1
|
Oliveira GSND, Furlaneto CG, Tokuhara CK, Ventura TMO, Pessôa ADS, Fakhoury VS, Pagnan AL, Inacio KK, Sanches MLR, Buzalaf MAR, Ximenes VF, Oliveira RCD. Exploring the effects of vanillin and divanillin on murine osteosarcoma cells: evaluation of cellular response and proteomic analysis. Nat Prod Res 2024:1-6. [PMID: 39219162 DOI: 10.1080/14786419.2024.2398207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/01/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
The objective of this study was to evaluate the antitumor properties of vanillin and divanillin in murine bone tumour cells. The action of the compounds on the cell viability of the normal (MC3T3-E1) and the tumour cell line (UMR-106) was evaluated. Action of the compounds in colony formation, migration, and production of reactive oxygen species (ROS) in tumour cells were evaluated along with proteomic analysis. Both compounds affected the cell viability of normal and tumour cell lines, being divanillin the more effective. For UMR-106, both compounds reduced the cell viability by less than 50%. Vanillin inhibited the migration process, and divanillin decreased ROS production (p < 0.05). The proteomic analysis showed that both compounds acted in the expression of proteins involved in tumour progression. Our results suggest that vanillin and divanillin are effective drugs against murine bone tumour cells. They can be a promising alternative for the adjuvant treatment of bone cancer.
Collapse
Affiliation(s)
| | - Camila Giatti Furlaneto
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru Brazil
| | - Cintia Kazuko Tokuhara
- Human Genetics Program, Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | | | - Adriano de Souza Pessôa
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru Brazil
| | | | - Ana Ligia Pagnan
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru Brazil
| | - Kelly Karina Inacio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru Brazil
| | | | | | - Valdecir Farias Ximenes
- Department of Chemistry, Faculty of Sciences, UNESP, São Paulo State University, Bauru, Brazil
| | | |
Collapse
|
2
|
Mungo C, Sorgi K, Ogollah C, Misiko B, Cheserem C, Githongo G, Omoto J. Phase I study on the pharmacokinetics of intravaginal, self-administered artesunate vaginal pessaries among women in Kenya. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.08.24309596. [PMID: 39148845 PMCID: PMC11326355 DOI: 10.1101/2024.07.08.24309596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Cervical cancer remains a significant global health issue, especially in low- and middle-income countries (LMICs), where access to prevention and treatment is limited and women are at a higher risk of cervical cancer. Artesunate, a widely available drug used to treat malaria, has shown promise in treating human papillomavirus (HPV)-associated anogenital lesions including high-grade cervical precancer, in a recent Phase I studies in the United States. Data on the pharmacokinetics of artesunate following intravaginal use, and its implications on malaria resistance, are lacking. Objectives The primary objective of this study is to investigate the pharmacokinetics of Artesunate (AS) and its active metabolite, dihydroartemisinin (DHA) following intravaginal use at the dosing and frequency intended for cervical precancer treatment. A secondary objective is to assess safety among study participants. Methods We are conducting a single-arm, phase I trial with a sample size of 12 female volunteers. Participants will self-administer artesunate vaginal pessaries in the study clinic daily for 5 consecutive days. Participants will have their blood drawn prior to receiving the first dose of artesunate on day one of the study and then will receive 8 blood draws on study day five, prior to artesunate administration and at 15 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, 6 hours, and 8 hours after pessary administration. Pharmacokinetic parameters of artesunate and DHA will be calculated by way of quantitative analysis of with determination of maximum concentration (Cmax), time to Cmax (Tmax), area under the plasma concentration versus time curve (AUC), apparent clearance, and elimination half-life (t1/2).
Collapse
Affiliation(s)
- Chemtai Mungo
- Department of Obstetrics and Gynecology, University of North Carolina Chapel Hill, 321 S Columbia St, Chapel Hill, North Carolina, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, 450 West Dr, Chapel Hill, North Carolina, 27599, USA
| | - Katherine Sorgi
- Department of Obstetrics and Gynecology, University of North Carolina Chapel Hill, 321 S Columbia St, Chapel Hill, North Carolina, 27599, USA
| | | | - Brenda Misiko
- Kenya Medical Research Institute, Busia Rd, Kisumu, Kenya
| | | | | | - Jackton Omoto
- Department of Obstetrics and Gynecology, Maseno University School of Medicine, P.O, Kisumu, Kenya
| |
Collapse
|
3
|
RoyMahapatra D, Singh R, Sk UH, Manna PP. Engineered Artesunate-Naphthalimide Hybrid Dual Drug for Synergistic Multimodal Therapy against Experimental Murine Lymphoma. Mol Pharm 2024; 21:1090-1107. [PMID: 38306276 DOI: 10.1021/acs.molpharmaceut.3c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Lymphoma can effectively be treated with a chemotherapy regimen that is associated with adverse side effects due to increasing drug resistance, so there is an emergent need for alternative small-molecule inhibitors to overcome the resistance that occurs in lymphoma management and overall increase the prognosis rate. A new series of substituted naphthalimide moieties conjugated via ester and amide linkages with artesunate were designed, synthesized, and characterized. In addition to the conjugates, to further achieve a theranostic molecule, FITC was incorporated via a multistep synthesis process. DNA binding studies of these selected derivatives by ultraviolet-visible (UV-vis), fluorescence spectroscopy, intercalating dye (EtBr, acridine orange)-DNA competitive assay, and minor groove binding dye Hoechst 33342-DNA competitive assay suggested that the synthesized novel molecules intercalated between the two strands of DNA due to its naphthalimide moiety and its counterpart artesunate binds with the minor groove of DNA. Napthalimide-artesunate conjugates inhibit the growth of lymphoma and induce apoptosis, including ready incorporation and reduction in cell viability. The remodeled drug has a significant tumoricidal effect against solid DL tumors developed in BALB/c mice in a dose-dependent manner. The novel drug appears to inhibit metastasis and increase the survival of the treated animals compared with untreated littermates.
Collapse
Affiliation(s)
- Debapriya RoyMahapatra
- Department of Clinical and Translational Research, Chittaranjan National Cancer Institute, Kolkata 700 026, West Bengal, India
| | - Ranjeet Singh
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ugir Hossain Sk
- Department of Clinical and Translational Research, Chittaranjan National Cancer Institute, Kolkata 700 026, West Bengal, India
| | - Partha Pratim Manna
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
4
|
Koley M, Han J, Soloshonok VA, Mojumder S, Javahershenas R, Makarem A. Latest developments in coumarin-based anticancer agents: mechanism of action and structure-activity relationship studies. RSC Med Chem 2024; 15:10-54. [PMID: 38283214 PMCID: PMC10809357 DOI: 10.1039/d3md00511a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/20/2023] [Indexed: 01/30/2024] Open
Abstract
Many researchers around the world are working on the development of novel anticancer drugs with different mechanisms of action. In this case, coumarin is a highly promising pharmacophore for the development of novel anticancer drugs. Besides, the hybridization of this moiety with other anticancer pharmacophores has emerged as a potent breakthrough in the treatment of cancer to decrease its side effects and increase its efficiency. This review aims to provide a comprehensive overview of the recent development of coumarin derivatives and their application as novel anticancer drugs. Herein, we highlight and describe the largest number of research works reported in this field from 2015 to August 2023, along with their mechanisms of action and structure-activity relationship studies, making this review different from the other review articles published on this topic to date.
Collapse
Affiliation(s)
- Manankar Koley
- CSIR-Central Glass & Ceramic Research Institute Kolkata India
| | - Jianlin Han
- College of Chemical Engineering, Nanjing Forestry University Nanjing China
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, University of the Basque Country San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science Bilbao Spain
| | | | - Ramin Javahershenas
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Ata Makarem
- Institute of Pharmacy, University of Hamburg Hamburg Germany
| |
Collapse
|
5
|
Huang Y, Yang Y, Liu G, Xu M. New clinical application prospects of artemisinin and its derivatives: a scoping review. Infect Dis Poverty 2023; 12:115. [PMID: 38072951 PMCID: PMC10712159 DOI: 10.1186/s40249-023-01152-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Recent research has suggested that artemisinin and its derivatives may have therapeutic effects on parasites, viruses, tumors, inflammation and skin diseases. This study aimed to review clinical research on artemisinin and its derivatives except anti-malaria and explore possible priority areas for future development. METHODS Relevant articles in English and Chinese published before 28 October 2021 were reviewed. All articles were retrieved and obtained from databases including WanFang, PubMed/MEDLINE, the Cochrane Library, China National Knowledge International, Embase, OpenGrey, the Grey Literature Report, Grey Horizon, and ClinicalTrials.gov. Studies were selected for final inclusion based on predefined criteria. Information was then extracted and analyzed by region, disease, outcome, and time to identify relevant knowledge gaps. RESULTS Seventy-seven studies on anti-parasitic (35), anti-tumor (16), anti-inflammatory (12), anti-viral (8), and dermatological treatments (7) focused on the safety and efficacy of artemisinin and its derivatives. The anti-parasitic clinical research developed rapidly, with a large number of trials, rapid clinical progress, and multiple research topics. In contrast, anti-viral research was limited and mainly stayed in phase I clinical trials (37.50%). Most of the studies were conducted in Asia (60%), followed by Africa (27%), Europe (8%), and the Americas (5%). Anti-parasite and anti-inflammatory research were mainly distributed in less developed continents such as Asia and Africa, while cutting-edge research such as anti-tumor has attracted more attention in Europe and the United States. At the safety level, 58 articles mentioned the adverse reactions of artemisinin and its derivatives, with only one study showing a Grade 3 adverse event, while the other studies did not show any related adverse reactions or required discontinuation. Most studies have discovered therapeutic effects of artemisinin or its derivatives on anti-parasitic (27), anti-tumor (9), anti-inflammatory (9) and dermatological treatment (6). However, the efficacy of artemisinin-based combination therapies (ACTs) for parasitic diseases (non-malaria) is still controversial. CONCLUSIONS Recent clinical studies suggest that artemisinin and its derivatives may be safe and effective candidates for anti-tumor, anti-parasitic, anti-inflammatory and dermatological drugs. More phase II/III clinical trials of artemisinin and its derivatives on antiviral effects are needed.
Collapse
Affiliation(s)
- Yangmu Huang
- School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing, 100191, China.
- Institute for Global Health and Development, Peking University, 38 Xue Yuan Road, Haidian District, Beijing, 100191, China.
| | - Yang Yang
- School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing, 100191, China
| | - Guangqi Liu
- Energy Saving and Environmental Protection and Occupational Safety and Health Research Institute, China Academy of Railway Sciences Co., Ltd, No. 2 Daliushu Road, Beijing, 100081, China
| | - Ming Xu
- School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing, 100191, China
- Institute for Global Health and Development, Peking University, 38 Xue Yuan Road, Haidian District, Beijing, 100191, China
| |
Collapse
|
6
|
Herrmann L, Leidenberger M, Sacramento de Morais A, Mai C, Çapci A, da Cruz Borges Silva M, Plass F, Kahnt A, Moreira DRM, Kappes B, Tsogoeva SB. Autofluorescent antimalarials by hybridization of artemisinin and coumarin: in vitro/ in vivo studies and live-cell imaging. Chem Sci 2023; 14:12941-12952. [PMID: 38023498 PMCID: PMC10664590 DOI: 10.1039/d3sc03661h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
Malaria is one of our planet's most widespread and deadliest diseases, and there is an ever-consistent need for new and improved pharmaceuticals. Natural products have been an essential source of hit and lead compounds for drug discovery. Antimalarial drug artemisinin (ART), a highly effective natural product, is an enantiopure sesquiterpene lactone and occurs in Artemisia annua L. The development of improved antimalarial drugs, which are highly potent and at the same time inherently fluorescent is particularly favorable and highly desirable since they can be used for live-cell imaging, avoiding the requirement of the drug's linkage to an external fluorescent label. Herein, we present the first antimalarial autofluorescent artemisinin-coumarin hybrids with high fluorescence quantum yields of up to 0.94 and exhibiting excellent activity in vitro against CQ-resistant and multidrug-resistant P. falciparum strains (IC50 (Dd2) down to 0.5 nM; IC50 (K1) down to 0.3 nM) compared to reference drugs CQ (IC50 (Dd2) 165.3 nM; IC50 (K1) 302.8 nM) and artemisinin (IC50 (Dd2) 11.3 nM; IC50 (K1) 5.4 nM). Furthermore, a clear correlation between in vitro potency and in vivo efficacy of antimalarial autofluorescent hybrids was demonstrated. Moreover, deliberately designed autofluorescent artemisinin-coumarin hybrids, were not only able to overcome drug resistance, they were also of high value in investigating their mode of action via time-dependent imaging resolution in living P. falciparum-infected red blood cells.
Collapse
Affiliation(s)
- Lars Herrmann
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Straße 10 91054 Erlangen Germany
| | - Maria Leidenberger
- Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg Paul-Gordon-Straße 3 91052 Erlangen Germany
| | | | - Christina Mai
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Straße 10 91054 Erlangen Germany
| | - Aysun Çapci
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Straße 10 91054 Erlangen Germany
| | | | - Fabian Plass
- Leibniz Institute of Surface Engineering (IOM) Permoserstrasse 15 04318 Leipzig Germany
- Physical Chemistry Chair I, Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstrasse 3 91058 Erlangen Germany
| | - Axel Kahnt
- Leibniz Institute of Surface Engineering (IOM) Permoserstrasse 15 04318 Leipzig Germany
- Physical Chemistry Chair I, Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstrasse 3 91058 Erlangen Germany
| | - Diogo R M Moreira
- Instituto Gonçalo Moniz Fundação Oswaldo Cruz Salvador 40296-710 Brazil
| | - Barbara Kappes
- Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg Paul-Gordon-Straße 3 91052 Erlangen Germany
| | - Svetlana B Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Straße 10 91054 Erlangen Germany
| |
Collapse
|
7
|
Novel ferrocene-pyrazolo[1,5-a]pyrimidine hybrids: A facile environment-friendly regioselective synthesis, structure elucidation, and their antioxidant, antibacterial, and anti-biofilm activities. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
New application of novel tetrazine derivatives as potent VEGFR-2 kinase inhibitors and anti-cancer agents. Future Med Chem 2022; 14:1251-1266. [PMID: 35950486 DOI: 10.4155/fmc-2022-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: A novel series of s-tetrazine derivatives was designed as a new scaffold and synthesized efficiently as VEGFR-2 inhibitors for the first time. Methodology & results: The inhibitory activities of the new compounds were tested by MTT assay and enzyme assay, respectively. Western blot assay, cell apoptosis assay and cell migration assay were carried out to study the action mechanism of them. All the synthesized compounds showed evident VEGFR-2 inhibitory activities (IC50 in the range of 88.53-257.55 nM). Compounds 23h, 25d, 26e and 27c showed excellent anti-proliferative activities against the four tested cell lines and were better than sorafenib basically. Conclusion: Compounds with good activities based on this novel scaffold can be screened successfully.
Collapse
|
9
|
Novel artemisinin derivative FO8643 with anti-angiogenic activity inhibits growth and migration of cancer cells via VEGFR2 signaling. Eur J Pharmacol 2022; 930:175158. [PMID: 35878807 DOI: 10.1016/j.ejphar.2022.175158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/28/2022] [Accepted: 07/19/2022] [Indexed: 11/03/2022]
Abstract
The vascular endothelial growth factor receptor 2 (VEGFR2) is widely recognized as a key effector in angiogenesis and cancer progression and has been considered a critical target for the development of anti-cancer drugs. Artemisinin (ARS) and its derivatives exert profound efficacy in treating not only malaria but also cancer. As a novel ARS-type compound, FO8643 caused significant suppression of the growth of a panel of cancer cells, including both solid and hematologic malignancies. In CCRF-CEM leukemia cells, FO8643 dramatically inhibited cell proliferation coupled with increased apoptosis and cell cycle arrest. Additionally, FO8643 restrained cell migration in the 2D wound healing assay as well as in a 3D spheroid model of human hepatocellular carcinoma HUH-7 cells. Importantly, SwissTargetPrediction predicted VEGFR2 as an underlying target for FO8643. Molecular docking simulation further indicated that FO8643 forms hydrogen bonds and hydrophobic interactions within the VEGFR2 kinase domain. Moreover, FO8643 directly inhibited VEGFR2 kinase activity and its downstream action including MAPK and PI3K/Akt signaling pathways in HUH-7 cells. Encouragingly, FO8643 decreased angiogenesis in the chorioallantoic membrane assay in vivo. Collectively, FO8643 is a novel ARS-type compound exerting potential VEGFR2 inhibition. FO8643 may be a viable drug candidate in cancer therapy.
Collapse
|
10
|
Ozok-Arici O, Kavak E, Kivrak A. Synthesis of Thiophene/Furan-Artemisinin Hybrid Molecules. Chem Biodivers 2022; 19:e202200144. [PMID: 35713943 DOI: 10.1002/cbdv.202200144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/17/2022] [Indexed: 11/11/2022]
Abstract
Natural products with semi-synthetic molecules displays higher biological activities, and creates new biological properties for the treatment of diseases. Although, natural products like artemisinin have been used as a traditional medicine over thousands of years, structure and biological properties of many natural products were investigated in the 20th century. Design and synthesis of new biologically active compounds including natural products have very critical roles to find novel drug candidates. Herein, novel thiophene/furan bridge artemisinin derivatives were synthesized by starting from artemisinin. Firstly, benzothiophene derivatives are synthesized, then Stergich esterification reactions give the new artemisinin hybrid molecules with moderate to high yields.
Collapse
Affiliation(s)
- Omruye Ozok-Arici
- Eski?ehir Osmangazi Üniversitesi: Eskisehir Osmangazi Universitesi, Chemistry, Eskişehir Osmangazi Üniversitesi Fen Edebiyat Fakültesi Kimya Bölümü, 26040, Odunpazarı, TURKEY
| | - Emrah Kavak
- Van Yuzuncu Yil Universitesi, Chemistry, Eskisehir Osmangazi University, Arts and Science Faculty Depatment of Chemistry, 26040, Eskisehir, TURKEY
| | - Arif Kivrak
- Eskisehir Osmangazi University: Eskisehir Osmangazi Universitesi, Chemistry, Eskisehir Osmangazi University, Arts and Science Faculty Depatment of Chemistry, 26040, Eskisehir, TURKEY
| |
Collapse
|
11
|
Zhang S, Yi C, Li WW, Luo Y, Wu YZ, Ling HB. The current scenario on anticancer activity of artemisinin metal complexes, hybrids, and dimers. Arch Pharm (Weinheim) 2022; 355:e2200086. [PMID: 35484335 DOI: 10.1002/ardp.202200086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/09/2022]
Abstract
Cancer, the most significant cause of morbidity and mortality, has already posed a heavy burden on health care systems globally. In recent years, cancer treatment has made a significant breakthrough, but cancer cells inevitably acquire resistance, and the efficacy of the treatment is greatly reduced as the tumor progresses. To overcome the above issues, novel chemotherapeutics are needed urgently. Artemisinin and its derivatives-sesquiterpene lactone compounds possessing a unique peroxy bridge moiety-exhibit excellent safety and tolerability profiles. Mechanistically, artemisinin derivatives can promote cancer cell apoptosis, induce cell cycle arrest and autophagy, and inhibit cancer cell invasion and migration. Accordingly, artemisinin derivatives demonstrate promising anticancer efficacy both in vitro and in vivo, and even in clinical Phase I/II trials. The purpose of the present review article is to provide an emphasis on the current scenario (January 2017-January 2022) of artemisinin derivatives with potential anticancer activity, inclusive of artemisinin metal complexes, hybrids, and dimers. The structure-activity relationships and mechanisms of action are also discussed to facilitate the further rational design of more effective candidates.
Collapse
Affiliation(s)
- Shu Zhang
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| | - Chuan Yi
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| | - Wei-Wei Li
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| | - Yang Luo
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| | - Yi-Zhe Wu
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| | - Hai-Bo Ling
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
12
|
Wang Y, Ding R, Tai Z, Hou H, Gao F, Sun X. Artemisinin-isatin hybrids with potential antiproliferative activity against breast cancer. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
13
|
The redox mechanism of ferrocene and its phytochemical and biochemical compounds in anticancer therapy: A mini review. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Song F, Liu D, Huo X, Qiu D. The anticancer activity of carbazole alkaloids. Arch Pharm (Weinheim) 2021; 355:e2100277. [PMID: 34486161 DOI: 10.1002/ardp.202100277] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022]
Abstract
Chemotherapy is the first choice for the majority of cancers, but severe side effects and drug resistance restrict the actual clinical efficacy. Carbazole alkaloids, mainly from the Rutaceae family, possess favorable donor ability, good planarity, rich photophysical properties, and excellent biocompatibility. Carbazole alkaloids could not only intercalate in DNA but could also inhibit telomerase and topoisomerase and regulate protein phosphorylation. Hence, carbazole alkaloids are useful in providing lead hits/candidates for the development of novel anticancer agents. This review summarizes the research progress made regarding the anticancer properties of carbazole alkaloids, covering articles published from January 2010 to June 2021.
Collapse
Affiliation(s)
- Feng Song
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China
| | - Dan Liu
- Dezhou Number One Middle School, Dezhou, Shandong, China
| | - Xiankai Huo
- Department of Medical Imaging, Dezhou People's Hospital, Dezhou, Shandong, China
| | - Di Qiu
- Department of Hematology, Zhuji Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| |
Collapse
|
15
|
Botta L, Cesarini S, Zippilli C, Filippi S, Bizzarri BM, Baratto MC, Pogni R, Saladino R. Stereoselective Access to Antimelanoma Agents by Hybridization and Dimerization of Dihydroartemisinin and Artesunic acid. ChemMedChem 2021; 16:2270-2277. [PMID: 33792170 PMCID: PMC8360007 DOI: 10.1002/cmdc.202100196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Indexed: 01/21/2023]
Abstract
A library of five hybrids and six dimers of dihydroartemisinin and artesunic acid has been synthetized in a stereo-controlled manner and evaluated for the anticancer activity against metastatic melanoma cell line (RPMI7951). Among novel derivatives, three artesunic acid dimers showed antimelanoma activity and cancer selectivity, being not toxic on normal human fibroblast (C3PV) cell line. Among the three dimers, the one bearing 4-hydroxybenzyl alcohol as a spacer showed no cytotoxic effect (CC50 >300 μM) and high antimelanoma activity (IC50 =0.05 μM), which was two orders of magnitude higher than that of parent artesunic acid, and of the same order of commercial drug paclitaxel. In addition, this dimer showed cancer-type selectivity towards melanoma compared to prostate (PC3) and breast (MDA-MB-231) tumors. The occurrence of a radical mechanism was hypothesized by DFO and EPR analyses. Qualitative structure activity relationships highlighted the role of artesunic acid scaffold in the control of toxicity and antimelanoma activity.
Collapse
Affiliation(s)
- Lorenzo Botta
- Department of Biological and Ecological Sciences, Univeristy of Viterbo, Via S.C. De Lellis s.n.c., 01100, Viterbo, Italy
| | - Silvia Cesarini
- Department of Biological and Ecological Sciences, Univeristy of Viterbo, Via S.C. De Lellis s.n.c., 01100, Viterbo, Italy
| | - Claudio Zippilli
- Department of Biological and Ecological Sciences, Univeristy of Viterbo, Via S.C. De Lellis s.n.c., 01100, Viterbo, Italy
| | - Silvia Filippi
- Department of Biological and Ecological Sciences, Univeristy of Viterbo, Via S.C. De Lellis s.n.c., 01100, Viterbo, Italy
| | - Bruno Mattia Bizzarri
- Department of Biological and Ecological Sciences, Univeristy of Viterbo, Via S.C. De Lellis s.n.c., 01100, Viterbo, Italy
| | - Maria Camilla Baratto
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Rebecca Pogni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Raffaele Saladino
- Department of Biological and Ecological Sciences, Univeristy of Viterbo, Via S.C. De Lellis s.n.c., 01100, Viterbo, Italy
| |
Collapse
|
16
|
Song F, Bian Y, Liu J, Li Z, Zhao L, Fang J, Lai Y, Zhou M. Indole Alkaloids, Synthetic Dimers and Hybrids with Potential In Vivo Anticancer Activity. Curr Top Med Chem 2021; 21:377-403. [PMID: 32901583 DOI: 10.2174/1568026620666200908162311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/02/2020] [Accepted: 08/12/2020] [Indexed: 11/22/2022]
Abstract
Indole, a heterocyclic organic compound, is one of the most promising heterocycles found in natural and synthetic sources since its derivatives possess fascinating structural diversity and various therapeutic properties. Indole alkaloids, synthetic dimers and hybrids could act on diverse targets in cancer cells, and consequently, possess potential antiproliferative effects on various cancers both in vitro and in vivo. Vinblastine, midostaurin, and anlotinib as the representative of indole alkaloids, synthetic dimers and hybrids respectively, have already been clinically applied to treat many types of cancers, demonstrating indole alkaloids, synthetic dimers and hybrids are useful scaffolds for the development of novel anticancer agents. Covering articles published between 2010 and 2020, this review emphasizes the recent development of indole alkaloids, synthetic dimers and hybrids with potential in vivo therapeutic application for cancers.
Collapse
Affiliation(s)
- Feng Song
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Yunqiang Bian
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Jing Liu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Zhenghua Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Li Zhao
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Junman Fang
- School of Life Sciences, Dezhou University, Dezhou 253023, Shandong, China
| | - Yonghong Lai
- School of Life Sciences, Dezhou University, Dezhou 253023, Shandong, China
| | - Meng Zhou
- School of Life Sciences, Dezhou University, Dezhou 253023, Shandong, China
| |
Collapse
|
17
|
Çapcı A, Herrmann L, Sampath Kumar HM, Fröhlich T, Tsogoeva SB. Artemisinin-derived dimers from a chemical perspective. Med Res Rev 2021; 41:2927-2970. [PMID: 34114227 DOI: 10.1002/med.21814] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/02/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022]
Abstract
Considerable progress has been made with the rather recently developed dimer approach, which has already found applications in the development of new effective artemisinin-derived antimalarial, anticancer, and antiviral agents. One observation common to these potential applications is the significant (i.e., much more than double) improvement in activity of artemisinin based dimers, which are not toxic to normal cells and have fewer or less harmful side effects, with respect to monomers against parasites, cancer cells and viruses. Due to the high potential of the dimerization concept, many new artemisinin-derived dimer compounds and their biological activities have been recently reported. In this review an overview of the synthesis of dimer drug candidates based on the clinically used drug artemisinin and its semisynthetic derivatives is given. Besides the highlighting of biological activities of the selected dimers, the main focus is set on different synthetic approaches toward the dimers containing a broad variety of symmetric and nonsymmetric linking moieties.
Collapse
Affiliation(s)
- Aysun Çapcı
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Lars Herrmann
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Halmuthur M Sampath Kumar
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany.,CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Tony Fröhlich
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Svetlana B Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
18
|
Louvel D, De Dios Miguel T, Duc Vu N, Duguet N. The Chemistry of β‐Hydroxy Hydroperoxides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Dan Louvel
- Univ Lyon, Université Claude Bernard Lyon1, CNRS, INSA, CPE-Lyon Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN), Bâtiment Lederer 1 rue Victor Grignard 69100 Villeurbanne cedex France
| | - Thomas De Dios Miguel
- Univ Lyon, Université Claude Bernard Lyon1, CNRS, INSA, CPE-Lyon Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN), Bâtiment Lederer 1 rue Victor Grignard 69100 Villeurbanne cedex France
| | - Nam Duc Vu
- Univ Lyon, Université Claude Bernard Lyon1, CNRS, INSA, CPE-Lyon Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN), Bâtiment Lederer 1 rue Victor Grignard 69100 Villeurbanne cedex France
| | - Nicolas Duguet
- Univ Lyon, Université Claude Bernard Lyon1, CNRS, INSA, CPE-Lyon Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN), Bâtiment Lederer 1 rue Victor Grignard 69100 Villeurbanne cedex France
| |
Collapse
|
19
|
Klochkov S, Neganova M. Unique indolizidine alkaloid securinine is a promising scaffold for the development of neuroprotective and antitumor drugs. RSC Adv 2021; 11:19185-19195. [PMID: 35478659 PMCID: PMC9033663 DOI: 10.1039/d1ra02558a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/08/2021] [Indexed: 01/12/2023] Open
Abstract
Alkaloids, secondary plant metabolites, are used in traditional medicine in many countries to treat various pathological conditions. Securinine, a unique indolizidine alkaloid combining four cycles, "6-azobicyclo[3.2.1]octane" as a key structure fused with α,β-unsaturated-γ-lactone and piperidine ring, has a broad spectrum of actions including anti-inflammatory, antibacterial, neuroprotective and antitumor, and has been previously used in medical practice. It has several reactive centers, which are double bonds at positions 12-13 and 14-15, and this is a challenging scaffold for the synthesis of biologically active compounds. In this review, works on the production of modified securinine derivatives and their biological activity are addressed. Both monovalent and bivalent derivatives that are most promising in our opinion, and have potential for further research, are considered.
Collapse
Affiliation(s)
- Sergey Klochkov
- Institute of Physiologically Active Compounds Russian Academy of Sciences Chernogolovka Russia +7(496)-524-2650 +7(496)-524-2650
| | - Margarita Neganova
- Institute of Physiologically Active Compounds Russian Academy of Sciences Chernogolovka Russia +7(496)-524-2650 +7(496)-524-2650
| |
Collapse
|
20
|
Ozok O, Kavak E, Kivrak A. Synthesis of novel artesunate-benzothiophene and artemisinin-benzothiophene derivatives. Nat Prod Res 2021; 36:5228-5234. [PMID: 34024198 DOI: 10.1080/14786419.2021.1928116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Natural products are used for the treatment of a variety of diseases for many years. Last decades, design and synthesis of novel biologically active hybrid molecules including natural product is gained big importance due to their unique and new biological properties. In the present study, novel artemisinin-benzothiophene derivatives (12 A-F) are synthesised. Initially, benzothiophene derivatives (4 A-4F) are prepared via the Pd-catalyzed coupling reactions and iodocyclisation reactions. Then, Suzuki-Miyaura coupling reactions were used for the formation of intermediates 6 A-6F (between 64% and 91% yields). Finally, the Steglich esterification reaction between intermediate 6 and artesunate formed the artemisinin-benzothiophene hybrids (9 A-9F) in moderate to excellent yields under very mild reaction conditions. When intermediate 6 was reacted with dihydroartemisinin, product 12 A-12F was also obtained with high yields.
Collapse
Affiliation(s)
- Omruye Ozok
- Department of Chemistry, Faculty of Sciences, Van Yüzüncü Yil University, Van, Turkey.,Department of Molecular Biology and Genetics, Faculty of Sciences, Van Yüzüncü Yil University, Van, Turkey
| | - Emrah Kavak
- Department of Chemistry, Faculty of Sciences, Van Yüzüncü Yil University, Van, Turkey
| | - Arif Kivrak
- Department of Chemistry, Faculty of Sciences, Van Yüzüncü Yil University, Van, Turkey.,Faculty of Sciences and Arts, Department of Chemistry, Eskisehir Osmangazi University, Eskişehir, Turkey
| |
Collapse
|
21
|
Kavak E, Mutlu D, Ozok O, Arslan S, Kivrak A. Design, synthesis and pharmacological evaluation of novel Artemisinin-Thymol. Nat Prod Res 2021; 36:3511-3519. [PMID: 33416016 DOI: 10.1080/14786419.2020.1865954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A molecular hybridization of natural products is a new concept in drug discovery and having critical roles to design new molecules with improved biological properties. Hybrid molecules display higher biological activities when compared to the parent drugs. In the present study, two natural products (thymol and artemisinin (ART)) are used for the synthesis of new hybrid thymol-artemisinin. After characterization, the cytotoxic activity of ART-thymol was tested against different cancer cell lines and non-cancerous human cell line. ART-Thymol show the cytotoxic effect with EC50 values 70,96μM for HepG2, 97,31μM for LnCap, 6,03μM for Caco-2, 77,98μM for HeLa and 62,28μM for HEK293 cells, respectively. Moreover, ART-Thymol was checked for drug-likeness, and the kinase inhibitory activity. ART-Thymol is investigated by using molecular docking. The results of qPCR was indicated CDK2 and P38 were inhibited by ART-Thymol. These results improved that thymol-artemisinin may be new candidates as an anticancer agents.
Collapse
Affiliation(s)
- Emrah Kavak
- Department of Chemistry, Faculty of Sciences, Van Yüzüncü Yil University, Van, Turkey
| | - Dogukan Mutlu
- Department of Biology, Faculty of Arts and Science, Pamukkale University, Denizli, Turkey
| | - Omruye Ozok
- Department of Chemistry, Faculty of Sciences, Van Yüzüncü Yil University, Van, Turkey.,Department of Molecular Biology and Genetics, Faculty of Sciences, Van Yüzüncü Yil University, Van, Turkey
| | - Sevki Arslan
- Department of Biology, Faculty of Arts and Science, Pamukkale University, Denizli, Turkey
| | - Arif Kivrak
- Department of Chemistry, Faculty of Sciences, Van Yüzüncü Yil University, Van, Turkey
| |
Collapse
|
22
|
Ren Y, Kinghorn AD. Development of Potential Antitumor Agents from the Scaffolds of Plant-Derived Terpenoid Lactones. J Med Chem 2020; 63:15410-15448. [PMID: 33289552 PMCID: PMC7812702 DOI: 10.1021/acs.jmedchem.0c01449] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Naturally occurring terpenoid lactones and their synthetic derivatives have attracted increasing interest for their promising antitumor activity and potential utilization in the discovery and design of new antitumor agents. In the present perspective article, selected plant-derived five-membered γ-lactones and six-membered δ-lactones that occur with terpenoid scaffolds are reviewed, with their structures, cancer cell line cytotoxicity and in vivo antitumor activity, structure-activity relationships, mechanism of action, and the potential for developing cancer chemotherapeutic agents discussed in each case. The compounds presented include artemisinin (ART, 1), parthenolide (PTL, 2), thapsigargin (TPG, 3), andrographolide (AGL, 4), ginkgolide B (GKL B, 5), jolkinolide B (JKL B, 6), nagilactone E (NGL E, 7), triptolide (TPL, 8), bruceantin (BRC, 9), dichapetalin A (DCT A, 10), and limonin (LMN, 11), and their naturally occurring analogues and synthetic derivatives. It is hoped that this contribution will be supportive of the future development of additional efficacious anticancer agents derived from natural products.
Collapse
Affiliation(s)
- Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - A. Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
23
|
Yan X, Wen J, Zhou L, Fan L, Wang X, Xu Z. Current Scenario of 1,3-oxazole Derivatives for Anticancer Activity. Curr Top Med Chem 2020; 20:1916-1937. [PMID: 32579505 DOI: 10.2174/1568026620666200624161151] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/06/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023]
Abstract
Cancer, which has been cursed for human beings for long time is considered as one of the
leading causes of morbidity and mortality across the world. In spite of different types of treatments
available, chemotherapy is still deemed as a favored treatment for the cancer. Unfortunately, many currently
accessible anticancer agents have developed multidrug resistance along with fatal adverse effects.
Therefore, intensive efforts have been made to seek for new active drugs with improved anticancer efficacy
and reduced adverse effects. In recent years, the emergence of heterocyclic ring-containing anticancer
agents has gained a great deal of attention among medicinal chemists. 1,3- oxazole is a versatile
heterocyclic compound, and its derivatives possess broad-spectrum pharmacological properties, including
anticancer activity against both drug-susceptible, drug-resistant and even multidrug-resistant cancer
cell lines through multiple mechanisms. Thus, the 1,3-oxazole moiety is a useful template for the development
of novel anticancer agents. This review will provide a comprehensive overview of the recent
advances on 1,3-oxazole derivatives with potential therapeutic applications as anticancer agents, focus
on the chemical structures, anticancer activity, and mechanisms of action.
Collapse
Affiliation(s)
- Xinjia Yan
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Jing Wen
- College of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Lin Zhou
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Lei Fan
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Xiaobo Wang
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Zhi Xu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
24
|
Feng D, Zhang A, Yang Y, Yang P. Coumarin-containing hybrids and their antibacterial activities. Arch Pharm (Weinheim) 2020; 353:e1900380. [PMID: 32253782 DOI: 10.1002/ardp.201900380] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 12/31/2022]
Abstract
Infections caused by Gram-positive and -negative bacteria are one of the foremost causes of morbidity and mortality globally. Antibiotics are the mainstay of therapy for bacterial infections, but the emergence and wide spread of drug-resistant pathogens have already become a huge issue for public healthcare systems. The coumarin moiety, which is ubiquitous in nature, could bind to the B subunit of DNA gyrase in bacteria and inhibit DNA supercoiling by blocking the ATPase activity; hence, coumarin derivatives possess potential antibacterial activity. Several coumarin-containing hybrids such as coumermycin A1, clorobiocin, and novobiocin have already been used in clinical practice for the treatment of various bacterial infections; thus, it is conceivable that hybridization of the coumarin moiety with other antibacterial pharmacophores may provide opportunities for the development of novel antibiotics. This review outlines the advances in coumarin-containing hybrids with antibacterial potential in the recent 5 years and the structure-activity relationships are also discussed.
Collapse
Affiliation(s)
- Dongxu Feng
- Department of Disinfection Center, Zhuji Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuan Yang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China.,Dong Medicine Key Laboratory of Hunan Province, Department of Laboratory Medicine, Hunan University of Medicine, Huaihua, Hunan, China
| | - Peng Yang
- Dong Medicine Key Laboratory of Hunan Province, Department of Laboratory Medicine, Hunan University of Medicine, Huaihua, Hunan, China
| |
Collapse
|
25
|
Liu R, Wang J, Xiao M, Gao X, Chen J, Dai Y. AaCOI1, Encoding a CORONATINE INSENSITIVE 1-Like Protein of Artemisia annua L., Is Involved in Development, Defense, and Anthocyanin Synthesis. Genes (Basel) 2020; 11:genes11020221. [PMID: 32093127 PMCID: PMC7074131 DOI: 10.3390/genes11020221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 02/08/2023] Open
Abstract
Artemisia annua is an important medicinal plant producing the majority of the antimalarial compound artemisinin. Jasmonates are potent inducers of artemisinin accumulation in Artemisisa annua plants. As the receptor of jasmonates, the F-box protein COI1 is critical to the JA signaling required for plant development, defense, and metabolic homeostasis. AaCOI1 from Artemisia annua, homologous to Arabidopsis AtCOI1, encodes a F-box protein located in the nuclei. Expressional profiles of the AaCOI1 in the root, stem, leaves, and inflorescence was investigated. The mRNA abundance of AaCOI1 was the highest in inflorescence, followed by in the leaves. Upon mechanical wounding or MeJA treatment, expression of AaCOI1 was upregulated after 6 h. When ectopically expressed, driven by the native promoter from Arabidopsis thaliana, AaCOI1 could partially complement the JA sensitivity and defense responses, but fully complemented the fertility, and the JA-induced anthocyanin accumulation in a coi1-16 loss-of-function mutant. Our study identifies the paralog of AtCOI1 in Artemisia annua, and revealed its implications in development, hormone signaling, defense, and metabolism. The results provide insight into JA perception in Artemisia annua, and pave the way for novel molecular breeding strategies in the canonical herbs to manipulate the anabolism of pharmaceutic compounds on the phytohormonal level.
Collapse
Affiliation(s)
- Rong Liu
- Key Laboratory of Plant Development and Environment Adaption, School of Life Sciences, Shandong University, Qingdao 266237, China; (R.L.); (J.W.)
- Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| | - Jinbiao Wang
- Key Laboratory of Plant Development and Environment Adaption, School of Life Sciences, Shandong University, Qingdao 266237, China; (R.L.); (J.W.)
| | - Mu Xiao
- Key Laboratory of Plant Development and Environment Adaption, School of Life Sciences, Shandong University, Qingdao 266237, China; (R.L.); (J.W.)
- Correspondence:
| | - Xiewang Gao
- Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| | - Jin Chen
- Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.C.); (Y.D.)
| | - Yanjiao Dai
- Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.C.); (Y.D.)
| |
Collapse
|