1
|
Liashuk OS, Andriashvili VA, Tolmachev AO, Grygorenko OO. Chemoselective Reactions of Functionalized Sulfonyl Halides. CHEM REC 2024; 24:e202300256. [PMID: 37823680 DOI: 10.1002/tcr.202300256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Chemoselective transformations of functionalized sulfonyl fluorides and chlorides are surveyed comprehensively. It is shown that sulfonyl fluorides provide an excellent selectivity control in their reactions. Thus, numerous conditions are tolerated by the SO2 F group - from amide and ester formation to directed ortho-lithiation and transition-metal-catalyzed cross-couplings. Meanwhile, sulfur (VI) fluoride exchange (SuFEx) is also compatible with numerous functional groups, thus confirming its title of "another click reaction". On the contrary, with a few exceptions, most transformations of functionalized sulfonyl chlorides typically occur at the SO2 Cl moiety.
Collapse
Affiliation(s)
- Oleksandr S Liashuk
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Vladyslav A Andriashvili
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Andriy O Tolmachev
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| |
Collapse
|
2
|
Morrill C, Gillespie JE, Phipps RJ. An Aminative Rearrangement of O-(Arenesulfonyl)hydroxylamines: Facile Access to ortho-Sulfonyl Anilines. Angew Chem Int Ed Engl 2022; 61:e202204025. [PMID: 35703005 PMCID: PMC9546328 DOI: 10.1002/anie.202204025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Indexed: 12/25/2022]
Abstract
Ortho-sulfonyl anilines are important building blocks for a range of applications. We report the discovery of an aromatic rearrangement reaction of O-(arenesulfonyl)hydroxylamines which leads directly to ortho-sulfonyl anilines through formation of a new C-N bond with excellent levels of regiocontrol for the ortho position(s) over all others. We establish that the rearrangement is proceeding through an intermolecular mechanism and propose that the regiocontrol observed is the result of attractive non-covalent interactions occurring during the C-N bond-forming step. Importantly, this method is complementary to classical aniline sulfonation in terms of the variously substituted regioisomers that can be obtained and it is also applicable to O-(benzylsulfonyl) hydroxylamines.
Collapse
Affiliation(s)
- Charlotte Morrill
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - James E. Gillespie
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Robert J. Phipps
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
3
|
Morrill C, Gillespie JE, Phipps RJ. An Aminative Rearrangement of O‐(Arenesulfonyl)hydroxylamines: Facile Access to ortho‐Sulfonyl Anilines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Charlotte Morrill
- University of Cambridge Yusuf Hamied Department of Chemistry UNITED KINGDOM
| | - James E Gillespie
- University of Cambridge Yusuf Hamied Department of Chemistry UNITED KINGDOM
| | - Robert J Phipps
- University of Cambridge Department of Chemistry Lensfield Road CB2 1EW Cambridge UNITED KINGDOM
| |
Collapse
|
4
|
Chhabra S, Shah K. The novel scaffold 1,2,4-benzothiadiazine-1,1-dioxide: a review. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Etse KS, Zaragoza G, Pirotte B. Crystal structure and Hirshfeld surface analysis of N-(2-(N-methylsulfamoyl)phenyl)formamide: Degradation product of 2-methyl-2H-1,2,4-benzothiadiazine 1,1-dioxide. ACTA ACUST UNITED AC 2019. [DOI: 10.5155/eurjchem.10.3.189-194.1903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The hydrolysis of 2-methyl-2H-1,2,4-benzothiadiazine 1,1-dioxide (2) during crystallization under humidity (85 %) conditions, lead to N-(2-(N-methylsulfamoyl)phenyl)formamide as second step hydrolysis product, identified in the proposed degradation mechanism. Crystal of N-(2-(N-methylsulfamoyl)phenyl)formamide C8H10N2O3S (4), was obtained and characterized. The molecular structure determination was carried out with MoKα X-ray and data measured at 100 K. The compound 4 crystallizes in triclinic P͞1 space group with unit cell parameters a = 4.8465(4) Å, b = 8.1942(9) Å, c = 11.8686(13) Å, α = 77.080(4)°, β = 82.069(4)°, γ = 80.648(4)°, V = 450.76 (8) Å3 and Z = 2. The crystal structure is stabilized by intramolecular N-H···O and intermolecular C-H···O and N-H···O hydrogen bonds that extended as infinite 1D chain along [100]. Stabilization is also ensured by oxygen-π stacking interaction between the aromatic ring and oxygen of the sulfonamide group. The analysis of intermolecular interactions through the mapping of dnorm and shape-index revel that the most significant contributions to the Hirshfeld surface 40.6 and 33.9% are from H···H and O···H contacts, respectively.
Collapse
Affiliation(s)
- Koffi Senam Etse
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Quartier Hôpital B36 Av. Hippocrate 15 B-4000 Liège, Belgium
| | - Guillermo Zaragoza
- Unidade de Difracción de Raios X, RIAIDT, Universidade de Santiago de Compostela, Campus VIDA, 15782 Santiago de Compostela, Spain
| | - Bernard Pirotte
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Quartier Hôpital B36 Av. Hippocrate 15 B-4000 Liège, Belgium
| |
Collapse
|
6
|
Miao C, Dong F, Jia L, Li W, Wang M, Zheng QH, Xu Z. Radiosynthesis of a carbon-11-labeled AMPAR allosteric modulator as a new PET radioligand candidate for imaging of Alzheimer's disease. Bioorg Med Chem Lett 2019; 29:1177-1181. [PMID: 30922660 DOI: 10.1016/j.bmcl.2019.03.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/13/2019] [Accepted: 03/20/2019] [Indexed: 11/19/2022]
Abstract
To develop PET tracers for imaging of Alzheimer's disease, a new carbon-11-labeled AMPAR allosteric modulator 4-cyclopropyl-7-(3-[11C]methoxyphenoxy)-3,4-dihydro-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide ([11C]8) has been synthesized. The reference standard 4-cyclopropyl-7-(3-methoxyphenoxy)-3,4-dihydro-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide (8) and its corresponding desmethylated precursor 4-cyclopropyl-7-(3-hydroxyphenoxy)-3,4-dihydro-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide (9) were synthesized from 4-methoxyabiline and chlorosulfonyl isocyanate in eight and nine steps with 3% and 1% overall chemical yield, respectively. The target tracer [11C]8 was prepared from the precursor 9 with [11C]CH3OTf through O-[11C]methylation and isolated by HPLC combined with SPE in 10-15% radiochemical yield, based on [11C]CO2 and decay corrected to end of bombardment (EOB). The radiochemical purity was >99%, and the molar activity (AM) at EOB was 370-740 GBq/μmol with a total synthesis time of 35-40-minutes from EOB.
Collapse
Affiliation(s)
- Caihong Miao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, China
| | - Fugui Dong
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, China
| | - Limeng Jia
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, China
| | - Wei Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, China
| | - Min Wang
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 1345 West 16th Street, Room 202, Indianapolis, IN 46202, USA
| | - Qi-Huang Zheng
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 1345 West 16th Street, Room 202, Indianapolis, IN 46202, USA.
| | - Zhidong Xu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, China; College of Chemical & Pharmaceutical Engineering, Key Laboratory of Molecular Chemistry for Medicine of Hebei Province, Hebei University of Science & Technology, Shijiazhuang, Hebei 050018, China; Shijiazhuang Vince Pharmatech Co., Ltd., Shijiazhuang, Hebei 050030, China.
| |
Collapse
|
7
|
Structural insights of SmKDAC8 inhibitors: Targeting Schistosoma epigenetics through a combined structure-based 3D QSAR, in vitro and synthesis strategy. Bioorg Med Chem 2017; 25:2105-2132. [DOI: 10.1016/j.bmc.2017.02.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/06/2017] [Accepted: 02/09/2017] [Indexed: 11/24/2022]
|