1
|
Su Z, Li Y, Lin Z, Huang Q, Fan X, Dong Z, Xia Q, Zhao P, Wang X. GC-MS-based metabonomic analysis of silkworm haemolymph reveals four-stage metabolic responses to nucleopolyhedrovirus infection. INSECT MOLECULAR BIOLOGY 2025; 34:289-301. [PMID: 39482849 DOI: 10.1111/imb.12972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
Silkworm, Bombyx mori, an economically significant insect, plays a crucial role in silk production. However, silkworm breeding is highly susceptible to various pathogens, particularly the Bombyx mori nucleopolyhedrovirus (BmNPV), which poses a serious threat. Recent metabonomic studies have provided insights into the metabolic changes associated with BmNPV infection. BmNPV infection has obvious temporal characteristics. However, few studies have investigated the silkworms infected in different periods. This study employed gas chromatography-mass spectrometry (GC-MS) to perform a comprehensive analysis of haemolymph metabolites in silkworms at 48, 72, 96 and 120 h post-infection (h.p.i.). Through the integration of time-course analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, the study revealed distinct four-stage metabolic characteristics in the silkworm's response to BmNPV infection. At Stage 1 (48 h.p.i.), silkworms activate antioxidant defence mechanisms, with significant enrichment in metabolic pathways involving key antioxidants such as glutathione, to mitigate oxidative stress induced by viral invasion. By Stage 2 (72 h.p.i.), pathways related to amino acid metabolism and protein synthesis become active, indicating an increase in protein synthesis. In Stage 3 (96 h.p.i.), energy metabolism and substance transport pathways are significantly upregulated to support the rapid viral replication and the enhanced locomotor behaviour of silkworm. Finally, at Stage 4 (120 h.p.i.), there is a further enhancement of pathways related to energy metabolism, nucleic acid synthesis, and substance transport, which align with peak viral assembly and release. These findings contribute to an in-depth understanding of the biochemical basis of silkworm resistance to NPV.
Collapse
Affiliation(s)
- Zhenyue Su
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Yi Li
- Lab Teaching & Management Center, Chongqing Medical University, Chongqing, China
| | - Zihan Lin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qing Huang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Xinyu Fan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Zhaoming Dong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Xin Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Tang L, Wei QQ, Xiao Y, Tang MY, Zhu Y, Jiang MG, Chen P, Pan ZX. Bombyx mori Metal Carboxypeptidases12 ( BmMCP12) Is Involved in Host Protection Against Viral Infection. Int J Mol Sci 2024; 25:13536. [PMID: 39769299 PMCID: PMC11677143 DOI: 10.3390/ijms252413536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Baculoviruses, the largest studied insect viruses, are highly pathogenic to host insects. Bombyx mori nucleopolyhedrovirus (BmNPV) is the main cause of nuclear polyhedrosis of silkworm, a viral disease that causes significant economic losses to the sericulture industry. The anti-BmNPV mechanism of the silkworm has not yet been characterized. Carboxypeptidase is an enzyme that is involved in virtually all life activities of animals and plants. Studies have shown that the carboxypeptidase family is related to insect immunity. There are few reports on the role of carboxypeptidase in the defense of silkworms against pathogen invasion. In this study, we identified the homologous gene Bombyx mori metal carboxypeptidases12 (BmMCP12) related to mammalian carboxypeptidase A2 (CPA2) and found that BmMCP12 had a Zn-pept domain. The BmMCP12 gene was primarily located in the cytoplasm and was highly expressed in the midgut of silkworms, and the expression level in BmN-SWU1 cells was upregulated after infection with BmNPV. After overexpression of the BmMCP12 gene, quantitative real-time (qRT)-PCR and Western blots showed that BmMCP12 could inhibit BmNPV replication, whereas knockout of the gene had the opposite effect. In addition, we constructed transgenic silkworm strains with a knockout of BmMCP12, and the transgenic strains had reduced resistance to BmNPV. These findings deepen the functional study of silkworm carboxypeptidase and provide a new target for BmNPV disease prevention in silkworms.
Collapse
Affiliation(s)
- Liang Tang
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Sericulture Technology Promotion Station of Guangxi, Nanning 530007, China; (L.T.); (M.-Y.T.); (M.-G.J.)
| | - Qiong-Qiong Wei
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei District, Chongqing 400715, China; (Q.-Q.W.); (Y.X.); (Y.Z.)
| | - Yu Xiao
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei District, Chongqing 400715, China; (Q.-Q.W.); (Y.X.); (Y.Z.)
| | - Ming-Yan Tang
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Sericulture Technology Promotion Station of Guangxi, Nanning 530007, China; (L.T.); (M.-Y.T.); (M.-G.J.)
| | - Yan Zhu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei District, Chongqing 400715, China; (Q.-Q.W.); (Y.X.); (Y.Z.)
| | - Man-Gui Jiang
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Sericulture Technology Promotion Station of Guangxi, Nanning 530007, China; (L.T.); (M.-Y.T.); (M.-G.J.)
| | - Peng Chen
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei District, Chongqing 400715, China; (Q.-Q.W.); (Y.X.); (Y.Z.)
| | - Zhi-Xin Pan
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Sericulture Technology Promotion Station of Guangxi, Nanning 530007, China; (L.T.); (M.-Y.T.); (M.-G.J.)
| |
Collapse
|
3
|
Muhammad A, Sun C, Shao Y. The humoral immune response of the lepidopteran model insect, silkworm Bombyx mori L., to microbial pathogens. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100097. [PMID: 39364346 PMCID: PMC11447326 DOI: 10.1016/j.cris.2024.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024]
Abstract
Insects are valuable models for studying innate immunity and its role in combating infections. The silkworm Bombyx mori L., a well-studied insect model, is susceptible to a range of pathogens, including bacteria, fungi, viruses, and microsporidia. Their susceptibility makes it a suitable model for investigating host-pathogen interactions and immune responses against infections and diseases. This review focuses on the humoral immune response and the production of antimicrobial peptides (AMPs), the phenoloxidase (PO) system, and other soluble factors that constitute the primary defense of silkworms against microbial pathogens. The innate immune system of silkworms relies on pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs), which then activate various immune pathways including Imd, Toll, JAK/STAT, and RNA interference (RNAi). Their activation triggers the secretion of AMPs, enzymatic defenses (lysozyme and PO), and the generation of reactive oxygen species (ROS). Collectively, these pathways work together to neutralize and eliminate pathogens, thereby contributing to the defense mechanism of silkworms. Understanding the innate immunity of silkworms can uncover conserved molecular pathways and key immune components shared between insects and vertebrates. Additionally, it can provide valuable insights for improving sericulture practices, developing strategies to control diseases affecting silk production, and providing a theoretical foundation for developing pest control measures.
Collapse
Affiliation(s)
- Abrar Muhammad
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| |
Collapse
|
4
|
Yang WY, Liu ZY, Zhu Y, Xiao Y, Xiao WF, Tang L, Dong ZQ, Pan MH, Lu C, Chen P. MicroRNA bmo-miR-31-5p inhibits apoptosis and promotes BmNPV proliferation by targeting the CYP9e2 gene of Bombyx mori. PEST MANAGEMENT SCIENCE 2024; 80:4564-4574. [PMID: 38742692 DOI: 10.1002/ps.8162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/24/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Bombyx mori nuclear polyhedrosis virus (BmNPV), as a typical baculovirus, is the primary pathogen that infects the silkworm B. mori, a lepidopteran species. Owing to the high biological safety of BmNPV in infecting insects, it is commonly utilized as a biological insecticide for pest control. Apoptosis is important in the interaction between the host and pathogenic microorganisms. MicroRNAs (miRNAs) influence immune responses and promote stability of the immune system via apoptosis. Therefore, the study of apoptosis-related miRNA in silkworms during virus infection can not only provide support for standardizing the prevention and control of diseases and insect pests, but also reduce the economic losses to sericulture caused by the misuse of biological pesticides. RESULTS Through transcriptome sequencing, we identified a miRNA, miR-31-5p, and demonstrated that it can inhibit apoptosis in silkworm cells and promote the proliferation of BmNPV in BmE-SWU1 cells. We identified a target gene of miR-31-5p, B. mori cytochrome P450 9e2 (BmCYP9e2), and demonstrated that it can promote apoptosis in silkworm cells and inhibit the proliferation of BmNPV. Moreover, we constructed transgenic silkworm strains with miR-31-5p knockout and confirmed that they can inhibit the proliferation of BmNPV. CONCLUSION These data indicate that miR-31-5p may exert functions of inhibiting apoptosis and promoting virus proliferation by regulating BmCYP9e2. The findings demonstrate how miRNAs influence host cell apoptosis and how they are involved in the host immune system response to viruses, providing important insights into the applications of biological insecticides for pest control. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wen-Yu Yang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei, China
| | - Zhen-Ye Liu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei, China
| | - Yan Zhu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei, China
| | - Yu Xiao
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei, China
| | - Wen-Fu Xiao
- Sericultural Research Institute Sichuan Academy of Agricultural Sciences, Nanchong, China
| | - Liang Tang
- Sericulture Technology Promotion Station of Guangxi, Nanning, China
| | - Zhan-Qi Dong
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei, China
| | - Min-Hui Pan
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei, China
| | - Cheng Lu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei, China
| | - Peng Chen
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei, China
| |
Collapse
|
5
|
Lü P, Zhang R, Yang Y, Tang M, Chen K, Pan Y. Transcriptome analysis indicates the mechanisms of BmNPV resistance in Bombyx mori midgut. J Invertebr Pathol 2024; 204:108103. [PMID: 38583693 DOI: 10.1016/j.jip.2024.108103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 03/02/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) caused serious economic losses in sericulture. Analyzing the molecular mechanism of silkworms (B. mori) resistance to BmNPV is of great significance for the prevention and control of silkworm virus diseases and the biological control of agricultural lepidopteran pests. In order to clarify the defense mechanisms of silkworms against BmNPV, we constructed a near isogenic line BC8 with high resistance to BmNPV through the highly BmNPV-resistant strain NB and the highly BmNPV-susceptible strain 306. In this study, RNA-Seq technique was used to analyze the transcriptome level differences in the midgut of BC8 and 306 following BmNPV infection. A total of 1350 DEGs were identified. Clustering analysis showed that these genes could be divided into 8 clusters with different expression patterns. Functional annotations based on GO and KEGG analysis indicated that they were involved in various metabolism pathways. Finally, 32 BmNPV defense responsive genes were screened. They were involved in metabolism, reactive oxygen species (ROS), signal transduction and immune response, and insect hormones. The further verification shows that HSP70 should participate in resistance responses of anti-BmNPV. These findings have paved the way in further functional characterization of candidate genes and subsequently can be used in breeding of BmNPV resistance dominant silkworms.
Collapse
Affiliation(s)
- Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Rusong Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yanhua Yang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Ye Pan
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
6
|
Fan YX, Andoh V, Chen L. Multi-omics study and ncRNA regulation of anti-BmNPV in silkworms, Bombyx mori: an update. Front Microbiol 2023; 14:1123448. [PMID: 37275131 PMCID: PMC10232802 DOI: 10.3389/fmicb.2023.1123448] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Bombyx mori silkworm is an important economic insect which has a significant contribution to the improvement of the economy. Bombyx mori nucleopolyhedrovirus (BmNPV) is a vitally significant purulent virus that impedes the sustainable and stable development of the silkworm industry, resulting in substantial economic losses. In recent years, with the development of biotechnology, transcriptomics, proteomics, metabolomics, and the related techniques have been used to select BmNPV-resistant genes, proteins, and metabolites. The regulatory networks between viruses and hosts have been gradually clarified with the discovery of ncRNAs, such as miRNA, lncRNA, and circRNA in cells. Thus, this paper aims to highlight the results of current multi-omics and ncRNA studies on BmNPV resistance in the silkworm, providing some references for resistant strategies in the silkworm to BmNPV.
Collapse
|