1
|
Apaydın ÇB, Naesens L, Cihan-Üstündağ G. One-pot synthesis, characterization and antiviral properties of new benzenesulfonamide-based spirothiazolidinones. Mol Divers 2024; 28:2681-2688. [PMID: 38935302 PMCID: PMC11450120 DOI: 10.1007/s11030-024-10912-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
A novel series of benzenesulfonamide substituted spirothiazolidinone derivatives (3a-j) were synthesized, characterized and evaluated for their antiviral activity. The spirocyclic compounds were prepared by the condensation of 4-(aminosulfonyl)-2-methoxybenzohydrazide, appropriate cyclic ketones and 2-mercaptopropionic acid in a one-pot reaction. The structures of the new compounds were established by IR, 1H NMR, 13C NMR (APT), and elemental analysis. The new compounds were evaluated in vitro antiviral activity against influenza A/H1N1, A/H3N2 and B viruses, as well as herpes simplex virus type 1 (HSV-1), respiratory syncytial virus (RSV) and yellow fever virus (YFV). Two derivatives bearing propyl (3d) and tert-butyl (3e) substituents at position 8 of the spiro ring exhibited activity against influenza A/H1N1 virus with EC50 values in the range of 35-45 µM and no cytotoxicity at 100 μM, the highest concentration tested.
Collapse
Affiliation(s)
- Çağla Begüm Apaydın
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, Fatih, 34126, Istanbul, Turkey.
| | - Lieve Naesens
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, B-3000, Louvain, Belgium
| | - Gökçe Cihan-Üstündağ
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, Fatih, 34126, Istanbul, Turkey
| |
Collapse
|
2
|
Kryshchyshyn-Dylevych A, Kaminskyy D, Lesyk R. In-vitro antiviral screening of some thiopyranothiazoles. Chem Biol Interact 2023; 386:110738. [PMID: 37816448 DOI: 10.1016/j.cbi.2023.110738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023]
Abstract
Thiopyranothiazoles represent a promising class of drug-like molecules with broad pharmacological profiles. Some novel derivatives of isothiochromeno[4a,4-d]thiazole and chromeno[4',3':4,5]thiopyrano[2,3-d]thiazole were synthesized and screened against diverse viruses: coronavirus SARS, Influenza Viruses of type A and type B, Adeno- and Rhinovirus, Dengue Fever Virus, Respiratory Syncytial Virus, Rift Valley Fever Virus, Tacaribe Virus, Venezuelan Equine Encephalitis Virus, as well as Vaccinia and Human Cytomegalovirus. The antiviral activity assays revealed highly active isothiochromeno[4a,4-d]thiazole bearing phenazone fragment towards Influenza Virus type A (H1N1) with the selectivity index (SI) within 150. 5,8-Dihydro-2H-[1,3]thiazolo [5',4':5,6]thiopyrano [2,3-d][1,3]thiazol-2,6(3H)-diones showed moderate antiviral activity against influenza viruses and SARS-CoV. The obtained data indicate thiopyranothiazoles as promising class of fused 4-thiazolidinone derivatives possessing antiviral effects.
Collapse
Affiliation(s)
- Anna Kryshchyshyn-Dylevych
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine.
| | - Danylo Kaminskyy
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| |
Collapse
|
3
|
Yadav Y, Singh K, Sharma S, Mishra VK, Sagar R. Recent Efforts in Identification of Privileged Scaffolds as Antiviral Agents. Chem Biodivers 2023; 20:e202300921. [PMID: 37589569 DOI: 10.1002/cbdv.202300921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/18/2023]
Abstract
Viral infections are the most important health concern nowadays to mankind, which is unexpectedly increasing the health complications and fatality rate worldwide. The recent viral infection outbreak developed a pressing need for small molecules that can be quickly deployed for the control/treatment of re-emerging or new emerging viral infections. Numerous viruses, including the human immunodeficiency virus (HIV), hepatitis, influenza, SARS-CoV-1, SARS-CoV-2, and others, are still challenging due to emerging resistance to known drugs. Therefore, there is always a need to search for new antiviral small molecules that can combat viral infection with new modes of action. This review highlighted recent progress in developing new antiviral molecules based on natural product-inspired scaffolds. Herein, the structure-activity relationship of the FDA-approved drugs along with the molecular docking studies of selected compounds have been discussed against several target proteins. The findings of new small molecules as neuraminidase inhibitors, other than known drug scaffolds, Anti-HIV and SARS-CoV are incorporated in this review paper.
Collapse
Affiliation(s)
- Yogesh Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kavita Singh
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sunil Sharma
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Vinay Kumar Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
4
|
Cihan-Üstündağ G, Acar Ç, Naesens L, Erköse-Genç G, Şatana D. Synthesis of new N-(3-oxo-1-thia-4-azaspiro[4.5]decan-4-yl)pyridine-3-carboxamide derivatives and evaluation of their anti-influenza virus and antitubercular activities. Arch Pharm (Weinheim) 2022; 355:e2200224. [PMID: 35849096 DOI: 10.1002/ardp.202200224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/09/2022]
Abstract
We here report the synthesis, structural characterization, and evaluation of the antiviral and antitubercular activities of a novel series of hybrid spirothiazolidinone derivatives (2a-f and 3a-f) containing the nicotinohydrazide moiety, which is an isomer form of the approved antitubercular drug isoniazid. When evaluated for activity against influenza A/H1N1, A/H3N2, and B viruses, three of the new compounds proved to possess specific antiviral activity against the influenza A/H3N2 virus. The most active analog 3a, bearing a 2,8-dimethyl group at the spiro ring, displayed an antiviral EC50 value of 5.2 µM. Compound 3a produced no cytotoxicity at 100 µM, the highest concentration tested, giving a selectivity index of at least 19. Structure-activity relationship analysis indicated that the absence of the methyl substituent at the 2-position and the presence of a bulky substituent at the 8-position of the spirothiazolidinone system caused a significant decrease in antiviral activity. The in vitro antitubercular activity of compounds 2a-f and 3a-f was determined for six different drug-sensitive/drug-resistant laboratory strains and clinical isolates of Mycobacterium tuberculosis. Compounds 2c, 2d, 3b, 3c, and 3d showed weak antitubercular activity against different strains, with MIC values of 125-250 μM.
Collapse
Affiliation(s)
- Gökçe Cihan-Üstündağ
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Çiğdem Acar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Lieve Naesens
- Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Gonca Erköse-Genç
- Department of Microbiology and Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Dilek Şatana
- Department of Microbiology and Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
5
|
Apaydın ÇB, Tansuyu M, Cesur Z, Naesens L, Göktaş F. Design, synthesis and anti-influenza virus activity of furan-substituted spirothiazolidinones. Bioorg Chem 2021; 112:104958. [PMID: 33979734 DOI: 10.1016/j.bioorg.2021.104958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/14/2021] [Accepted: 04/28/2021] [Indexed: 01/28/2023]
Abstract
A new series of N-(3-oxo-1-thia-4-azaspiro[4.5]decan-4-yl)carboxamides have been designed, synthesized and evaluated as antiviral agents. The compounds were prepared by condensation of 2-methylfuran-3-carbohydrazide, appropriate carbonyl compounds and sulfanyl acids. The new molecules were characterized by IR, 1H NMR, 13C NMR, mass spectrometry and elemental analysis. Six analogues proved to be active against influenza A/H3N2 virus, the two most protent analogues, 3c and 3d, having an EC50 value of about 1 µM. These findings help to define the SAR of spirothiazolidinone-based inhibitors of the influenza virus membrane fusion process.
Collapse
Affiliation(s)
- Çağla Begüm Apaydın
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul University, Istanbul, Turkey.
| | - Merve Tansuyu
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul University, Istanbul, Turkey
| | - Zafer Cesur
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul University, Istanbul, Turkey
| | - Lieve Naesens
- Rega Institute, KU Leuven, Department of Microbiology, Immunology and Transplantation, B-3000 Leuven, Belgium
| | - Füsun Göktaş
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul University, Istanbul, Turkey
| |
Collapse
|
6
|
Apaydın ÇB, Loy BV, Stevaert A, Naesens L. New spirothiazolidinone derivatives: Synthesis and antiviral evaluation. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2020.1828886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Çağla Begüm Apaydın
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul University, Istanbul, Turkey
| | - Benjamin Van Loy
- Laboratory of Virology and Chemotherapy, Rega Institute, KU Leuven, Leuven, Belgium
| | - Annelies Stevaert
- Laboratory of Virology and Chemotherapy, Rega Institute, KU Leuven, Leuven, Belgium
| | - Lieve Naesens
- Laboratory of Virology and Chemotherapy, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|