1
|
Wróbel TM, Jørgensen FS, Pandey AV, Grudzińska A, Sharma K, Yakubu J, Björkling F. Non-steroidal CYP17A1 Inhibitors: Discovery and Assessment. J Med Chem 2023; 66:6542-6566. [PMID: 37191389 DOI: 10.1021/acs.jmedchem.3c00442] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
CYP17A1 is an enzyme that plays a major role in steroidogenesis and is critically involved in the biosynthesis of steroid hormones. Therefore, it remains an attractive target in several serious hormone-dependent cancer diseases, such as prostate cancer and breast cancer. The medicinal chemistry community has been committed to the discovery and development of CYP17A1 inhibitors for many years, particularly for the treatment of castration-resistant prostate cancer. The current Perspective reflects upon the discovery and evaluation of non-steroidal CYP17A1 inhibitors from a medicinal chemistry angle. Emphasis is placed on the structural aspects of the target, key learnings from the presented chemotypes, and design guidelines for future inhibitors.
Collapse
Affiliation(s)
- Tomasz M Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Flemming Steen Jørgensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Amit V Pandey
- Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital, Inselspital, Bern and Translational Hormone Research Program, Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Angelika Grudzińska
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland
| | - Katyayani Sharma
- Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital, Inselspital, Bern and Translational Hormone Research Program, Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Jibira Yakubu
- Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital, Inselspital, Bern and Translational Hormone Research Program, Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
2
|
Brengel C, Thomann A, Schifrin A, Allegretta G, Kamal AAM, Haupenthal J, Schnorr I, Cho SH, Franzblau SG, Empting M, Eberhard J, Hartmann RW. Biophysical Screening of a Focused Library for the Discovery of CYP121 Inhibitors as Novel Antimycobacterials. ChemMedChem 2017; 12:1616-1626. [DOI: 10.1002/cmdc.201700363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/04/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Christian Brengel
- Helmholtz Institute for Pharmaceutical Research Saarland, HIPS; Department for Drug Design and Optimization; Campus E8.1 66123 Saarbrücken Germany
| | - Andreas Thomann
- Helmholtz Institute for Pharmaceutical Research Saarland, HIPS; Department for Drug Design and Optimization; Campus E8.1 66123 Saarbrücken Germany
| | - Alexander Schifrin
- Department of Biochemistry; Saarland University; Campus B2.2 66123 Saarbrücken Germany
| | - Giuseppe Allegretta
- Helmholtz Institute for Pharmaceutical Research Saarland, HIPS; Department for Drug Design and Optimization; Campus E8.1 66123 Saarbrücken Germany
| | - Ahmed A. M. Kamal
- Helmholtz Institute for Pharmaceutical Research Saarland, HIPS; Department for Drug Design and Optimization; Campus E8.1 66123 Saarbrücken Germany
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland, HIPS; Department for Drug Design and Optimization; Campus E8.1 66123 Saarbrücken Germany
| | - Isabell Schnorr
- Helmholtz Institute for Pharmaceutical Research Saarland, HIPS; Department for Drug Design and Optimization; Campus E8.1 66123 Saarbrücken Germany
| | - Sang Hyun Cho
- Institute for Tuberculosis Research; College of Pharmacy; University of Illinois at Chicago; 833 S. Wood Street Chicago IL 60612-7231 USA
| | - Scott G. Franzblau
- Institute for Tuberculosis Research; College of Pharmacy; University of Illinois at Chicago; 833 S. Wood Street Chicago IL 60612-7231 USA
| | - Martin Empting
- Helmholtz Institute for Pharmaceutical Research Saarland, HIPS; Department for Drug Design and Optimization; Campus E8.1 66123 Saarbrücken Germany
| | - Jens Eberhard
- Helmholtz Institute for Pharmaceutical Research Saarland, HIPS; Department for Drug Design and Optimization; Campus E8.1 66123 Saarbrücken Germany
| | - Rolf W. Hartmann
- Helmholtz Institute for Pharmaceutical Research Saarland, HIPS; Department for Drug Design and Optimization; Campus E8.1 66123 Saarbrücken Germany
- Department of Pharmacy; Pharmaceutical and Medicinal Chemistry; Saarland University; Campus C2.3 66123 Saarbrücken Germany
| |
Collapse
|
3
|
Brengel C, Thomann A, Schifrin A, Eberhard J, Hartmann RW. Discovery and Biophysical Evaluation of First Low Nanomolar Hits Targeting CYP125 ofM. tuberculosis. ChemMedChem 2016; 11:2385-2391. [DOI: 10.1002/cmdc.201600361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/01/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Christian Brengel
- Helmholtz Institute for Pharmaceutical Research Saarland; Department of Drug Design and Optimization; Campus E8.1 66123 Saarbrücken Germany
| | - Andreas Thomann
- Helmholtz Institute for Pharmaceutical Research Saarland; Department of Drug Design and Optimization; Campus E8.1 66123 Saarbrücken Germany
| | - Alexander Schifrin
- Department of Biochemistry; Saarland University; Campus B2.2 66123 Saarbrücken Germany
| | - Jens Eberhard
- Helmholtz Institute for Pharmaceutical Research Saarland; Department of Drug Design and Optimization; Campus E8.1 66123 Saarbrücken Germany
| | - Rolf W. Hartmann
- Helmholtz Institute for Pharmaceutical Research Saarland; Department of Drug Design and Optimization; Campus E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry; Saarland University; Campus C2.3 66123 Saarbrücken Germany
| |
Collapse
|
4
|
Hu Q, Kunde J, Hanke N, Hartmann RW. Identification of 4-(4-nitro-2-phenethoxyphenyl)pyridine as a promising new lead for discovering inhibitors of both human and rat 11β-Hydroxylase. Eur J Med Chem 2015; 96:139-50. [PMID: 25874338 DOI: 10.1016/j.ejmech.2015.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/03/2015] [Accepted: 04/06/2015] [Indexed: 11/26/2022]
Abstract
The inhibition of 11β-hydroxylase is a promising strategy for the treatment of Cushing's syndrome, in particular for the recurrent and subclinical cases. To achieve proof of concept in rats, efforts were paid to identify novel lead compounds inhibiting both human and rat CYP11B1. Modifications on a potent promiscuous inhibitor of hCYP11B1, hCYP11B2 and hCYP19 (compound IV) that exhibited moderate rCYP11B1 inhibition led to compound 8 as a new promising lead compound. Significant improvements compared to starting point IV were achieved regarding inhibitory potency against both human and rat CYP11B1 (IC50 values of 2 and 163 nM, respectively) as well as selectivity over hCYP19 (IC50 = 1900 nM). Accordingly, compound 8 was around 7- and 28-fold more potent than metyrapone regarding the inhibition of human and rat CYP11B1 and exhibited a comparable selectivity over hCYP11B2 (SF of 3.5 vs 4.9). With further optimizations on this new lead compound 8, drug candidates with satisfying profiles are expected to be discovered.
Collapse
Affiliation(s)
- Qingzhong Hu
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2.3, D-66123 Saarbrücken, Germany
| | - Jessica Kunde
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Nina Hanke
- Elexopharm GmbH, Campus A1, 66123 Saarbrücken, Germany
| | - Rolf W Hartmann
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2.3, D-66123 Saarbrücken, Germany.
| |
Collapse
|
5
|
Hu Q, Yin L, Ali A, Cooke AJ, Bennett J, Ratcliffe P, Lo MMC, Metzger E, Hoyt S, Hartmann RW. Novel pyridyl substituted 4,5-dihydro-[1,2,4]triazolo[4,3-a]quinolines as potent and selective aldosterone synthase inhibitors with improved in vitro metabolic stability. J Med Chem 2015; 58:2530-7. [PMID: 25711516 DOI: 10.1021/acs.jmedchem.5b00079] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CYP11B2 inhibition is a promising treatment for diseases caused by excessive aldosterone. To improve the metabolic stability in human liver miscrosomes of previously reported CYP11B2 inhibitors, modifications were performed via a combination of ligand- and structure-based drug design approaches, leading to pyridyl 4,5-dihydro-[1,2,4]triazolo[4,3-a]quinolones. Compound 26 not only exhibited a much longer half-life (t1/2 ≫ 120 min), but also sustained inhibitory potency (IC50 = 4.2 nM) and selectivity over CYP11B1 (SF = 422), CYP17, CYP19, and a panel of hepatic CYP enzymes.
Collapse
Affiliation(s)
- Qingzhong Hu
- Pharmaceutical and Medicinal Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Campus C2-3, D-66123, Saarbrücken, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Grombein CM, Hu Q, Rau S, Zimmer C, Hartmann RW. Heteroatom insertion into 3,4-dihydro-1H-quinolin-2-ones leads to potent and selective inhibitors of human and rat aldosterone synthase. Eur J Med Chem 2015; 90:788-96. [DOI: 10.1016/j.ejmech.2014.12.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 12/17/2022]
|
7
|
Zhu W, Hu Q, Hanke N, van Koppen CJ, Hartmann RW. Potent 11β-Hydroxylase Inhibitors with Inverse Metabolic Stability in Human Plasma and Hepatic S9 Fractions To Promote Wound Healing. J Med Chem 2014; 57:7811-7. [DOI: 10.1021/jm501004t] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Weixing Zhu
- Pharmaceutical
and Medicinal Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2-3, D-66123 Saarbrücken, Germany
| | - Qingzhong Hu
- Pharmaceutical
and Medicinal Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2-3, D-66123 Saarbrücken, Germany
| | - Nina Hanke
- ElexoPharm GmbH, Im
Stadtwald, D-66123 Saarbrücken, Germany
| | | | - Rolf W. Hartmann
- Pharmaceutical
and Medicinal Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2-3, D-66123 Saarbrücken, Germany
| |
Collapse
|
8
|
Yin L, Hu Q, Emmerich J, Lo MMC, Metzger E, Ali A, Hartmann RW. Novel Pyridyl- or Isoquinolinyl-Substituted Indolines and Indoles as Potent and Selective Aldosterone Synthase Inhibitors. J Med Chem 2014; 57:5179-89. [DOI: 10.1021/jm500140c] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Lina Yin
- Pharmaceutical
and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
- ElexoPharm GmbH, Campus A1, D-66123 Saarbrücken, Germany
| | - Qingzhong Hu
- Pharmaceutical
and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Juliette Emmerich
- Pharmaceutical
and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Michael Man-Chu Lo
- Discovery
Chemistry, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Edward Metzger
- Discovery
Chemistry, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Amjad Ali
- Discovery
Chemistry, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Rolf W. Hartmann
- Pharmaceutical
and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2.3, D-66123 Saarbrücken, Germany
| |
Collapse
|
9
|
Hu Q, Yin L, Hartmann RW. Aldosterone Synthase Inhibitors as Promising Treatments for Mineralocorticoid Dependent Cardiovascular and Renal Diseases. J Med Chem 2014; 57:5011-22. [DOI: 10.1021/jm401430e] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Qingzhong Hu
- Pharmaceutical and Medicinal
Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2.3, D-66123 Saarbrücken, Germany
| | - Lina Yin
- Pharmaceutical and Medicinal
Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2.3, D-66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal
Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2.3, D-66123 Saarbrücken, Germany
| |
Collapse
|
10
|
Abstract
As the first in class steroid 17α-hydroxylase/C17,20-lyase (CYP17) inhibitor, abiraterone acetate (of which the active metabolite is abiraterone) has been shown to improve overall survival in patients with castration-resistant prostate cancer (CRPC)--in those who are chemotherapy-naive and those previously treated with docetaxel. Furthermore, the clinical success of abiraterone demonstrated that CRPC, which has previously been regarded as an androgen-independent disease, is still driven, at least in part, by androgens. More importantly, abiraterone is a 'promiscuous' drug that interacts with a number of targets, which dictate its clinical benefits and adverse effects profile. Besides CYP17 inhibition, abiraterone acts as an antagonist to the androgen receptor and inhibits 3β-hydroxysteroid dehydrogenase--two effects that potentially contribute to its antitumour effects. However, the inhibition of the 17α-hydroxylase activity of CYP17, CYP11B1 and a panel of hepatic CYP enzymes leads to adverse effects and toxicities that include secondary mineralocorticoid excess. Abiraterone is also associated with increased incidence of cardiac disorders. Under such circumstances, development of new CYP17 inhibitors as an additional line of defence is urgently needed. To achieve enhanced clinical benefits, new strategies are being explored that include selective inhibition of the C17,20-lyase activity of CYP17 and multi-targeting strategies that affect androgen synthesis and signalling at different points. Some of these strategies-including the drugs orteronel, VT-464 and galeterone--are supported by preclinical data and are being explored in the clinic.
Collapse
|
11
|
Unexpected results of a SNAr-reaction. A novel synthetic approach to 1-arylthio-2-naphthols. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.09.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Pinto-Bazurco Mendieta MAE, Hu Q, Engel M, Hartmann RW. Highly potent and selective nonsteroidal dual inhibitors of CYP17/CYP11B2 for the treatment of prostate cancer to reduce risks of cardiovascular diseases. J Med Chem 2013; 56:6101-7. [PMID: 23859149 DOI: 10.1021/jm400484p] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Dual CYP17/CYP11B2 inhibitors are proposed as a novel strategy for the treatment of prostate cancer to reduce risks of cardiovascular diseases. Via a combination of ligand- and structure-based approaches, a series of dual inhibitors were designed leading to the 2-(3-pyridyl)naphthalenes 10 and 11 with strong inhibition of both enzymes (IC50 values around 20 nM) and excellent selectivities over CYP11B1, CYP19, and CYP3A4. These compounds are considered as promising candidates for further in vivo evaluation.
Collapse
Affiliation(s)
- Mariano A E Pinto-Bazurco Mendieta
- Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2-3, D-66123 Saarbrücken, Germany
| | | | | | | |
Collapse
|
13
|
Recent progress in pharmaceutical therapies for castration-resistant prostate cancer. Int J Mol Sci 2013; 14:13958-78. [PMID: 23880851 PMCID: PMC3742227 DOI: 10.3390/ijms140713958] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 12/16/2022] Open
Abstract
Since 2010, six drugs have been approved for the treatment of castration-resistant prostate cancer, i.e., CYP17 inhibitor Abiraterone, androgen receptor antagonist Enzalutamide, cytotoxic agent Cabazitaxel, vaccine Sipuleucel-T, antibody Denosumab against receptor activator of nuclear factor kappa B ligand and radiopharmaceutical Alpharadin. All these drugs demonstrate improvement on overall survival, expect for Denosumab, which increases the bone mineral density of patients under androgen deprivation therapy and prolongs bone-metastasis-free survival. Besides further CYP17 inhibitors (Orteronel, Galeterone, VT-464 and CFG920), androgen receptor antagonists (ARN-509, ODM-201, AZD-3514 and EZN-4176) and vaccine Prostvac, more drug candidates with various mechanisms or new indications of launched drugs are currently under evaluation in different stages of clinical trials, including various kinase inhibitors and platinum complexes. Some novel strategies have also been proposed aimed at further potentiation of antitumor effects or reduction of side effects and complications related to treatments. Under these flourishing circumstances, more investigations should be performed on the optimal combination or the sequence of treatments needed to delay or reverse possible resistance and thus maximize the clinical benefits for the patients.
Collapse
|
14
|
Krug SJ, Hu Q, Hartmann RW. Hits identified in library screening demonstrate selective CYP17A1 lyase inhibition. J Steroid Biochem Mol Biol 2013; 134:75-9. [PMID: 23142656 DOI: 10.1016/j.jsbmb.2012.10.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/25/2012] [Accepted: 10/28/2012] [Indexed: 11/24/2022]
Abstract
A screening of structurally different steroid hormone synthesis inhibitors was performed in order to find a starting point for the development of a new inhibitor of the bifunctional steroidogenic enzyme CYP17A1. Emphasis was placed on determination of selectivity between the two catalytic steps, namely 17α-hydroxylase and C(17,20)-lyase. For that purpose a new inhibition assay has been developed. Hits identified within this novel assay demonstrated selective inhibition of CYP17A1 lyase activity, and thus mark the basis for the development of selective C(17,20)-lyase inhibitors for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Sebastian J Krug
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, 66123 Saarbrücken, Germany
| | | | | |
Collapse
|
15
|
Yin L, Hu Q, Hartmann RW. Tetrahydropyrroloquinolinone Type Dual Inhibitors of Aromatase/Aldosterone Synthase as a Novel Strategy for Breast Cancer Patients with Elevated Cardiovascular Risks. J Med Chem 2013; 56:460-70. [DOI: 10.1021/jm301408t] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Lina Yin
- Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2-3, D-66123 Saarbrücken, Germany
- ElexoPharm GmbH, Campus A1, D-66123 Saarbrücken, Germany
| | - Qingzhong Hu
- Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2-3, D-66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2-3, D-66123 Saarbrücken, Germany
| |
Collapse
|
16
|
Yin L, Hu Q, Hartmann RW. 3-Pyridyl substituted aliphatic cycles as CYP11B2 inhibitors: aromaticity abolishment of the core significantly increased selectivity over CYP1A2. PLoS One 2012; 7:e48048. [PMID: 23133610 PMCID: PMC3486838 DOI: 10.1371/journal.pone.0048048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 09/20/2012] [Indexed: 01/08/2023] Open
Abstract
Aldosterone synthase (CYP11B2) is a promising therapeutic target for the treatment of cardiovascular diseases related to abnormally high aldosterone levels. On the basis of our previously identified lead compounds I–III, a series of 3-pyridinyl substituted aliphatic cycles were designed, synthesized and tested as CYP11B2 inhibitors. Aromaticity abolishment of the core was successfully applied to overcome the undesired CYP1A2 inhibition. This study resulted in a series of potent and selective CYP11B2 inhibitors, with compound 12 (IC50 = 21 nM, SF = 50) as the most promising one, which shows no inhibition toward CYP1A2 at 2 µM. The design conception demonstrated in this study can be helpful in the optimization of CYP inhibitor drugs regarding CYP1A2 selectivity.
Collapse
Affiliation(s)
- Lina Yin
- Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
- ElexoPharm GmbH, Saarbrücken, Germany
| | - Qingzhong Hu
- Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
- * E-mail: (QH); (RWH)
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
- * E-mail: (QH); (RWH)
| |
Collapse
|
17
|
Hu Q, Yin L, Hartmann RW. Selective Dual Inhibitors of CYP19 and CYP11B2: Targeting Cardiovascular Diseases Hiding in the Shadow of Breast Cancer. J Med Chem 2012; 55:7080-9. [DOI: 10.1021/jm3004637] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qingzhong Hu
- Pharmaceutical and Medicinal
Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical
Research Saarland (HIPS), Campus C2-3, P.O. Box 151150, D-66123 Saarbrücken,
Germany
| | - Lina Yin
- Pharmaceutical and Medicinal
Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical
Research Saarland (HIPS), Campus C2-3, P.O. Box 151150, D-66123 Saarbrücken,
Germany
- ElexoPharm GmbH,
Campus A1,
D-66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal
Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical
Research Saarland (HIPS), Campus C2-3, P.O. Box 151150, D-66123 Saarbrücken,
Germany
| |
Collapse
|
18
|
Yin L, Lucas S, Maurer F, Kazmaier U, Hu Q, Hartmann RW. Novel Imidazol-1-ylmethyl Substituted 1,2,5,6-Tetrahydropyrrolo[3,2,1-ij]quinolin-4-ones as Potent and Selective CYP11B1 Inhibitors for the Treatment of Cushing’s Syndrome. J Med Chem 2012; 55:6629-33. [DOI: 10.1021/jm3003872] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lina Yin
- Pharmaceutical and Medicinal
Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus
C2-3, D-66123 Saarbrücken, Germany
- ElexoPharm GmbH, Campus
A1, D-66123 Saarbrücken, Germany
| | - Simon Lucas
- Pharmaceutical and Medicinal
Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus
C2-3, D-66123 Saarbrücken, Germany
| | - Frauke Maurer
- Institute für Organische
Chemie, Universität des Saarlandes, Geb. C4-2, D-66123 Saarbrücken, Germany
| | - Uli Kazmaier
- Institute für Organische
Chemie, Universität des Saarlandes, Geb. C4-2, D-66123 Saarbrücken, Germany
| | - Qingzhong Hu
- Pharmaceutical and Medicinal
Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus
C2-3, D-66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal
Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus
C2-3, D-66123 Saarbrücken, Germany
| |
Collapse
|
19
|
Hu Q, Negri M, Olgen S, Hartmann R. The Role of Fluorine Substitution in Biphenyl Methylene Imidazole-Type CYP17 Inhibitors for the Treatment of Prostate Carcinoma. ChemMedChem 2010; 5:899-910. [DOI: 10.1002/cmdc.201000065] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|