1
|
Dingiş Birgül Sİ, Kumari J, Tamhaev R, Mourey L, Lherbet C, Sriram D, Akdemir A, Küçükgüzel İ. In silico design, synthesis and antitubercular activity of novel 2-acylhydrazono-5-arylmethylene-4-thiazolidinones as enoyl-acyl carrier protein reductase inhibitors. J Biomol Struct Dyn 2024:1-19. [PMID: 38450660 DOI: 10.1080/07391102.2024.2319678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/12/2024] [Indexed: 03/08/2024]
Abstract
Mycobacteria regulate the synthesis of mycolic acid through the fatty acid synthase system type 1 (FAS I) and the fatty acid synthase system type-2 (FAS-II). Because mammalian cells exclusively utilize the FAS-I enzyme system for fatty acid production, targeting the FAS-II enzyme system could serve as a specific approach for developing selective antimycobacterial drugs. Enoyl-acyl carrier protein reductase enzyme (MtInhA), part of the FAS-II enzyme system, contains the NADH cofactor in its active site and reduces the intermediate. Molecular docking studies were performed on an in-house database (∼2200 compounds). For this study, five different crystal structures of MtInhA (PDB Code: 4TZK, 4BQP, 4D0S, 4BGE, 4BII) were used due to rotamer difference, mutation and the presence of cofactors. Molecular dynamics simulations (250 ns) were performed for the novel 2-acylhydrazono-5-arylmethylene-4-thiazolidinones derivatives selected by molecular docking studies. Twenty-three compounds selected by in silico methods were synthesized. Antitubercular activity and MtInhA enzyme inhibition studies were performed for compounds whose structures were elucidated by IR,1H-NMR,13C-NMR, HSQC, HMBC, MS and elemental analysis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Serap İpek Dingiş Birgül
- Institute of Health Sciences, Department of Pharmaceutical Chemistry, Marmara University, Istanbul, Türkiye
- Computer-Aided Drug Discovery Laboratory, Department of Pharmacology, Bezmialem Vakif University, Istanbul, Türkiye
| | - Jyothi Kumari
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, India
| | - Rasoul Tamhaev
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, Université Toulouse III - Paul Sabatier, Toulouse Cedex 09, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Christian Lherbet
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, Université Toulouse III - Paul Sabatier, Toulouse Cedex 09, France
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, India
| | - Atilla Akdemir
- Faculty of Pharmacy, Department of Pharmacology, Istinye University, Istanbul, Türkiye
| | - İlkay Küçükgüzel
- Institute of Health Sciences, Department of Pharmaceutical Chemistry, Marmara University, Istanbul, Türkiye
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Fenerbahçe University, Istanbul, Türkiye
| |
Collapse
|
2
|
Goudarzi H, Habibi D, Monem A. Application of a novel deep eutectic solvent as a capable and new catalyst for the synthesis of tetrahydropyridines and 1,3-thiazolidin-4-ones. Sci Rep 2023; 13:5804. [PMID: 37037852 PMCID: PMC10086034 DOI: 10.1038/s41598-023-32882-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/04/2023] [Indexed: 04/12/2023] Open
Abstract
A novel deep eutectic solvent (ETPP-Br/THF-TCA-DES) was prepared by a mixture of ethyl triphenylphosphonium bromide (ETPP-Br) and tetrahydrofuran-2,3,4,5-tetra-carboxylic acid (THF-TCA, mole ratio 7:3), characterized by FT-IR, TGA/DTA, densitometer, eutectic point, and 1H NMR techniques and used as a capable and new catalyst for the synthesis of two sets of compounds: (1) the four new [a(1-4)] and the eleven [a(5-15)] known alkyl 1,2,6-trisubstituted-4-[(hetero)arylamino]-1,2,5,6-tetrahydropyridine-3-carboxylates and (2) the two new [b(1-2)] and the eight [b(3-10)] known 1,3-thiazolidin-4-ones in DES with short reaction time, high yields, and easy recycling and separation of the DES catalyst. There is a nice consistency between the proposed structure of the DES compound, the integration values of the 1H NMR peaks and the ratio of ETPP-Br to THF-TCA obtained from the eutectic point phase diagram. Also, the decrease in splitting patterns of the peaks in DES, compared to the two starting materials can be the good evidence of the hydrogen bond formation between the two components.
Collapse
Affiliation(s)
- Hadis Goudarzi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Davood Habibi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran.
| | - Arezo Monem
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
3
|
Zhou Z, Zhang J, Zhou E, Ren C, Wang J, Wang Y. Small molecule NS5B RdRp non-nucleoside inhibitors for the treatment of HCV infection: A medicinal chemistry perspective. Eur J Med Chem 2022; 240:114595. [PMID: 35868125 DOI: 10.1016/j.ejmech.2022.114595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) infection has become a global health problem with enormous risks. Nonstructural protein 5B (NS5B) RNA-dependent RNA polymerase (RdRp) is a component of HCV, which can promote the formation of the viral RNA replication complex and is also an essential part of the replication complex itself. It plays a vital role in the synthesis of the positive and negative strands of HCV RNA. Therefore, the development of small-molecule inhibitors targeting NS5B RdRp is of great value for treating HCV infection-related diseases. Compared with NS5B RdRp nucleoside inhibitors, non-nucleoside inhibitors have more flexible structures, simpler mechanisms of action, and more predictable efficacy and safety of drugs in humans. Technological advances over the past decade have led to remarkable achievements in developing NS5B RdRp inhibitors. This review will summarize the non-nucleoside inhibitors targeting NS5B RdRp developed in the past decade and describe their structure optimization process and structure-activity relationship.
Collapse
Affiliation(s)
- Zhilan Zhou
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China
| | - Enda Zhou
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan, 611130, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Pathania S, Rawal RK, Singh PK. RdRp (RNA-dependent RNA polymerase): A key target providing anti-virals for the management of various viral diseases. J Mol Struct 2022; 1250:131756. [PMID: 34690363 PMCID: PMC8520695 DOI: 10.1016/j.molstruc.2021.131756] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 01/04/2023]
Abstract
With the arrival of the Covid-19 pandemic, anti-viral agents have regained center stage in the arena of medicine. Out of the various drug targets involved in managing RNA-viral infections, the one that dominates almost all RNA viruses is RdRp (RNA-dependent RNA polymerase). RdRp are proteins that are involved in the replication of RNA-based viruses. Inhibition of RdRps has been an integral approach for managing various viral infections such as dengue, influenza, HCV (Hepatitis), BVDV, etc. Inhibition of the coronavirus RdRp is currently rigorously explored for the treatment of Covid-19 related complications. So, keeping in view the importance and current relevance of this drug target, we have discussed the importance of RdRp in developing anti-viral agents against various viral diseases. Different reported inhibitors have also been discussed, and emphasis has been laid on highlighting the inhibitor's pharmacophoric features and SAR profile.
Collapse
Affiliation(s)
- Shelly Pathania
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Ravindra K. Rawal
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana-133207, Haryana, India,CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India,Corresponding authors
| | - Pankaj Kumar Singh
- Faculty of Medicine, Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, FI-20014, Finland,Corresponding authors
| |
Collapse
|
5
|
Poojary B, Kumar V, S P, Arunodaya HS, Chandra S, Ramu R, Patil SM, Baliga A, Rai VM, Vishwanatha U, Vishwanatha P, Shenoy SM. Potential Fluorinated Anti-MRSA thiazolidinone derivatives with antibacterial, antitubercular activity and molecular docking studies. Chem Biodivers 2021; 19:e202100532. [PMID: 34929067 DOI: 10.1002/cbdv.202100532] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/17/2021] [Indexed: 11/08/2022]
Abstract
MRSA infection is one of the alarming diseases in the current scenario. Identifying newer molecules to treat MRSA infection is of urgent need. In the present study, we have designed fluorinated thiazolidinone derivatives with various aryl/heteroaryl units at 5 th position of the thiazolidinone core as promising anti-MRSA agents. All the compounds were screened for antibacterial activity against four bacterial strains. Among the tested compounds, the halogenated compounds with simple arylidene ring, 5-(3-chloro-2-fluorobenzylidene)-2-(thiazol-2-ylamino)thiazol-4(5H)-one ( 4b) , 5-(4-chloro-2-fluorobenzylidene)-2-(thiazol-2-ylamino)thiazol-4(5H)-one ( 4c ), 5-(3-fluoro-4-methylbenzylidene)-2-(thiazol-2-ylamino)thiazol-4(5H)-one ( 4f ) and 5-(3,5-difluorobenzylidene)-2-(thiazo-2-ylamino)thiazol-4(5H)-one ( 4g) showed excellent activity with MIC 3.125-6.25 µg/mL against S. aureus and P. aeruginosa organism. Furthermore, these potent compounds were screened against MRSA strains, ESKAPE panel organism, and H37Rv mycobacterium strain. Compounds 4c (MIC 0.39 µg/mL), and 4f (MIC 0.39 and 0.79 µg/mL) displayed promising activity against MRSA strains (ATCC and clinical isolates, respectively). The most potent compounds, 4c and 4f eradicated the growth of bacterial colonies in a time-kill assay indicated that these are bactericidal in nature. The preliminary toxicity study of the potent molecules revealed that these compounds are non-hemolytic in nature as they did not induce lysis in human RBCs. In addition, the molecular docking and dynamics studies of compounds 4b , 4c , 4f and 4g were carried out on MurB protein of S. aureus (PDB code: 1HSK). Docking results demonstrated remarkable hydrogen bonding interaction with key amino acids ARG310, ASN83, GLY79 and π-π interactions with TYR149 which confirm the mode of action of the molecules.
Collapse
Affiliation(s)
- Boja Poojary
- Mangalore University, Chemistry, Mangalagangothri, 574199, MANGALORE, INDIA
| | - Vasantha Kumar
- Sri Dharmasthala Manjunatheshwara College Autonomous Ujire, Chemistry, Ujire, India, 574240, Ujire, INDIA
| | - Premalatha S
- Sri Dharmasthala Manjunatheshwara College of Ayurveda and Hospital, Microbiology, Udupi, India, 574240, Udupi, INDIA
| | - H S Arunodaya
- PA College of Engineering, Biotechnology, Konaje, Konaje, INDIA
| | | | - Ramith Ramu
- JSS University: JSS Academy of Higher Education and Research, Biotechnology, Mysuru, Mysuru, INDIA
| | - Shashank M Patil
- JSS University: JSS Academy of Higher Education and Research, Biotechnology, mysuru, India, 574240, Mysuru, INDIA
| | - Anuradha Baliga
- KMC Mangalore: Kasturba Medical College Mangalore, Microbiology, Mangalore, Mangalore, INDIA
| | - Vaishali M Rai
- Saint Aloysius College, Microbiology, Mangalore, Mangalore, INDIA
| | - U Vishwanatha
- Sri Dharmasthala Manjunatheshwara College of Ayurveda and Hospital, Microbiology, Udupi, Udupi, INDIA
| | - P Vishwanatha
- Sri Dharmasthala Manjunatheshwara College Autonomous Ujire, Chemistry, Ujire, Ujire, INDIA
| | - Shalini M Shenoy
- Kasturba Medical College Mangalore, Microbiology, Mangalore, Mangalore, INDIA
| |
Collapse
|
6
|
Tatar E, Yaldız S, Kulabaş N, Vanderlinden E, Naesens L, Küçükgüzel İ. Synthesis and structure-activity relationship of L-methionine-coupled 1,3,4-thiadiazole derivatives with activity against influenza virus. Chem Biol Drug Des 2021; 99:398-415. [PMID: 34873848 DOI: 10.1111/cbdd.13995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 09/17/2021] [Accepted: 11/14/2021] [Indexed: 01/03/2023]
Abstract
In previous investigations, we identified a class of 1,3,4-thiadiazole derivatives with antiviral activity. N-{3-(Methylsulfanyl)-1-[5-(phenylamino)-1,3,4-thiadiazole-2-yl]propyl}benzamide emerged as a relevant lead compound for designing novel influenza A virus inhibitors. In the present study, we elaborated on this initial lead by performing chemical synthesis and antiviral evaluation of a series of structural analogues. During this research, thirteen novel 1,3,4-thiadiazole derivatives were synthesized by the cyclization of the corresponding thiosemicarbazides as synthetic precursors. The structures and the purities of the synthesized compounds were confirmed through chromatographic and spectral data. Four L-methionine-based 1,3,4-thiadiazole derivatives displayed activity against influenza A virus, the two best compounds being 24 carrying a 5-(4-chlorophenylamino)-1,3,4-thiadiazole moiety and 30 possessing a 5-(benzoylamino)-1,3,4-thiadiazole structure [antiviral EC50 against influenza A/H3N2 virus: 4.8 and 7.4 µM, respectively]. The 1,3,4-thiadiazole derivatives were inactive against influenza B virus and a wide panel of unrelated DNA and RNA viruses. Compound 24 represents a new class of selective influenza A virus inhibitors acting during the virus entry process, as evidenced by our findings in a time-of-addition assay. Molecular descriptors and in silico prediction of ADMET properties of the active compounds were calculated. According to in silico ADMET and drug similarity studies, active compounds have been estimated to be good candidates for oral administration with no apparent toxicity considerations.
Collapse
Affiliation(s)
- Esra Tatar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, İstanbul, Turkey
| | - Seda Yaldız
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, İstanbul, Turkey
| | - Necla Kulabaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, İstanbul, Turkey
| | - Evelien Vanderlinden
- Laboratory of Virology and Chemotherapy, KU Leuven Rega Institute, Leuven, Belgium
| | - Lieve Naesens
- Laboratory of Virology and Chemotherapy, KU Leuven Rega Institute, Leuven, Belgium
| | - İlkay Küçükgüzel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, İstanbul, Turkey
| |
Collapse
|
7
|
Al-Behery AS, Elberembally KM, Eldawy MA. Synthesis, docking, and biological evaluation of thiazolidinone derivatives against hepatitis C virus genotype 4a. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02721-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Srour AM, Ahmed NS, Abd El-Karim SS, Anwar MM, El-Hallouty SM. Design, synthesis, biological evaluation, QSAR analysis and molecular modelling of new thiazol-benzimidazoles as EGFR inhibitors. Bioorg Med Chem 2020; 28:115657. [PMID: 32828424 DOI: 10.1016/j.bmc.2020.115657] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/26/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
Heterocyclic rings such as thiazole and benzimidazole are considered as privileged structures, since they constitute several FDA-approved drugs for cancer treatment. In this work, a new set of 2-(2-(substituted) hydrazinyl)-4-(1-methyl-1H-benzo[d]imidazol-2-yl) thiazoles 4a-q were designed as epidermal growth factor receptor (EGFR) inhibitors and synthesized using concise synthetic methods. The new target compounds have been evaluated in vitro for their suppression activity against EGFR TK. Compounds 4n, 4h, 4i, 4a and 4d exhibited significant potency in comparison with erlotinib which served as a reference drug (IC50, 71.67-152.59 nM; IC50 erlotinib, 152.59 nM). Furthermore, MTT assay revealed that compounds 4j, 4a, 4f, 4h, 4n produced the most promising cytotoxic potency against the human breast cancer cell line (MCF-7) (IC50; 5.96-11.91 µM; IC50 erlotinib; 4.15 µM). Compound 4a showed promising activity as EGFR TK inhibitor as well as anti-breast cancer agent. In addition, 4a induced apoptotic effect and cell cycle arrest at G2/M phase preventing the mitotic cycle in MCF-7 cells. Moreover, 4a upregulated the oncogenic parameters; caspase-3, p53, Bax/Bcl-2 as well as it inhibited the level of PARP-1 enzyme. QSAR study was carried out for the new derivatives and it revealed the goodness of the models. Furthermore, molecular docking studies represented the binding modes of the promising compounds in the active pocket of EGFR.
Collapse
Affiliation(s)
- Aladdin M Srour
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Nesreen S Ahmed
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Somaia S Abd El-Karim
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Manal M Anwar
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Salwa M El-Hallouty
- Drug Bioassay-Cell Culture Laboratory, Department of Pharmacognosy, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
9
|
Iqbal MA, Husain A, Alam O, Khan SA, Ahmad A, Haider MR, Alam MA. Design, synthesis, and biological evaluation of imidazopyridine-linked thiazolidinone as potential anticancer agents. Arch Pharm (Weinheim) 2020; 353:e2000071. [PMID: 32627909 DOI: 10.1002/ardp.202000071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/22/2020] [Accepted: 06/08/2020] [Indexed: 01/07/2023]
Abstract
In this study, two series of imidazopyridine-linked thiazolidinone rings (5a-h and 6a-h) constituting 16 new compounds were synthesized and tested for their antiproliferative activity against a panel of three human cancer cell lines, that is, MCF-7 (human breast cancer), A549 (human lung cancer), and DU145 (human prostate cancer). Three compounds, 5h, 6f, and 6h, exhibited remarkable results against all three cell lines, but compound 6h was found to be the most active one against the breast cancer cell line. Among all the synthesized compounds, 6h displayed the highest antioxidant results. Furthermore, the potent compounds 5h, 6f, and 6h showed no signs of toxicity at doses ranging from 50 to 500 mg/kg of animal body weight. The biochemical parameters (SGOT and SGPT) of compound 6h nearly matched the control in hepatotoxicity studies. The molecular docking and MM-GBSADG binding studies are in agreement with the in vitro anticancer and antioxidant activity results. The most promising compound 6h was found to have the highest docking score and binding energy, and its absorption, distribution, metabolism, and excretion (ADME) parameters are in the acceptable range. Thus, it can be concluded that 6h, an imidazopyridine derivative endowed with a thiazolidinone ring system, has the potential to be developed as an anticancer agent.
Collapse
Affiliation(s)
- Md Azhar Iqbal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Asif Husain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ozair Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shah A Khan
- College of Pharmacy, National University of Science and Technology, Muscat, Sultanate of Oman
| | - Aftab Ahmad
- Department of Health Information Technology, Jeddah Community College, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Md Rafi Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Md Aftab Alam
- Department of Pharmaceutics, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
| |
Collapse
|
10
|
Türe A, Ergül M, Ergül M, Altun A, Küçükgüzel İ. Design, synthesis, and anticancer activity of novel 4-thiazolidinone-phenylaminopyrimidine hybrids. Mol Divers 2020; 25:1025-1050. [PMID: 32328961 DOI: 10.1007/s11030-020-10087-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/08/2020] [Indexed: 10/24/2022]
Abstract
4-Thiazolidinones and phenylaminopyrimidines are known as anticancer agents. Imatinib is the pioneer phenylaminopyrimidine derivative kinase inhibitor, which is used for the treatment of chronic myeloid leukemia. With a hybrid approach, a novel series of 5-benzylidene-2-arylimino-4-thiazolidinone derivatives containing phenylaminopyrimidine core were designed, synthesized, and tested for their anticancer activity on K562 (chronic myeloid leukemia), PC3 (prostat cancer), and SHSY-5Y (neuroblastoma) cells. Since superior anticancer activity was observed on K562 cells, further biological studies of selected compounds (8, 15, and 34) were performed on K562 cells. For the synthesis of designed compounds, thiourea compounds were converted to 2-imino-1,3-thiazolidin-4-ones with α-chloroacetic acid in the presence of sodium acetate. 5-Benzylidene-2-imino-1,3-thiazolidin-4-one derivatives were obtained by Knoevenagel condensation of 2-imino-1,3-thiazolidin-4-ones with related aldehydes. Compounds 8, 15, and 34 were evaluated for cell viability, apoptosis studies, cell cycle experiments, and DNA damage assays. IC50 values of compounds 8, 15, and 34 were found as 5.26 ± 1.03, 3.52 ± 0.91, and 8.16 ± 1.27 μM, respectively, in K562 cells. Preferably, these compounds showed less toxicity towards L929 cells compared to imatinib. Furthermore, compounds 8 and 15 significantly induced early and late apoptosis in a time-dependent manner. Compounds 15 and 34 induced cell cycle arrest at G0/G1 phase and compound 8 caused cell cycle arrest at G2/M phase. Based on DNA damage assay, compounds 8 and 15 were found to be more genotoxic than imatinib towards K562 cells. To put more molecular insight, possible Abl inhibition mechanisms of most active compounds were predicted by molecular docking studies. In conclusion, a novel series of 5-benzylidene-2-arylimino-4-thiazolidinone derivatives and their promising anticancer activities were reported herein.
Collapse
Affiliation(s)
- Aslı Türe
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, P.O. Box: 34668, Istanbul, Turkey
| | - Mustafa Ergül
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Merve Ergül
- Department of Pharmacology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ahmet Altun
- Department of Medical Pharmacology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - İlkay Küçükgüzel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, P.O. Box: 34668, Istanbul, Turkey.
| |
Collapse
|
11
|
Abumelha HMA, Saeed A. Synthesis of some 5‐arylidene‐2‐(4‐acetamidophenylimino)‐thiazolidin‐4‐one derivatives and exploring their breast anticancer activity. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hana M. A. Abumelha
- Department of Chemistry, Faculty of SciencePrincess Nourah Bint Abdulrahman University Riyadh Saudi Arabia
| | - Ali Saeed
- Department of Chemistry, Faculty of ScienceMansoura University Mansoura Egypt
| |
Collapse
|
12
|
Ajlouni AM, Taha ZA, Hijazi AK, Al-Momani WM. A series of lanthanide complexes with 2-fluoro- N'
-(furan-2-ylmethylene) benzohydrazide ligand: Synthesis, characterization, luminescent properties and biological evaluation. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Abdulaziz M. Ajlouni
- Department of Applied Chemical Sciences; Jordan University of Science and Technology; Irbid Jordan
- Department of Basic Medical Sciences, Faculty of Medicine; Yarmouk University; Irbid Jordan
| | - Ziyad A. Taha
- Department of Applied Chemical Sciences; Jordan University of Science and Technology; Irbid Jordan
| | - Ahmed K. Hijazi
- Department of Applied Chemical Sciences; Jordan University of Science and Technology; Irbid Jordan
| | - Waleed M. Al-Momani
- Department of Basic Medical Sciences, Faculty of Medicine; Yarmouk University; Irbid Jordan
| |
Collapse
|
13
|
Yedage DB, Patil DV. Environmentally Benign Deep Eutectic Solvent for Synthesis of 1,3-Thiazolidin-4-ones. ChemistrySelect 2018. [DOI: 10.1002/slct.201800157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dattatray B. Yedage
- Department of Chemistry; Deccan Education Society's; Kirti M. Doongursee College, V.S. Marg; Kashinath Dhuru Road, Near Agar Bazar, Dadar (W) Mumbai - 400028 India
| | - Dattatray V. Patil
- Department of Chemistry; Deccan Education Society's; Kirti M. Doongursee College, V.S. Marg; Kashinath Dhuru Road, Near Agar Bazar, Dadar (W) Mumbai - 400028 India
| |
Collapse
|
14
|
Hatvate NT, Ghodse SM, Telvekar VN. Metal-free synthesis of 2-aminothiadiazoles via TBHP-Mediated oxidative C-S bond formation. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2017.1398330] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Navnath T. Hatvate
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Shrikant M. Ghodse
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Vikas N. Telvekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| |
Collapse
|
15
|
Sonochemical Green Synthesis of Yttrium Oxide (Y2O3) Nanoparticles as a Novel Heterogeneous Catalyst for the Construction of Biologically Interesting 1,3-Thiazolidin-4-ones. Catal Letters 2017. [DOI: 10.1007/s10562-017-2168-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Subhedar DD, Shaikh MH, Arkile MA, Yeware A, Sarkar D, Shingate BB. Facile synthesis of 1,3-thiazolidin-4-ones as antitubercular agents. Bioorg Med Chem Lett 2016; 26:1704-8. [DOI: 10.1016/j.bmcl.2016.02.056] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 02/03/2016] [Accepted: 02/19/2016] [Indexed: 11/17/2022]
|
17
|
Chopde HN, Pandhurnekar CP, Meshram JS, Pagadala R. Synthesis, Characterization, Antibacterial, and Antifungal Activity of Novel 2-(2-hydroxy-5-((aryl)-diazenyl)phenyl)-3-(4-hydroxyphenyl)-thiazolidin-4-one. J Heterocycl Chem 2016. [DOI: 10.1002/jhet.2620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Himani N. Chopde
- Department of Chemistry; G. H. Raisoni Academy of Engineering and Technology; Nagpur Maharashtra India
| | | | - Jyotsna S. Meshram
- Department of Chemistry; Rashtrasant Tukadoji Maharaj Nagpur University; Nagpur Maharashtra India
| | - Ramakanth Pagadala
- Department of Chemistry; Rashtrasant Tukadoji Maharaj Nagpur University; Nagpur Maharashtra India
| |
Collapse
|
18
|
Tatar E, Karakuş S, Küçükgüzel ŞG, Öktem Okullu S, Ünübol N, Kocagöz T, De Clercq E, Andrei G, Snoeck R, Pannecouque C, Kalaycı S, Şahin F, Sriram D, Yogeeswari P, Küçükgüzel İ. Design, Synthesis, and Molecular Docking Studies of a Conjugated Thiadiazole–Thiourea Scaffold as Antituberculosis Agents. Biol Pharm Bull 2016; 39:502-15. [DOI: 10.1248/bpb.b15-00698] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Esra Tatar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University
| | - Sevgi Karakuş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University
| | | | - Sinem Öktem Okullu
- Department of Medical Microbiology, School of Medicine, Acıbadem University
| | - Nihan Ünübol
- Department of Medical Microbiology, School of Medicine, Acıbadem University
| | - Tanıl Kocagöz
- Department of Medical Microbiology, School of Medicine, Acıbadem University
| | | | | | | | | | - Sadık Kalaycı
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University
| | - Dharmarajan Sriram
- Medicinal Chemistry and Drug Discovery Research Laboratory, Pharmacy Group, Birla Institute of Technology and Science-Pilani
| | - Perumal Yogeeswari
- Medicinal Chemistry and Drug Discovery Research Laboratory, Pharmacy Group, Birla Institute of Technology and Science-Pilani
| | - İlkay Küçükgüzel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University
| |
Collapse
|
19
|
Subhedar DD, Shaikh MH, Shingate BB, Nawale L, Sarkar D, Khedkar VM. Novel tetrazoloquinoline–thiazolidinone conjugates as possible antitubercular agents: synthesis and molecular docking. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00278a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Synthesis of new tetrazoloquinoline–thiazolidinone conjugates were achieved via one-pot three-component cyclocondensation in the presence of [DBUH][OAc] and studied antitubercular activity.
Collapse
Affiliation(s)
| | - Mubarak H. Shaikh
- Department of Chemistry
- Dr. Babasaheb Ambedkar Marathwada University
- Aurangabad
- India
| | - Bapurao B. Shingate
- Department of Chemistry
- Dr. Babasaheb Ambedkar Marathwada University
- Aurangabad
- India
| | - Laxman Nawale
- Combichem Bioresource Centre
- National Chemical Laboratory
- Pune
- India
| | - Dhiman Sarkar
- Combichem Bioresource Centre
- National Chemical Laboratory
- Pune
- India
| | - Vijay M. Khedkar
- School of Health Sciences
- University of KwaZulu Natal
- Durban
- South Africa
| |
Collapse
|