathogenic microorganism to control locusts in association with their chemical ecology are also discussed. Finally, we identify gaps in the current knowledge and suggest topics of interest for future studies.
Collapse
Affiliation(s)
- Mari Nakano
- Wildlife & Ecology, Massey University, Private Bag 11-222, Palmerston North, 4410, New Zealand.
| | - Mary Morgan-Richards
- Wildlife & Ecology, Massey University, Private Bag 11-222, Palmerston North, 4410, New Zealand
| | - Steven A Trewick
- Wildlife & Ecology, Massey University, Private Bag 11-222, Palmerston North, 4410, New Zealand
| | | |
Collapse
|
6
|
A Chemosensory Protein Detects Antifeedant in Locust ( Locusta migratoria). INSECTS 2020; 12:insects12010001. [PMID: 33374494 PMCID: PMC7822123 DOI: 10.3390/insects12010001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 01/21/2023]
Abstract
Simple Summary Chemosensory proteins (CSPs) in insects are small compact polypeptides which can bind and carry hydrophobic semiochemicals. CSPs distribute in many organs of insect and have multiple functions. In chemosensory system, CSPs are thought to be responsible for detecting chemical signals from the environment. In this study, we proved that LmigCSPIII, a CSP in Locusta migratoria is involved in detecting an antifeedant. LmigCSPIII exhibits high binding affinity to α-amylcinnamaldehyde, a natural compound from non-host plant which was subsequently demonstrated to be an effective antifeedant. Knockdown of LmigCSPIII gene by RNA interference showed reduced sensitivity to α-amylcinnamaldehyde but showed no changes in their physiological development or food consumption. Our findings provided new evidence that CSPs can detect antifeedant in chemosensory system of insects. Abstract Chemosensory system is vitally important for animals to select food. Antifeedants that herbivores encounter can interfere with feeding behavior and exert physiological effects. Few studies have assessed the molecular mechanisms underlying the chemoreception of antifeedants. In this study, we demonstrated that a chemosensory protein (CSP) in Locusta migratoria is involved in detecting an antifeedant. This CSP, LmigEST6 (GenBank Acc. No. AJ973420), we named as LmigCSPIII, expressed in sensory organs where chemosensilla are widely distributed. Fluorescent binding experiments indicated that LmigCSPIII exhibits high binding affinity to α-amylcinnamaldehyde (AMCAL), a natural compound from non-host plant. This compound was subsequently demonstrated to be an effective antifeedant to locusts in feeding bioassay. By injection of double-stranded RNA (dsRNA) of LmigCSPIII, we generated LmigCSPIII knockdown locusts. The feeding behaviour assays demonstrated that the LmigCSPIII knockdown locusts had reduced sensitivity to the antifeedant but showed no changes in their physiological development or food consumption. Therefore, we inferred that this chemosensory protein is involved in antifeedant detection.
Collapse
|
7
|
Pregitzer P, Jiang X, Lemke RS, Krieger J, Fleischer J, Breer H. A Subset of Odorant Receptors from the Desert Locust Schistocerca gregaria Is Co-Expressed with the Sensory Neuron Membrane Protein 1. INSECTS 2019; 10:insects10100350. [PMID: 31627262 PMCID: PMC6835626 DOI: 10.3390/insects10100350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 11/16/2022]
Abstract
In the desert locust Schistocerca gregaria (S. gregaria), pheromones are considered to be crucial for governing important behaviors and processes, including phase transition, reproduction, aggregation and swarm formation. The receptors mediating pheromone detection in olfactory sensory neurons (OSNs) on the antenna of S. gregaria are unknown. Since pheromone receptors in other insects belong to the odorant receptor (OR) family and are typically co-expressed with the “sensory neuron membrane protein 1” (SNMP1), in our search for putative pheromone receptors of S. gregaria, we have screened the OR repertoire for receptor types that are expressed in SNMP1-positive OSNs. Based on phylogenetic analyses, we categorized the 119 ORs of S. gregaria into three groups (I–III) and analyzed a substantial number of ORs for co-expression with SNMP1 by two-color fluorescence in situ hybridization. We have identified 33 ORs that were co-expressed with SNMP1. In fact, the majority of ORs from group I and II were found to be expressed in SNMP1-positive OSNs, but only very few receptors from group III, which comprises approximately 60% of all ORs from S. gregaria, were co-expressed with SNMP1. These findings indicate that numerous ORs from group I and II could be important for pheromone communication. Collectively, we have identified a broad range of candidate pheromone receptors in S. gregaria that are not randomly distributed throughout the OR family but rather segregate into phylogenetically distinct receptor clades.
Collapse
Affiliation(s)
- Pablo Pregitzer
- Institute of Physiology (230), University of Hohenheim, 70599 Stuttgart, Germany.
| | - Xingcong Jiang
- Institute of Physiology (230), University of Hohenheim, 70599 Stuttgart, Germany.
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.
| | - René-Sebastian Lemke
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | - Jürgen Krieger
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | - Jörg Fleischer
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | - Heinz Breer
- Institute of Physiology (230), University of Hohenheim, 70599 Stuttgart, Germany.
| |
Collapse
|
8
|
Qin S, Li Q, Tang C, Tu Y. Optimal compressed sensing strategies for an array of nonlinear olfactory receptor neurons with and without spontaneous activity. Proc Natl Acad Sci U S A 2019; 116:20286-20295. [PMID: 31548382 PMCID: PMC6789560 DOI: 10.1073/pnas.1906571116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
There are numerous different odorant molecules in nature but only a relatively small number of olfactory receptor neurons (ORNs) in brains. This "compressed sensing" challenge is compounded by the constraint that ORNs are nonlinear sensors with a finite dynamic range. Here, we investigate possible optimal olfactory coding strategies by maximizing mutual information between odor mixtures and ORNs' responses with respect to the bipartite odor-receptor interaction network (ORIN) characterized by sensitivities between all odorant-ORN pairs. For ORNs without spontaneous (basal) activity, we find that the optimal ORIN is sparse-a finite fraction of sensitives are zero, and the nonzero sensitivities follow a broad distribution that depends on the odor statistics. We show analytically that sparsity in the optimal ORIN originates from a trade-off between the broad tuning of ORNs and possible interference. Furthermore, we show that the optimal ORIN enhances performances of downstream learning tasks (reconstruction and classification). For ORNs with a finite basal activity, we find that having inhibitory odor-receptor interactions increases the coding capacity and the fraction of inhibitory interactions increases with the ORN basal activity. We argue that basal activities in sensory receptors in different organisms are due to the trade-off between the increase in coding capacity and the cost of maintaining the spontaneous basal activity. Our theoretical findings are consistent with existing experiments and predictions are made to further test our theory. The optimal coding model provides a unifying framework to understand the peripheral olfactory systems across different organisms.
Collapse
Affiliation(s)
- Shanshan Qin
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Qianyi Li
- Integrated Science Program, Yuanpei College, Peking University, Beijing 100871, China
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing 100871, China;
- School of Physics, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuhai Tu
- Physical Sciences Department, IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
| |
Collapse
|
9
|
Zhang L, Guo M, Zhuo F, Xu H, Zheng N, Zhang L. An odorant-binding protein mediates sexually dimorphic behaviors via binding male-specific 2-heptanone in migratory locust. JOURNAL OF INSECT PHYSIOLOGY 2019; 118:103933. [PMID: 31449797 DOI: 10.1016/j.jinsphys.2019.103933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/28/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Migratory locusts (Locusta migratoria) frequently aggregate into huge swarms that cause serious economic losses for the agricultural sector. Differential behaviors of male and female insects may contribute to such population explosions. However, the key olfactory mechanisms underlying different behaviors associated with sex-related pheromones are unclear. Here, we report that male-specific odor, 2-heptanone plays different roles in relation to the behavior of migratory locust males and females, and that this sexual dimorphism involves a soluble odorant-binding protein (OBP) in the peripheral olfactory processes. This odor strongly binds to LmigOBP4, a novel OBP, present in antennal trichoid sensilla, and elicits opposite locomotor tendencies between the sexes: attracting females and repelling males. Furthermore, an adult male group mimicked a high dosage of 2-heptanone by promoting their attractiveness to single females. Additionally, RNAi suppression of Lmigobp4 expression reduced the physiological responses to 2-heptanone to levels that were indistinguishable between the sexes. This suppression reversed the adult behavioral responses to 2-heptanone, i.e., females were repelled and males were attracted. We conclude that LmigOBP4 is associated with olfactory recognition of male-specific 2-heptanone, which plays dual roles that differ between adult male and female migratory locusts.
Collapse
Affiliation(s)
- Liwei Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Yuanmingyuan Xilu 2, Haidian District, Beijing 100093, China
| | - Mei Guo
- Department of Entomology, College of Plant Protection, China Agricultural University, Yuanmingyuan Xilu 2, Haidian District, Beijing 100093, China
| | - Fuyan Zhuo
- Department of Entomology, College of Plant Protection, China Agricultural University, Yuanmingyuan Xilu 2, Haidian District, Beijing 100093, China
| | - Haozhi Xu
- Department of Entomology, College of Plant Protection, China Agricultural University, Yuanmingyuan Xilu 2, Haidian District, Beijing 100093, China
| | - Nan Zheng
- Department of Entomology, College of Plant Protection, China Agricultural University, Yuanmingyuan Xilu 2, Haidian District, Beijing 100093, China
| | - Long Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Yuanmingyuan Xilu 2, Haidian District, Beijing 100093, China.
| |
Collapse
|
10
|
Jiang X, Breer H, Pregitzer P. Sensilla-Specific Expression of Odorant Receptors in the Desert Locust Schistocerca gregaria. Front Physiol 2019; 10:1052. [PMID: 31507434 PMCID: PMC6714038 DOI: 10.3389/fphys.2019.01052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/02/2019] [Indexed: 01/07/2023] Open
Abstract
The desert locust Schistocerca gregaria recognizes multiple chemical cues, which are received by olfactory sensory neurons housed in morphologically identifiable sensilla. The different sensillum types contain olfactory sensory neurons with different physiological specificities, i.e., they respond to different categories of chemical signals. The molecular basis for the sensilla-specific responsiveness of these cells is unknown, but probably based on the endogenous receptor repertoire. To explore this issue, attempts were made to elucidate whether distinct odorant receptors (ORs) may be expressed in a sensilla-specific manner. Analyzing more than 80 OR types concerning for a sensilla-specific expression revealed that the vast majority was found to be expressed in sensilla basiconica; whereas only three OR types were expressed in sensilla trichodea. Within a sensillum unit, even in the multicellular assembly of sensilla basiconica, many of the OR types were expressed in only a single cell, however, a few OR types were found to be expressed in a consortium of cells typically arranged in a cluster of 2–4 cells. The notion that the OR-specific cell clusters are successively formed in the course of development was confirmed by comparing the expression patterns in different nymph stages. The results of this study uncover some novel and unique features of locust olfactory system, which will contribute to unravel the complexity of locust olfaction.
Collapse
Affiliation(s)
- Xingcong Jiang
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Heinz Breer
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Pablo Pregitzer
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
11
|
Li H, You Y, Zhang L. Single Sensillum Recordings for Locust Palp Sensilla Basiconica. J Vis Exp 2018. [PMID: 29985317 DOI: 10.3791/57863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The palps of locust mouthparts are considered to be conventional gustatory organs that play an important role in a locust's food selection, especially for the detection of non-volatile chemical cues through sensilla chaetica (previously named terminal sensilla or crested sensilla). There is now increasing evidence that these palps also have an olfactory function. An odorant receptor (LmigOR2) and an odorant-binding protein (LmigOBP1) have been localized in the neurons and accessory cells, respectively, in the sensilla basiconica of the palps. Single sensillum recording (SSR) is used for recording the responses of odorant receptor neurons, which is an effective method for screening active ligands on specific odorant receptors. SSR is used in functional studies of odorant receptors in palp sensilla. The structure of the sensilla basiconica located on the dome of the palps differs somewhat from the structure of those on the antennae. Therefore, when performing an SSR elicited by odorants, some specific advice may be helpful for obtaining optimum results. In this paper, a detailed and highly effective protocol for an SSR from insect palp sensilla basiconica is introduced.
Collapse
Affiliation(s)
- Hongwei Li
- Department of Entomology, China Agricultural University
| | - Yinwei You
- Bio-tech Research Center, Shandong Academy of Agricultural Sciences;
| | - Long Zhang
- Department of Entomology, China Agricultural University;
| |
Collapse
|
12
|
Pregitzer P, Jiang X, Grosse-Wilde E, Breer H, Krieger J, Fleischer J. In Search for Pheromone Receptors: Certain Members of the Odorant Receptor Family in the Desert Locust Schistocerca gregaria (Orthoptera: Acrididae) Are Co-expressed with SNMP1. Int J Biol Sci 2017; 13:911-922. [PMID: 28808423 PMCID: PMC5555108 DOI: 10.7150/ijbs.18402] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/09/2017] [Indexed: 01/08/2023] Open
Abstract
Under given environmental conditions, the desert locust (Schistocera gregaria) forms destructive migratory swarms of billions of animals, leading to enormous crop losses in invaded regions. Swarm formation requires massive reproduction as well as aggregation of the animals. Pheromones that are detected via the olfactory system have been reported to control both reproductive and aggregation behavior. However, the molecular basis of pheromone detection in the antennae of Schistocerca gregaria is unknown. As an initial step to disclose pheromone receptors, we sequenced the antennal transcriptome of the desert locust. By subsequent bioinformatical approaches, 119 distinct nucleotide sequences encoding candidate odorant receptors (ORs) were identified. Phylogenetic analyses employing the identified ORs from Schistocerca gregaria (SgreORs) and OR sequences from the related species Locusta migratoria revealed a group of locust ORs positioned close to the root, i.e. at a basal site in a phylogenetic tree. Within this particular OR group (termed basal or b-OR group), the locust OR sequences were strictly orthologous, a trait reminiscent of pheromone receptors from lepidopteran species. In situ hybridization experiments with antennal tissue demonstrated expression of b-OR types from Schistocerca gregaria in olfactory sensory neurons (OSNs) of either sensilla trichodea or sensilla basiconica, both of which have been reported to respond to pheromonal substances. More importantly, two-color fluorescent in situ hybridization experiments showed that most b-OR types were expressed in cells co-expressing the “sensory neuron membrane protein 1” (SNMP1), a marker indicative of pheromone-sensitive OSNs in insects. Analyzing the expression of a larger number of SgreOR types outside the b-OR group revealed that only a few of them were co-expressed with SNMP1. In summary, we have identified several candidate pheromone receptors from Schistocerca gregaria that could mediate responses to pheromones implicated in controlling reproduction and aggregation behavior.
Collapse
Affiliation(s)
- Pablo Pregitzer
- University of Hohenheim, Institute of Physiology (230), Stuttgart, Germany
| | - Xingcong Jiang
- University of Hohenheim, Institute of Physiology (230), Stuttgart, Germany
| | - Ewald Grosse-Wilde
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Jena, Germany
| | - Heinz Breer
- University of Hohenheim, Institute of Physiology (230), Stuttgart, Germany
| | - Jürgen Krieger
- Martin Luther University Halle-Wittenberg, Institute of Biology/Zoology, Department of Animal Physiology, Halle (Saale), Germany
| | - Joerg Fleischer
- Martin Luther University Halle-Wittenberg, Institute of Biology/Zoology, Department of Animal Physiology, Halle (Saale), Germany
| |
Collapse
|
13
|
You Y, Smith DP, Lv M, Zhang L. A broadly tuned odorant receptor in neurons of trichoid sensilla in locust, Locusta migratoria. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 79:66-72. [PMID: 27815144 PMCID: PMC5697761 DOI: 10.1016/j.ibmb.2016.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
Insects have evolved sophisticated olfactory reception systems to sense exogenous chemical signals. Odorant receptors (ORs) on the membrane of chemosensory neurons are believed to be key molecules in sensing exogenous chemical cues. ORs in different species of insects are diverse and should tune a species to its own specific semiochemicals relevant to their survival. The orthopteran insect, locust (Locusta migratoria), is a model hemimetabolous insect. There is very limited knowledge on the functions of locust ORs although many locust OR genes have been identified in genomic sequencing experiments. In this paper, a locust OR, LmigOR3 was localized to neurons housed in trichoid sensilla by in situ hybridization. LmigOR3 was expressed as a transgene in Drosophila trichoid olfactory neurons (aT1) lacking the endogenous receptor Or67d and the olfactory tuning curve and dose-response curves were established for this locust receptor. The results show that LmigOR3 sensitizes neurons to ketones, esters and heterocyclic compounds, indicating that LmigOR3 is a broadly tuned receptor. LmigOR3 is the first odorant receptor from Orthoptera that has been functionally analyzed in the Drosophila aT1 system. This work demonstrates the utility of the Drosophila aT1 system for functional analysis of locust odorant receptors and suggests that LmigOR3 may be involved in detecting food odorants, or perhaps locust body volatiles that may help us to develop new control methods for locusts.
Collapse
Affiliation(s)
- Yinwei You
- Department of Entomology, China Agricultural University, Beijing 100193, PR China; Bio-tech Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China.
| | - Dean P Smith
- Departments of Pharmacology and Neuroscience, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Mingyue Lv
- Department of Entomology, China Agricultural University, Beijing 100193, PR China.
| | - Long Zhang
- Department of Entomology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
14
|
Li Y, Zhang J, Chen D, Yang P, Jiang F, Wang X, Kang L. CRISPR/Cas9 in locusts: Successful establishment of an olfactory deficiency line by targeting the mutagenesis of an odorant receptor co-receptor (Orco). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 79:27-35. [PMID: 27744049 DOI: 10.1016/j.ibmb.2016.10.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/09/2016] [Accepted: 10/11/2016] [Indexed: 05/03/2023]
Abstract
Locusts are important agricultural pests worldwide and regarded as study models for entomology. However, the absence of targeted gene manipulation systems for locusts has restricted their applications for research. Herein, we report the successful use of the CRISPR/Cas9 system to induce a targeted heritable mutagenesis of the migratory locust, Locusta migratoria. The target sequence of gRNA was designed to disrupt the gene encoding the odorant receptor co-receptor (Orco) and examine the roles of the odorant receptor pathway in the locust. Microinjection of the mixture of Cas9-mRNA and Orco-gRNA into the locust eggs resulted in efficient target-gene editing at a rate of 71.7% in G0 animals and achieved a germline efficiency of up to 88.1% in G1 animals. By a crossing strategy, we successfully established stable Orco mutant lines. EAGs and SSRs indicated that the fourth-instar nymphs of the Orco mutants showed severely impaired electrophysiological responses to multiple odors. The Orco mutant locusts lost an attraction response to aggregation pheromones under the crowding conditions. The locomotor activity and body coloration of the Orco mutant locusts did not significantly differ from those of the two other genotypes. This study provides an easy and effective approach by using the CRISPR/Cas9 system for generating loss-of-function mutants for functional genetic studies of locusts and for managing insect pests.
Collapse
Affiliation(s)
- Yan Li
- Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Zhang
- Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Dafeng Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pengcheng Yang
- Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Jiang
- Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Le Kang
- Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
15
|
van der Woude E, Smid HM. How to escape from Haller's rule: Olfactory system complexity in small and large Trichogramma evanescens parasitic wasps. J Comp Neurol 2015; 524:1876-91. [PMID: 26560192 DOI: 10.1002/cne.23927] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/16/2015] [Accepted: 11/09/2015] [Indexed: 11/08/2022]
Abstract
While Haller's rule states that small animals have relatively larger brains, minute Trichogramma evanescens Westwood (Hymenoptera: Trichogrammatidae) parasitic wasps scale brain size linearly with body size. This linear brain scaling allows them to decrease brain size beyond the predictions of Haller's rule, and is facilitated by phenotypic plasticity in brain size. In the present study we addressed whether this plasticity resulted in adaptations to the complexity of the morphology of the olfactory system of small and large T. evanescens. We used confocal laser scanning microscopy to compare size and number of glomeruli in the antennal lobe in the brain, and scanning electron microscopy to compare length and number of olfactory sensilla on the antennae. The results show a similar level of complexity of the olfactory system morphology of small and large wasps. Wasps with a similar genotype but very different brain and body size have similarly sized olfactory sensilla and most of them occur in equal numbers on the antennae. Small and large wasps also have a similar number of glomeruli in the antennal lobe. Glomeruli in small brains are, however, smaller in both absolute and relative volume. These similarities between small and large wasps may indicate that plasticity in brain size does not require plasticity in the gross morphology of the olfactory system. It may be vital for wasps of all sizes to have a large number of olfactory receptor types, to maintain olfactory precision in their search for suitable hosts, and consequently maintain their reproductive success and Darwinian fitness.
Collapse
Affiliation(s)
- Emma van der Woude
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Hans M Smid
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
16
|
Molecular Characterization and Expression Profiling of Odorant-Binding Proteins in Apolygus lucorum. PLoS One 2015; 10:e0140562. [PMID: 26466366 PMCID: PMC4605488 DOI: 10.1371/journal.pone.0140562] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/28/2015] [Indexed: 01/03/2023] Open
Abstract
Apolygus lucorum (Meyer-Dür) (Hemiptera: Miridae) is one of the most important agricultural pests, with broad host range and cryptic feeding habits in China. Chemosensory behavior plays an important role in many crucial stages in the life of A. lucorum, such as the detection of sex pheromone cues during mate pursuit and fragrant odorants during flowering host plant localization. Odorant-binding proteins (OBPs) are involved in the initial biochemical recognition steps in semiochemical perception. In the present study, a transcriptomics-based approach was used to identify potential OBPs in A. lucorum. In total, 38 putative OBP genes were identified, corresponding to 26 ‘classic’ OBPs and 12 ‘Plus-C’ OBPs. Phylogenetic analysis revealed that A. lucorum OBP proteins are more closely related to the OBP proteins of other mirid bugs as the same family OBP clustering together. Quantitative real-time PCR analysis for the first reported 23 AlucOBPs revealed that the expression level of 11 AlucOBP genes were significantly higher in antennae of both sexes than in other tissues. Three of them were male antennae-biased and six were female antennae-biased, suggesting their putative roles in the detection of female sex pheromones and host plant volatiles. In addition, three, four, two and one AlucOBPs had the highest degree of enrichment in the stylet, head, leg, and in abdomen tissues, respectively. Two other OBPs were ubiquitously expressed in the main tissues, including antennae, stylets, heads, legs and wings. Most orthologs had similar expression patterns, strongly indicating that these genes have the same function in olfaction and gustation.
Collapse
|
17
|
Yi X, Liu J, Wang P, Hu M, Zhong G. Contacting is essential for oviposition deterrence of Rhodojaponin-III in Spodoptera litura. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2014; 86:122-136. [PMID: 24782249 DOI: 10.1002/arch.21170] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In Lepidoptera, choosing the right site for egg laying is particularly important, because the small larvae cannot forage for alternate host plants easily. Some secondary compounds of plants have the ability to deter oviposition behaviors of insects. Rhodojaponin-III, a botanical compound, has been reported to have intense deterring-oviposition activity against many insects, which have important implications for agricultural pest management. This study provided evidence for elucidating the perception mechanism underlying Rhodojaponin-III as oviposition deterrent. In this study, the antennas of moths could not elicit notable electroantennogram responses to Rhodojaponin-III, which suggested the Rhodojaponin-III could not exert effects like those volatile compounds. The results of physiological experiments confirmed the Rhodojaponin-III could produce the oviposition deterrence effect against moths without depending on antennas, while the physical contact was essential for perceiving the compound, which suggested that the sensilla on tarsus and ovipositor could be chemoreceptor for Rhodojaponin-III. Therefore, these sensilla were investigated by scanning electron microscopy to explore their potential functions in detecting Rhodojaponin-III. This study highlighted the contacting mechanism in deterring oviposition behaviors of moths by Rhodojaponin-III and provided new insight for development of contact-based pest management.
Collapse
Affiliation(s)
- Xin Yi
- Laboratory of Insect Toxicology, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People's Republic of China
| | | | | | | | | |
Collapse
|
18
|
Guo M, Krieger J, Große-Wilde E, Mißbach C, Zhang L, Breer H. Variant ionotropic receptors are expressed in olfactory sensory neurons of coeloconic sensilla on the antenna of the desert locust (Schistocerca gregaria). Int J Biol Sci 2013; 10:1-14. [PMID: 24391446 PMCID: PMC3879586 DOI: 10.7150/ijbs.7624] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/31/2013] [Indexed: 01/01/2023] Open
Abstract
The behaviour of the desert locust, Schistocera gregaria, is largely directed by volatile olfactory cues. The relevant odorants are detected by specialized antennal sensory neurons which project their sensory dendrites into hair-like structures, the sensilla. Generally, the responsiveness of the antennal chemosensory cells is determined by specific receptors which may be either odorant receptors (ORs) or variant ionotropic receptors (IRs). Previously, we demonstrated that in locust the co-receptor for ORs (ORco) is only expressed in cells of sensilla basiconica and sensilla trichodea, suggesting that cells in sensilla coeloconica may express different types of chemosensory receptors. In this study, we have identified the genes of S. gregaria which encode homologues of co-receptors for the variant ionotropic receptors, the subtypes IR8a and IR25a. It was found that both subtypes, SgreIR8a and SgreIR25a, are expressed in the antennae of all five nymphal stages and in adults. Attempts to assign the relevant cell types by means of in situ hybridization revealed that SgreIR8a and SgreIR25a are expressed in cells of sensilla coeloconica. Double fluorescence in situ hybridization experiments disclosed that the two IR-subtypes are co-expressed in some cells of this sensillum type. Expression of SgreIR25a was also found in some of the sensilla chaetica, however, neither SgreIR25a nor SgreIR8a was found to be expressed in sensilla basiconica and sensilla trichodea. This observation was substantiated by the results of double FISH experiments demonstrating that cells expressing SgreIR8a or SgreIR25a do not express ORco. These results support the notion that the antenna of the desert locust employs two different populations of OSNs to sense odors; cells which express IRs in sensilla coeloconica and cells which express ORs in sensilla basiconica and sensilla trichodea.
Collapse
Affiliation(s)
- Mei Guo
- 1. China Agricultural University, Key Lab for Biological Control of the Ministry of Agriculture, Beijing 100193, China
| | - Jürgen Krieger
- 2. University of Hohenheim, Institute of Physiology, 70593 Stuttgart, Germany
| | - Ewald Große-Wilde
- 3. Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Christine Mißbach
- 3. Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Long Zhang
- 1. China Agricultural University, Key Lab for Biological Control of the Ministry of Agriculture, Beijing 100193, China
| | - Heinz Breer
- 2. University of Hohenheim, Institute of Physiology, 70593 Stuttgart, Germany
| |
Collapse
|
19
|
Ban L, Napolitano E, Serra A, Zhou X, Iovinella I, Pelosi P. Identification of pheromone-like compounds in male reproductive organs of the oriental locust Locusta migratoria. Biochem Biophys Res Commun 2013; 437:620-4. [DOI: 10.1016/j.bbrc.2013.07.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 01/24/2023]
|
20
|
Xu H, Guo M, Yang Y, You Y, Zhang L. Differential expression of two novel odorant receptors in the locust (Locusta migratoria). BMC Neurosci 2013; 14:50. [PMID: 23607307 PMCID: PMC3658887 DOI: 10.1186/1471-2202-14-50] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/16/2013] [Indexed: 12/03/2022] Open
Abstract
Background Olfaction in animals is important for host localization, mating and reproduction in heterogeneous chemical environments. Studying the molecular basis of olfactory receptor neurons (ORNs) systems can elucidate the evolution of olfaction and associated behaviours. Odorant receptors (ORs) in insects have been identified, particularly in the holometabolous model Drosophila, and some of them have been functionally studied. However, ORs in the locust—a hemimetabolous model insect and the most important insect crop pest—have not yet been identified, hindering our understanding of locust olfaction. Here, we report for the first time four putative ORs in Locusta migratoria: LmigOR1, LmigOR2, LmigOR3 and LmigOR4. Results These four putative OR genes encoded proteins with amino acids of 478, 436, 413 and 403 respectively. Sequence identity among them ranged from 19.7% to 35.4%. All ORs were tissue-specifically expressed in olfactory organs, without sex-biased characteristics. However, LmigOR1, LmigOR3 and LmigOR4 were only expressed in the antenna, while LmigOR2 could also be detected in mouthparts. In situ hybridization demonstrated that the LmigOR1antisense probe labelled olfactory receptor neurons (ORNs) in almost all segments of the antenna, but only a few segments housed ORNs expressing LmigOR2. The number of neurons labelled by LmigOR1 antisense probes in each antennal segment was much greater (>10 neurons/segment) than that labelled by LmigOR2 probes (generally 1–3 neurons/segment). Furthermore, some of the labelled neurons could be attributed to the basiconic sensilla, but LmigOR1 and LmigOR2 were expressed in different subtypes. Conclusions Our results strongly suggested that these newly discovered genes encode locust ORs and the differential expression patterns of LmigOR1 and LmigOR2 implied distinct functions. These results may offer insights into locust olfaction and contribute to the understanding of the evolution of insect chemoreception.
Collapse
Affiliation(s)
- Haozhi Xu
- Department of Entomology, China Agricultural University, Beijing, P.R. China.
| | | | | | | | | |
Collapse
|
21
|
Olafson PU. Molecular characterization and immunolocalization of the olfactory co-receptor Orco from two blood-feeding muscid flies, the stable fly (Stomoxys calcitrans, L.) and the horn fly (Haematobia irritans irritans, L.). INSECT MOLECULAR BIOLOGY 2013; 22:131-142. [PMID: 23278866 PMCID: PMC3594380 DOI: 10.1111/imb.12009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Biting flies are economically important blood-feeding pests of medical and veterinary significance. Chemosensory-based biting fly behaviours, such as host/nutrient source localization and ovipositional site selection, are intriguing targets for the development of supplemental control strategies. In an effort to expand our understanding of biting fly chemosensory pathways, transcripts encoding the highly conserved insect odorant co-receptor (Orco) were isolated from two representative biting fly species, the stable fly (Scal\Orco) and the horn fly (Hirr\Orco). Orco forms a complex with an odour-specific odorant receptor to form an odour-gated ion channel. The biting fly transcripts were predicted to encode proteins with 87-94% amino acid similarity to published insect Orco sequences and were detected in various immature stages as well as in adult structures associated with olfaction, i.e. the antennae and maxillary palps, and gustation, i.e. the proboscis. Further, the relevant proteins were immunolocalized to specific antennal sensilla using anti-serum raised against a peptide sequence conserved between the two fly species. Results from the present study provide a basis for functional evaluation of repellent/attractant effects on as yet uncharacterized stable fly and horn fly conventional odorant receptors.
Collapse
Affiliation(s)
- P U Olafson
- USDA-ARS, Knipling-Bushland US Livestock Insects Research Laboratory, Kerrville, TX 78028, USA.
| |
Collapse
|
22
|
Yang Y, Krieger J, Zhang L, Breer H. The olfactory co-receptor Orco from the migratory locust (Locusta migratoria) and the desert locust (Schistocerca gregaria): identification and expression pattern. Int J Biol Sci 2011; 8:159-70. [PMID: 22211114 PMCID: PMC3248701 DOI: 10.7150/ijbs.8.159] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 11/17/2011] [Indexed: 11/05/2022] Open
Abstract
In locusts, olfaction plays a crucial role for initiating and controlling behaviours, including food seeking and aggregation with conspecifics, which underlie the agricultural pest capacity of the animals. In this context, the molecular basis of olfaction in these insects is of particular interest. Here, we have identified genes of two orthopteran species, Locusta migratoria and Schistocera gregaria, which encode the olfactory receptor co-receptor (Orco). It was found that the sequences of LmigOrco and SgreOrco share a high degree of identity to each other and also to Orco proteins from different insect orders. The Orco-expressing cells in the antenna of S. gregaria and L. migratoria were visualized by in situ hybridization. Orco expression could be assigned to clusters of cells in sensilla basiconica and few cells in sensilla trichodea, most likely representing olfactory sensory neurons. No Orco-positive cells were detected in sensilla coeloconica and sensilla chaetica. Orco expression was found already in all nymphal stages and was verified in some other tissues which are equipped with chemosensory hairs (mouthparts, tarsi, wings). Together, the results support the notion for a decisive role of Orco in locust olfaction.
Collapse
Affiliation(s)
- Ying Yang
- China Agricultural University, Key Lab for Biological Control of the Ministry of Agriculture, Beijing, China
| | | | | | | |
Collapse
|