1
|
Bhagat DS, Bumbrah GS, Chawla PA, Gurnule WB, Shejul SK. Recent advances in synthesis and anticancer potential of triazole containing scaffolds. Anticancer Agents Med Chem 2022; 22:2852-2875. [PMID: 35176982 DOI: 10.2174/1871520622666220217161346] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022]
Abstract
Cancer is the most lethal disease that may be found anywhere on the globe. Approximately 10% of individuals die as a result of cancer of various types, with 19.3 million new cancer cases and 10 million deaths expected in 2020. More than 100 medications are commercially available for the treatment of cancer, but only a few candidates have high specificity, resulting in several side effects. The scientific community has spent the past decades focusing on drug discovery. Natural resources are used to isolate pharmaceutically active candidates, which are then synthesized in laboratories. More than 60% of all prescribed drugs are made from natural ingredients. Unique five-membered heteroaromatic center motifs with sulfur, oxygen and nitrogen atoms are found in heterocyclic compounds such as indazole, thiazole, triazole, triazole, and oxazole, and are used as a core scaffold in many medicinally important therapies. Triazole possesses a wide range of pharmacological activities including anticancer, antibacterial, antifungal, antibiotic antiviral, analgesic, anti-inflammatory, anti-HIV, antidiabetic, and antiprotozoal activities. Novel Triazole motifs with a variety of biological characteristics have been successfully synthesized using versatile synthetic methods. We intend here to facilitate the rational design and development of innovative triazole-based anti-cancer medicines with increased selectivity for various cancer cell lines by providing insight into various ligand-receptor interactions.
Collapse
Affiliation(s)
- Devidas S Bhagat
- Department of Forensic Chemistry and Toxicology, Government Institute of Forensic Science, Aurangabad 431 004, (MS), India
| | - Gurvinder S Bumbrah
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University, 122413, Haryana, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Wasudeo B Gurnule
- Department of Chemistry, Kamla Nehru Mahavidyalaya, Nagpur-440024, (MS) India
| | - Sampada K Shejul
- Department of Life Science, Vivekanand Arts, Sardar Dalipsingh Commerce and Science College, Aurangabad 431 001, (MS), India
| |
Collapse
|
2
|
Zhang X, Zhang S, Zhao S, Wang X, Liu B, Xu H. Click Chemistry in Natural Product Modification. Front Chem 2021; 9:774977. [PMID: 34869223 PMCID: PMC8635925 DOI: 10.3389/fchem.2021.774977] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022] Open
Abstract
Click chemistry is perhaps the most powerful synthetic toolbox that can efficiently access the molecular diversity and unique functions of complex natural products up to now. It enables the ready synthesis of diverse sets of natural product derivatives either for the optimization of their drawbacks or for the construction of natural product-like drug screening libraries. This paper showcases the state-of-the-art development of click chemistry in natural product modification and summarizes the pharmacological activities of the active derivatives as well as the mechanism of action. The aim of this paper is to gain a deep understanding of the fruitful achievements and to provide perspectives, trends, and directions regarding further research in natural product medicinal chemistry.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Songfeng Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xuan Wang
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Liu
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| |
Collapse
|
3
|
Xu Z, Zhao SJ, Liu Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur J Med Chem 2019; 183:111700. [PMID: 31546197 DOI: 10.1016/j.ejmech.2019.111700] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022]
Abstract
Anticancer agents are critical for the cancer treatment, but side effects and the drug resistance associated with the currently used anticancer agents create an urgent need to explore novel drugs with low side effects and high efficacy. 1,2,3-Triazole is privileged building block in the discovery of new anticancer agents, and some of its derivatives have already been applied in clinics or under clinical trials for fighting against cancers. Hybrid molecules occupy an important position in cancer control, and hybridization of 1,2,3-triazole framework with other anticancer pharmacophores may provide valuable therapeutic intervention for the treatment of cancer, especially drug-resistant cancer. This review emphasizes the recent advances in 1,2,3-triazole-containing hybrids with anticancer potential, covering articles published between 2015 and 2019, and the structure-activity relationships, together with mechanisms of action are also discussed.
Collapse
Affiliation(s)
- Zhi Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, PR China.
| | - Shi-Jia Zhao
- Wuhan University of Science and Technology, Wuhan, PR China
| | - Yi Liu
- Wuhan University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
4
|
Huang Q, Xie L, Chen X, Yu H, Lv Y, Huang X, Ying J, Zheng C, Cheng Y, Huang J. Synthesis and anticancer activity of novel rapamycin C-28 containing triazole moiety compounds. Arch Pharm (Weinheim) 2018; 351:e1800123. [PMID: 30357890 DOI: 10.1002/ardp.201800123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/16/2018] [Accepted: 09/26/2018] [Indexed: 11/10/2022]
Abstract
Rapamycin is an mTOR allosteric inhibitor with multiple functions such as immunosuppressive, anticancer, and lifespan prolonging activities. Its C-43 semi-synthetic derivatives temsirolimus and everolimus have been used as mTOR targeting anticancer drugs in the clinic. Following our previous research on antitumor rapalogs modified on the C-43 position, 13 novel rapamycin triazole hybrids (6a-g, 7a-f) were designed and synthesized on the C-28 position of rapamycin via Huisgen's reaction. Anticancer assays indicated that the targeted derivatives containing phenyl and 4-methylphenyl groups showed an obvious raise in anticancer activity. On the contrary, the compounds with methoxyl, amine, and halogen groups on the benzene ring displayed lower anticancer activity. Compound 6c, as the most active compound, showed a stronger inhibition effect as compared with rapamycin for almost all of the tested cell lines (p < 0.01), except PC-3. Meanwhile, the effect of 6c on inducing apoptosis and cell cycle arrest in A549 cells was more powerful than that of rapamycin. In addition, 6c inhibited the phosphorylation of mTOR and its downstream key kinases 4EBP1 and p70S6K1 in A549 cells, indicating that 6c also effectively inhibits the mTORC1 signaling pathway as rapamycin. On the basis of these findings, 6c may have the potential to be developed as a new mTOR inhibitor against specific cancers.
Collapse
Affiliation(s)
- Qingwen Huang
- Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China.,Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, P. R. China
| | - Lijun Xie
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, P. R. China
| | - Xiaoming Chen
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, P. R. China
| | - Hui Yu
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, P. R. China
| | - Yubing Lv
- Hangzhou Huadong Medicine Group Pharmaceutical Research Institute Co. Ltd., Hangzhou, P. R. China
| | - XueHui Huang
- Hangzhou Huadong Medicine Group Pharmaceutical Research Institute Co. Ltd., Hangzhou, P. R. China
| | - Jiayin Ying
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, P. R. China
| | - Congshen Zheng
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, P. R. China
| | - Yuanrong Cheng
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, P. R. China
| | - Jie Huang
- Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China.,Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, P. R. China
| |
Collapse
|
5
|
Halay E, Ay E, Şalva E, Ay K, Karayıldırım T. Synthesis of triazolylmethyl-linked nucleoside analogs via combination of azidofuranoses with propargylated nucleobases and study on their cytotoxicity. Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2248-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|