1
|
Subramani T, Saravanan H, David H, Solanke J, Rajaramon S, Dandela R, Solomon AP. Bioorganic compounds in quorum sensing disruption: strategies, Mechanisms, and future prospects. Bioorg Chem 2025; 156:108192. [PMID: 39874908 DOI: 10.1016/j.bioorg.2025.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/04/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025]
Abstract
Recent research has shed light on the complex world of bacterial communication through quorum sensing. This sophisticated intercellular signalling mechanism, driven by auto-inducers, regulates crucial bacterial community behaviours such as biofilm formation, expression of virulence factors, and resistance mechanisms. The increasing threat of antibiotic resistance, coupled with quorum sensing mediated response, necessitates alternative strategies to combat bacterial infections. Quorum quenching has emerged as a promising approach, utilizing quorum quenching enzymes and quorum sensing inhibitors to disrupt quorum sensing signalling pathways, thus reducing virulence and biofilm formation. This review focuses on natural and synthetic bioorganic compounds that act as quorum-sensing inhibitors, providing insights into their mechanisms, structure-activity relationships, and potential as anti-virulence agents. The review also explores the communication languages of bacteria, including AHLs in gram-negative bacteria, oligopeptides in gram-positive bacteria, and LuxS, a universal microbial language. By highlighting recent advancements and prospects in bioorganic QSIs, this article underscores their crucial role in developing effective anti-virulence therapies and combating the growing threat of antimicrobial resistance.
Collapse
Affiliation(s)
- Tarunkarthick Subramani
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India
| | - Harish Saravanan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India
| | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India
| | - Jayshree Solanke
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, Odisha, India
| | - Shobana Rajaramon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India.
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, Odisha, India.
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India.
| |
Collapse
|
2
|
Liu K, Xia J, Li Y, Li BB, Wang MQ, Zhou Q, Ma ML, He QR, Yang WQ, Liu DF, Wang ZY, Yang LL, Zhang YY. Discovery of Novel Coumarin Pleuromutilin Derivatives as Potent Anti-MRSA Agents. J Med Chem 2024; 67:21030-21048. [PMID: 39603597 DOI: 10.1021/acs.jmedchem.4c01678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Treating methicillin-resistant Staphylococcus aureus (MRSA) infection remains one of the most difficult challenges in clinical practice, primarily due to the resistance of MRSA to multiple antibiotics. Therefore, there is an urgent need to develop novel antibiotics with high efficacy and low cross-resistance rates. In this study, a series of novel pleuromutilin derivatives with coumarin structures were synthesized and subsequently assessed for their biological activities. Most of these derivatives showed potent antimicrobial activity against drug-resistant Gram-positive bacterial strains. Compound 14b displayed particularly rapid bactericidal effects, slow resistance development, and low cytotoxicity. Moreover, it decreased bacterial loads in the lung, liver, kidney, spleen, and heart and exhibited better antibacterial efficacy (ED50 = 11.16 mg/kg) than tiamulin (ED50 = 28.93 mg/kg) in a mouse model of systemic MRSA infection. Both in vitro and in vivo analyses suggest that compound 14b is a promising agent for the treatment of MRSA infections.
Collapse
Affiliation(s)
- Kai Liu
- School of Science, Xihua University, Chengdu 610039, China
| | - Jing Xia
- School of Science, Xihua University, Chengdu 610039, China
| | - Yun Li
- School of Science, Xihua University, Chengdu 610039, China
| | - Bing-Bing Li
- School of Science, Xihua University, Chengdu 610039, China
| | - Meng-Qian Wang
- School of Science, Xihua University, Chengdu 610039, China
| | - Qian Zhou
- School of Science, Xihua University, Chengdu 610039, China
| | - Meng-Lin Ma
- School of Science, Xihua University, Chengdu 610039, China
| | - Qiu-Rong He
- West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Wei-Qing Yang
- School of Science, Xihua University, Chengdu 610039, China
| | - Dong-Fang Liu
- School of Science, Xihua University, Chengdu 610039, China
| | - Zhou-Yu Wang
- School of Science, Xihua University, Chengdu 610039, China
| | - Ling-Ling Yang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Yuan-Yuan Zhang
- School of Science, Xihua University, Chengdu 610039, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu 610041, China
| |
Collapse
|
3
|
Li Y, Wang GQ, Li YB. Therapeutic potential of natural coumarins in autoimmune diseases with underlying mechanisms. Front Immunol 2024; 15:1432846. [PMID: 39544933 PMCID: PMC11560467 DOI: 10.3389/fimmu.2024.1432846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Autoimmune diseases encompass a wide range of disorders characterized by disturbed immunoregulation leading to the development of specific autoantibodies, which cause inflammation and multiple organ involvement. However, its pathogenesis remains unelucidated. Furthermore, the cumulative medical and economic burden of autoimmune diseases is on the rise, making these diseases a ubiquitous global phenomenon that is predicted to further increase in the coming decades. Coumarins, a class of aromatic natural products with benzene and alpha-pyrone as their basic structures, has good therapeutic effects on autoimmune diseases. In this review, we systematically highlighted the latest evidence on coumarins and autoimmune diseases data from clinical and animal studies. Coumarin acts on immune cells and cytokines and plays a role in the treatment of autoimmune diseases by regulating NF-κB, Keap1/Nrf2, MAPKs, JAK/STAT, Wnt/β-catenin, PI3K/AKT, Notch and TGF-β/Smad signaling pathways. This systematic review will provide insight into the interaction of coumarin and autoimmune diseases, and will lay a groundwork for the development of new drugs for autoimmune diseases.
Collapse
Affiliation(s)
- Yan Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Shandong Provincial Key Medical and Health Laboratory of Neuroimmunology, Jinan, China
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guan-qing Wang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Shandong Provincial Key Medical and Health Laboratory of Neuroimmunology, Jinan, China
| | - Yan-bin Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Shandong Provincial Key Medical and Health Laboratory of Neuroimmunology, Jinan, China
| |
Collapse
|
4
|
Arya CG, Kishore R, Gupta P, Gondru R, Arockiaraj J, Pasupuleti M, Chandrakanth M, Punya VP, Banothu J. Identification of coumarin - benzimidazole hybrids as potential antibacterial agents: Synthesis, in vitro and in vivo biological assessment, and ADMET prediction. Bioorg Med Chem Lett 2024; 110:129881. [PMID: 38996936 DOI: 10.1016/j.bmcl.2024.129881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/14/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
The direct-linked coumarin-benzimidazole hybrids, featuring aryl and n-butyl substituents at the N1-position of benzimidazole were synthesized through a Knoevenagel condensation reaction. This reaction involved the condensation of 1,2-diaminobenzene derivatives with coumarin-3-carboxylic acids in the presence of polyphosphoric acid (PPA) at 154 °C. The in vitro antibacterial potency of the hybrid molecules against different gram-positive and gram-negative bacterial strains led to the identification of the hybrids 6m and 6p with a MIC value of 6.25 μg/mL against a gram-negative bacterium, Klebsiella pneumonia ATCC 27736. Cell viability studies on THP-1 cells demonstrated that the compounds 6m and 6p were non-toxic at a concentration of 50 µM. Furthermore, in vivo efficacy studies using a murine neutropenic thigh infection model revealed that both compounds significantly reduced bacterial (Klebsiella pneumonia ATCC 27736) counts (more than 2 log) compared to the control group. Additionally, both compounds exhibited favorable physicochemical properties and drug-likeness characteristics. Consequently, these compounds hold promise as lead candidates for further development of effective antibacterial drugs.
Collapse
Affiliation(s)
- C G Arya
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode 673601, Kerala, India
| | - Raj Kishore
- Division of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Pooja Gupta
- Division of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Ramesh Gondru
- Food Chemistry Division, ICMR-National Institute of Nutrition (NIN), Hyderabad 500007, Telangana, India
| | - Jesu Arockiaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Mukesh Pasupuleti
- Division of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Munugala Chandrakanth
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode 673601, Kerala, India
| | - V P Punya
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode 673601, Kerala, India
| | - Janardhan Banothu
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode 673601, Kerala, India.
| |
Collapse
|
5
|
Wang H, Hu S, Pei Y, Sun H. Nordalbergin Synergizes with Novel β-Lactam Antibiotics against MRSA Infection. Int J Mol Sci 2024; 25:7704. [PMID: 39062947 PMCID: PMC11277203 DOI: 10.3390/ijms25147704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The synergetic strategy has created tremendous advantages in drug-resistance bacterial infection treatment, whereas challenges related to novel compound discovery and identifying drug-binding targets still remain. The mechanisms of antimicrobial resistance involving β-lactamase catalysis and the degradation of β-lactam antibiotics are being revealed, with relevant therapies promising to improve the efficacy of existing major classes of antibiotics in the foreseeable future. In this study, it is demonstrated that nordalbergin, a coumarin isolated from the wood bark of Dalbergia sissoo, efficiently potentiated the activities of β-lactam antibiotics against methicillin-resistant Staphylococcus aureus (MRSA) by suppressing β-lactamase performance and improving the bacterial biofilm susceptibility to antibiotics. Nordalbergin was found to destabilize the cell membrane and promote its permeabilization. Moreover, nordalbergin efficiently improved the therapeutic efficacy of amoxicillin against MRSA pneumonia in mice, as supported by the lower bacterial load, attenuated pathological damage, and decreased inflammation level. These results demonstrate that nordalbergin might be a promising synergist of amoxicillin against MRSA infections. This study provided a new approach for developing potentiators for β-lactam antibiotics against MRSA infections.
Collapse
Affiliation(s)
- Haiting Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Sangyu Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (S.H.); (Y.P.)
- Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuzhu Pei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (S.H.); (Y.P.)
- Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Hongxiang Sun
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
6
|
Onyilmaz M, Koca M, Ammara A, Degirmenci M, Supuran CT. Isocoumarins incorporating chalcone moieties act as isoform selective tumor-associated carbonic anhydrase inhibitors. Future Med Chem 2024; 16:1347-1355. [PMID: 39109432 PMCID: PMC11318696 DOI: 10.1080/17568919.2024.2350875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/09/2024] [Indexed: 08/15/2024] Open
Abstract
Aim: A series of isocoumarin-chalcone hybrids were prepared and assays for the inhibition of four isoforms of human carbonic anhydrase (hCA; EC 4.2.1.1), hCA I, II, IX and XII. Materials & methods: Isocoumarin-chalcone hybrids were synthesized by condensing acetyl-isocoumarin with aromatic aldehydes. They did not significantly inhibit off-target cytosolic isoforms hCA I and II (KI >100 μM) but acted as low micromolar or submicromolar inhibitors for the tumor-associated isoforms hCA IX and XII. Results & conclusion: Our work provides insights into a new and scarcely investigated chemotype which provides interesting tumor-associated CA inhibitors, considering that some such derivatives like sulfonamide SLC-0111 are in advanced clinical trials for the management of metastatic advanced solid tumors.
Collapse
Affiliation(s)
- Mehmet Onyilmaz
- Faculty of Science & Arts, Department of Chemistry, Harran University, Sanliurfa63290, Turkey
| | - Murat Koca
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adiyaman University, Adıyaman02040, Turkey
| | - Andrea Ammara
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Mustafa Degirmenci
- Faculty of Science & Arts, Department of Chemistry, Harran University, Sanliurfa63290, Turkey
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
7
|
Li J, Lu Z, Wang L, Shi H, Chu B, Qu Y, Ye Z, Qu D. Novel Coumarins Derivatives for A. baumannii Lung Infection Developed by High-Throughput Screening and Reinforcement Learning. J Neuroimmune Pharmacol 2024; 19:32. [PMID: 38886254 PMCID: PMC11182843 DOI: 10.1007/s11481-024-10134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
With the increasing resistance of Acinetobacter baumannii (A. baumannii) to antibiotics, researchers have turned their attention to the development of new antimicrobial agents. Among them, coumarin-based heterocycles have attracted much attention due to their unique biological activities, especially in the field of antibacterial infection. In this study, a series of coumarin derivatives were synthesized and screened for their bactericidal activities (Ren et al. 2018; Salehian et al. 2021). The inhibitory activities of these compounds on bacterial strains were evaluated, and the related mechanism of the new compounds was explored. Firstly, the MIC values and bacterial growth curves were measured after compound treatment to evaluate the antibacterial activity in vitro. Then, the in vivo antibacterial activities of the new compounds were assessed on A. baumannii-infected mice by determining the mice survival rates, counting bacterial CFU numbers, measuring inflammatory cytokine levels, and histopathology analysis. In addition, the ROS levels in the bacterial cells were measured with DCFH-DA detection kit. Furthermore, the potential target and detailed mechanism of the new compounds during infection disease therapy were predicted and evidenced with molecular docking. After that, ADMET characteristic prediction was completed, and novel, synthesizable, drug-effective molecules were optimized with reinforcement learning study based on the probed compound as a training template. The interaction between the selected structures and target proteins was further evidenced with molecular docking. This series of innovative studies provides important theoretical and experimental data for the development of new anti-A. baumannii infection drugs.
Collapse
Affiliation(s)
- Jing Li
- The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, Key Laboratory of Chemistry of New Material of Functional Inorganic Composites, School of Chemical Engineering, Xi'an University, Xi'an, Shanxi, China
| | - Zhou Lu
- Department of Health Service, Medical Service Training Base, The Fourth Military Medical University, Xi'an, Shanxi, China
| | - Liuchang Wang
- The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, Key Laboratory of Chemistry of New Material of Functional Inorganic Composites, School of Chemical Engineering, Xi'an University, Xi'an, Shanxi, China
| | - Huiqing Shi
- Department of Clinical Pharmacy, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Bixin Chu
- Department of Clinical Pharmacy, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Yingwei Qu
- Department of Burn and Plastic Surgery, Zibo Prevention and Treatment Hospital for Occupation Diseases, Zibo, Shandong, China
| | - Zichen Ye
- Department of Health Service, Medical Service Training Base, The Fourth Military Medical University, Xi'an, Shanxi, China.
| | - Di Qu
- Department of Clinical Pharmacy, General Hospital of Western Theater Command, Chengdu, Sichuan, China.
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan, China.
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shanxi, China.
| |
Collapse
|
8
|
Shu VA, Eni DB, Ntie-Kang F. A survey of isatin hybrids and their biological properties. Mol Divers 2024:10.1007/s11030-024-10883-z. [PMID: 38833124 DOI: 10.1007/s11030-024-10883-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/15/2024] [Indexed: 06/06/2024]
Abstract
The emergence of diverse infections worldwide, which is a serious global threat to human existence, necessitates the urgent development of novel therapeutic candidates that can combat these diseases with efficacy. Molecular hybridization has been established as an efficient technique in designing bioactive molecules capable of fighting infections. Isatin, a core nucleus of an array of compounds with diverse biological properties can be modified at different positions leading to the creation of novel drug targets, is an active area of medicinal chemistry. This review containing published articles from 2005 to 2022 highlights isatin hybrids which have been synthesized and reported in the literature alongside a discussion on their biological properties. The enriched structure-activity relationship studies discussed provides insights for the rational design of novel isatin hybrids with tailored biological properties as effective therapeutic candidates inspired by nature.
Collapse
Affiliation(s)
- Vanessa Asoh Shu
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon
| | - Donatus Bekindaka Eni
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon.
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon.
| | - Fidele Ntie-Kang
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon.
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon.
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
9
|
Andrés CMC, Pérez de la Lastra JM, Bustamante Munguira E, Andrés Juan C, Pérez-Lebeña E. Michael Acceptors as Anti-Cancer Compounds: Coincidence or Causality? Int J Mol Sci 2024; 25:6099. [PMID: 38892287 PMCID: PMC11172677 DOI: 10.3390/ijms25116099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Michael acceptors represent a class of compounds with potential anti-cancer properties. They act by binding to nucleophilic sites in biological molecules, thereby disrupting cancer cell function and inducing cell death. This mode of action, as well as their ability to be modified and targeted, makes them a promising avenue for advancing cancer therapy. We are investigating the molecular mechanisms underlying Michael acceptors and their interactions with cancer cells, in particular their ability to interfere with cellular processes and induce apoptosis. The anti-cancer properties of Michael acceptors are not accidental but are due to their chemical structure and reactivity. The electrophilic nature of these compounds allows them to selectively target nucleophilic residues on disease-associated proteins, resulting in significant therapeutic benefits and minimal toxicity in various diseases. This opens up new perspectives for the development of more effective and precise cancer drugs. Nevertheless, further studies are essential to fully understand the impact of our discoveries and translate them into clinical practice.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | | | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | | |
Collapse
|
10
|
Younes AH, Mustafa YF. Plant-Derived Coumarins: A Narrative Review of Their Structural and Biomedical Diversity. Chem Biodivers 2024; 21:e202400344. [PMID: 38587035 DOI: 10.1002/cbdv.202400344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/09/2024]
Abstract
Plant-derived coumarin (PDC) is a naturally occurring heterocyclic backbone that belongs to the benzopyrone family. PDC and its based products are characterized by low toxicity and high distribution in a variety of herbal treatments that have numerous therapeutic potentials. These include anticoagulants, antibacterials, anti-inflammatory agents, anticancer agents, antioxidants, and others. So, it may be appropriate to investigate the qualities and potential bioactivities of PDCs. This article provides an overview of the biomedical potentials, availability, and clinical use possibilities of PDCs, with a focus on their important modes of action, using information on various pharmacological qualities discovered. The data used in this study came from published research between 2015 and 2023. We reviewed a selection of databases, including PubMed, Scopus, Web of Science, and Google Scholar, during that period. In conclusion, because of their abundance in medicinal plants, the clinical biochemistry attributes of PDCs are currently of interest. In a variety of medical specialties, PDCs serve a useful role as therapeutic agents.
Collapse
Affiliation(s)
- Areej Hazem Younes
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
11
|
Xu W, Yuan G, Fang Y, Liu X, Ma X, Zhu K. Coumarin Glycosides Reverse Enterococci-Facilitated Enteric Infections. RESEARCH (WASHINGTON, D.C.) 2024; 7:0374. [PMID: 38756989 PMCID: PMC11096794 DOI: 10.34133/research.0374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/10/2024] [Indexed: 05/18/2024]
Abstract
Commensal enterococci with pathogenic potential often facilitate the growth of diverse pathogens, thereby exacerbating infections. However, there are few effective therapeutic strategies to prevent and intervene in enterococci-mediated polymicrobial infections. Here, we find that enterococci at high density drive the expansion and pathogenicity of enteric Salmonella enterica serotype Typhimurium (S. Tm). Subsequently, we show that the driving role of enterococci in such infections is counteracted by dietary coumarin glycosides in vivo. Enterococci, which are tolerant of iron-deficient environments, produce β-glucosidases to hydrolyze coumarin glycosides into bioactive aglycones, inhibiting S. Tm growth and ameliorating the severity of S. Tm-induced symptoms by inducing iron limitation. Overall, we demonstrate that coumarin glycosides as a common diet effectively reverse enterococci-facilitated enteric infections, providing an alternative intervention to combat polymicrobial infections.
Collapse
Affiliation(s)
- Wenjiao Xu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine,
China Agricultural University, Beijing 100193, China
- Engineering Research Center of Animal Innovative Drugs and Safety Evaluation, Ministry of Education, College of Veterinary Medicine,
China Agricultural University, Beijing 100193, China
| | - Guixin Yuan
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control,
China Agricultural University, Beijing 100193, China
| | - Yuwen Fang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine,
China Agricultural University, Beijing 100193, China
- Engineering Research Center of Animal Innovative Drugs and Safety Evaluation, Ministry of Education, College of Veterinary Medicine,
China Agricultural University, Beijing 100193, China
| | - Xiaojia Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine,
China Agricultural University, Beijing 100193, China
- Engineering Research Center of Animal Innovative Drugs and Safety Evaluation, Ministry of Education, College of Veterinary Medicine,
China Agricultural University, Beijing 100193, China
| | - Xiaowei Ma
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine,
China Agricultural University, Beijing 100193, China
- Engineering Research Center of Animal Innovative Drugs and Safety Evaluation, Ministry of Education, College of Veterinary Medicine,
China Agricultural University, Beijing 100193, China
| | - Kui Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine,
China Agricultural University, Beijing 100193, China
- Engineering Research Center of Animal Innovative Drugs and Safety Evaluation, Ministry of Education, College of Veterinary Medicine,
China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Kong Y, Yan H, Hu J, Dang Y, Han Z, Tian B, Wang P. Antibacterial Activity and Mechanism of Action of Osthole against Listeria monocytogenes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10853-10861. [PMID: 38708871 DOI: 10.1021/acs.jafc.3c07931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
The purpose of this study was to investigate the antibacterial activity and mechanism of action of osthole against Listeria monocytogenes. The antibacterial activity of osthole was evaluated by determining the minimum inhibitory concentration (MIC) and growth curve. Cell morphology, membrane permeability, membrane integrity, bacterial physiology, and metabolism were explored using different methods to elucidate the mechanism of action of osthole. It was shown that the MIC of osthole against L. monocytogenes was 62.5 μg/mL and it inhibited the growth of L. monocytogenes effectively in a concentration-dependent manner. Scanning electron microscopy (SEM) images demonstrated morphology changes of L. monocytogenes, including rough surface, cell shrinkage, and rupture. It was found that extracellular conductivity and macromolecule content were increased significantly in the presence of osthole, indicating the disruption of cell membrane integrity and permeability. Laser confocal microscopy results supported the conclusion that osthole caused severe damage to the cell membrane. It was also noticed that osthole depleted intracellular adenosine triphosphate (ATP), inhibited Na+-K+-ATPase and Ca2+-Mg2+-ATPase activity, and promoted the accumulation of intracellular reactive oxygen species (ROS), leading to cell death. This study suggests that osthole is a promising antibacterial agent candidate against L. monocytogenes, and it shows potential in the prevention and control of foodborne pathogens.
Collapse
Affiliation(s)
- Yang Kong
- School of Biological and Pharmaceutical Science, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Hui Yan
- School of Biological and Pharmaceutical Science, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Jinjing Hu
- Key Laboratory of Target Discovery and Protein Drug Development in Major Diseases of Sichuan Higher Education Institutes, School of Bioscience and Technology, Chengdu Medical College, Chengdu 610500, P. R. China
| | - Yixuan Dang
- School of Biological and Pharmaceutical Science, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Zihao Han
- School of Biological and Pharmaceutical Science, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Bin Tian
- School of Biological and Pharmaceutical Science, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Puxiu Wang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, P. R. China
| |
Collapse
|
13
|
Arvas B, Ucar B, Acar T, Varli HS, Arvas MB, Aydogan F, Yolacan C. Synthesis of novel coumarin-triazole hybrids and first evaluation of the 4-phenyl substituted hybrid loaded PLGA nanoparticles delivery system to the anticancer activity. NANOTECHNOLOGY 2024; 35:305602. [PMID: 38636487 DOI: 10.1088/1361-6528/ad403e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Despite the discovery of many chemotherapeutic drugs that prevent uncontrolled cell division processes in the last century, many studies are still being carried out to develop drugs with higher anticancer efficacy and lower level of side effects. Herein, we designed, synthesized, and characterized six novel coumarin-triazole hybrids, and evaluated for anticancer activity of the one with the highest potential against the breast cancer cell line, MCF-7 and human cervical cancer cell line, human cervical adenocarcinoma (HeLa). Compound21which was the coumarin derivative including phenyl substituent with the lowest IC50 value displayed the highest cytotoxicity against the studied cancer cell line. Furthermore, the potential use of poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) prepared by the emulsifying solvent evaporation method as a platform for a drug delivery system was studied on a selected coumarin derivative21. This coumarin derivative-loaded PLGA NPs were produced with an average size of 225.90 ± 2.96 nm, -16.90 ± 0.85 mV zeta potential, and 4.12 ± 0.90% drug loading capacity. The obtained21-loaded PLGA nanoparticles were analyzed spectroscopically and microscopically with FT-IR, UV-vis, and scanning electron microscopy as well as thermogravimetric analysis, Raman, and x-ray diffraction. Thein vitrorelease of21from the nanoparticles exhibited a controlled release profile just over one month following a burst release in the initial six hours and in addition to this a total release ratio of %50 and %85 were obtained at pH 7.4 and 5.5, respectively.21-loaded PLGA nanoparticles displayed remarkably effective anticancer activity than21. The IC50 values were determined as IC50(21-loaded PLGA nanoparticles): 0.42 ± 0.01 mg ml-1and IC50(free21molecule): 5.74 ± 3.82 mg ml-1against MCF-7 cells, and as IC50(21-loaded PLGA nanoparticles): 0.77 ± 0.12 mg ml-1and IC50(free21molecule): 1.32 ± 0.31 mg ml-1against HeLa cells after the incubation period of 24 h. Our findings indicated that triazole-substituted coumarins may be used as an anticancer agent by integrating them into a polymeric drug delivery system providing improved drug loading and effective controlled drug release.
Collapse
Affiliation(s)
- Busra Arvas
- Department of Chemistry, Faculty of Arts & Science, Yildiz Technical University, Istanbul, Turkey
| | - Burcu Ucar
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Istanbul Arel University, Istanbul, Turkey
| | - Tayfun Acar
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Hanife Sevgi Varli
- Science and Technology Application and Research Center, Yildiz Technical University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Faculty of Arts & Science, Yildiz Technical University, Istanbul, Turkey
| | - Melih Besir Arvas
- Department of Chemistry, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Feray Aydogan
- Department of Chemistry, Faculty of Arts & Science, Yildiz Technical University, Istanbul, Turkey
| | - Cigdem Yolacan
- Department of Chemistry, Faculty of Arts & Science, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
14
|
Hooshmand SE, Amini Z, Shiri M, Al-Harrasi A. Synthesis and Fluorescence Properties of Imidazopyridine-Linked Coumarins via Tandem C(sp 2)-H Functionalization/Decarboxylation Reaction. J Fluoresc 2024; 34:1131-1137. [PMID: 37486561 DOI: 10.1007/s10895-023-03345-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
A catalyst-, oxidant-free and green synthetic route for direct access to a series of novel imidazopyridine-linked coumarins has been devised through tandem C(sp2)-H functionalization/decarboxylation reaction in ethyl acetate as a sustainable medium. Moreover, the utilities of ensured products in further organic synthesis were conducted by Suzuki-Miyaura and Sonogashira cross-coupling reactions. The fluorescence characteristics of the produced molecules are appropriate, and the synthesized scaffolds could promisingly garner future attention in clinical diagnostics and bioimaging research.
Collapse
Affiliation(s)
- Seyyed Emad Hooshmand
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, 1993893973, Iran
| | - Zahra Amini
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, 1993893973, Iran
| | - Morteza Shiri
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, 1993893973, Iran.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P. O. Box 33, Birkat Al Mauz, Nizwa, 616, Sultanate of Oman.
| |
Collapse
|
15
|
Mihaylova D, Dimitrova-Dimova M, Popova A. Dietary Phenolic Compounds-Wellbeing and Perspective Applications. Int J Mol Sci 2024; 25:4769. [PMID: 38731987 PMCID: PMC11084633 DOI: 10.3390/ijms25094769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Contemporary living is continuously leading to poor everyday choices resulting in the manifestation of various diseases. The benefits of plant-based nutrition are undeniable and research on the topic is rising. Modern man is now aware of the possibilities that plant nutrition can provide and is seeking ways to benefit from it. Dietary phenolic compounds are among the easily accessible beneficial substances that can exhibit antioxidant, anti-inflammatory, antitumor, antibacterial, antiviral, antifungal, antiparasitic, analgesic, anti-diabetic, anti-atherogenic, antiproliferative, as well as cardio-and neuroprotective activities. Several industries are exploring ways to incorporate biologically active substances in their produce. This review is concentrated on presenting current information about the dietary phenolic compounds and their contribution to maintaining good health. Additionally, this content will demonstrate the importance and prosperity of natural compounds for various fields, i.e., food industry, cosmetology, and biotechnology, among others.
Collapse
Affiliation(s)
- Dasha Mihaylova
- Department of Biotechnology, Technological Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria
| | - Maria Dimitrova-Dimova
- Department of Catering and Nutrition, Economics Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria;
| | - Aneta Popova
- Department of Catering and Nutrition, Economics Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria;
| |
Collapse
|
16
|
Dehbashi S, Tahmasebi H, Alikhani MY, Vidal JE, Seifalian A, Arabestani MR. The healing effect of Pseudomonas Quinolone Signal (PQS) with co-infection of Staphylococcus aureus and Pseudomonas aeruginosa: A preclinical animal co-infection model. J Infect Public Health 2024; 17:329-338. [PMID: 38194764 DOI: 10.1016/j.jiph.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Because of the rise in antibiotic resistance and the control of pathogenicity, polymicrobial bacterial biofilms exacerbate wound infections. Since bacterial quorum sensing (QS) signals can dysregulate biofilm development, they are interesting therapeutic treatments. In this study, Pseudomonas Quinolone Signal (PQS) was used to treat an animal model of a wound that had both Staphylococcus aureus and Pseudomonas aeruginosa co-infection. METHODS S. aureus and P. aeruginosa mono- and co-infection models were developed in vitro on the L-929 cell line and in an animal model of wound infection. Moreover, PQS was extracted and purified using liquid chromatography. Then, the mono- and co-infection models were treated by PQS in vitro and in vivo. RT-PCR analysis was used to look into changes in biofilm, QS, tissue regeneration, and apoptosis genes after the treatment. RESULTS PQS significantly disrupted established biofilm up to 90% in both in vitro and in vivo models. Moreover, a 93% reduction in the viability of S. aureus and P. aeruginosa was detected during the 10 days of treatment in comparison to control groups. In addition, the biofilm-encoding and QS-regulating genes were down-regulated to 75% in both microorganisms. Also, fewer epithelial cells died when treated with PQS compared to control groups in both mono- and co-infection groups. CONCLUSION According to this study, PQS may facilitate wound healing by stimulating the immune system and reducing apoptosis. It seems to be a potential medication to use in conjunction with antibiotics to treat infections that are difficult to treat.
Collapse
Affiliation(s)
- Sanaz Dehbashi
- Department of Laboratory Sciences, Varastegan Institute of Medical Sciences, Mashhad, Iran
| | - Hamed Tahmasebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Yousef Alikhani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jorge E Vidal
- Department of Cell and Molecular Biology, Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (NanoRegMed Ltd, Nanoloom Ltd, & Liberum Health Ltd), London BioScience Innovation Centre, London, United Kingdom
| | - Mohammad Reza Arabestani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Infectious Disease Research center, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
17
|
Shkoor M, Thotathil V, Al-Zoubi RM, Su HL, Bani-Yaseen AD. Combined experimental and computational investigations of the fluorosolvatochromism of chromeno[4,3-b]pyridine derivatives: Effect of the methoxy substitution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123210. [PMID: 37536243 DOI: 10.1016/j.saa.2023.123210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
Extensive research has been conducted on the spectral properties of chromeno[4,3-b]pyridine derivatives, owing to their potential applications in sensing, optoelectronic devices, and drug discovery. This study presents a comprehensive investigation into the fluorosolvatochromism of selected chromeno[4,3-b]pyridine derivatives, with a particular emphasis on the impact of methoxy substitution. Three derivatives were synthesized and subjected to spectral analysis: chromeno[4,3-b]pyridine-3-carboxylate (I) as the parent compound, and its 7-methoxy (II) and 8-methoxy (III) substituted derivatives.The UV-Vis absorption spectra of all derivatives exhibited a broad band with a maximum absorption wavelength that remained unaffected by the surrounding medium. However, distinct fluorescence properties were observed among them. Specifically, derivative II displayed notable fluorescence, while derivatives I and III exhibited no fluorescence properties. Furthermore, derivative II exhibited a fluorescence spectrum that is significantly influenced by the polarity of the medium. To investigate the fluorosolvatochromic behavior in depth, we conducted a comprehensive analysis using various neat solvents with different polarities and hydrogen bonding capabilities. The results obtained revealed a significant positive fluorosolvatochromism, with a bathochromic shift in the fluorescence spectrum as the solvent polarity increased. To understand how specific and non-specific interactions between the solute and the solvent affected the fluorosolvatochromism of II, we employed the four empirical scales model of Catalán. The obtained results demonstrated that intramolecular charge transfer played a crucial role in the fluorescence behavior of II. To provide a molecular-level explanation for the experimental spectral properties, we utilized the DFT and TD-DFT/B3LYP/6-31 + G(d) computational methods with the IEFPCM implicit solvation approach. The spectral differences between II and III were rationalized in terms of the frontier molecular orbitals (FMOs: the HOMO and LUMO), where distinct natures were observed among the examined derivatives. This study offers valuable insights into the impact of methoxy substitution on the physical and chemical properties of chromeno[4,3-b]pyridine derivatives, specifically concerning their spectral properties as elucidated by their fluorosolvatochromic behavior.
Collapse
Affiliation(s)
- Mohanad Shkoor
- Department of Chemistry & Earth Sciences, Faculty of Arts & Science, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Vandana Thotathil
- Department of Chemistry & Earth Sciences, Faculty of Arts & Science, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Raed M Al-Zoubi
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar; Department of Biomedical Sciences, College of Health Sciences, QU-Health, Qatar University, Doha 2713, Qatar; Department of Chemistry, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Haw-Lih Su
- Department of Nature Biotechnology, Nanhua University, Chiayi County 62249, Taiwan
| | - Abdulilah Dawoud Bani-Yaseen
- Department of Chemistry & Earth Sciences, Faculty of Arts & Science, Qatar University, P.O. Box: 2713, Doha, Qatar.
| |
Collapse
|
18
|
Duan SF, Song L, Guo HY, Deng H, Huang X, Shen QK, Quan ZS, Yin XM. Research status of indole-modified natural products. RSC Med Chem 2023; 14:2535-2563. [PMID: 38107170 PMCID: PMC10718587 DOI: 10.1039/d3md00560g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 12/19/2023] Open
Abstract
Indole is a heterocyclic compound formed by the fusion of a benzene ring and pyrrole ring, which has rich biological activity. Many indole-containing compounds have been sold on the market due to their excellent pharmacological activity. For example, vincristine and reserpine have been widely used in clinical practice. The diverse structures and biological activities of natural products provide abundant resources for the development of new drugs. Therefore, this review classifies natural products by structure, and summarizes the research progress of indole-containing natural product derivatives, their biological activities, structure-activity relationship and research mechanism which has been studied in the past 13 years, so as to provide a basis for the development of new drug development.
Collapse
Affiliation(s)
- Song-Fang Duan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Lei Song
- Yanbian University Hospital, Yanbian University Yanji 133002 People's Republic of China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Xiu-Mei Yin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| |
Collapse
|
19
|
Ke X, Wu Z, Liu Y, Liang Y, Du M, Li Y. Isolation, Antimicrobial Effect and Metabolite Analysis of Bacillus amyloliquefaciens ZJLMBA1908 against Citrus Canker Caused by Xanthomonas citri subsp. citri. Microorganisms 2023; 11:2928. [PMID: 38138073 PMCID: PMC10746125 DOI: 10.3390/microorganisms11122928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Citrus canker caused by Xanthomonas citri subsp. citri is a devastating bacterial disease with severe implications for the citrus industry. Microorganisms possessing biocontrol capabilities against X. citri subsp. citri offer a highly promising strategy for healthy citrus management. In the present study, a broad-spectrum antagonist strain ZJLMBA1908 with potent antibacterial activity against X. citri subsp. citri was isolated from symptomatic lemon leaves, and identified as Bacillus amyloliquefaciens. Cell-free supernatant (CFS) of strain ZJLMBA1908 also exhibited remarkable antimicrobial activity, especially suppressing the growth of X. citri subsp. citri and Nigrospora oryzae, with inhibition rates of 27.71% and 63.75%, respectively. The antibacterial crude extract (CE) derived from the CFS displayed effective activity against X. citri subsp. citri. A preventive treatment using the CE significantly reduced the severity and incidence of citrus canker in a highly susceptible citrus host. Additionally, the CE maintained activity in the presence of protease and under a wide range of temperature and pH treatments. Applying high-performance liquid chromatography (HPLC) to separate and purify the CE resulted in the discovery of one highly potent anti-X. citri subsp. citri subfraction, namely CE3, which could completely inhibit the growth of X. citri subsp. citri. Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) analysis revealed that CE3 mainly consisted of palmitic acid, surfactin C15, phytosphingosine and dihydrosphingosine. Taken together, the results contribute to the possible biocontrol mechanisms of B. amyloliquefaciens ZJLMBA1908, as well as providing a promising new candidate strain as a biological control agent for controlling citrus canker.
Collapse
Affiliation(s)
| | | | | | | | | | - Ya Li
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (X.K.); (Z.W.); (Y.L.); (Y.L.); (M.D.)
| |
Collapse
|
20
|
Yuan J, Wang J, Li X, Zhang Y, Xian J, Wang C, Zhang J, Wu C. Amphiphilic small molecule antimicrobials: From cationic antimicrobial peptides (CAMPs) to mechanism-related, structurally-diverse antimicrobials. Eur J Med Chem 2023; 262:115896. [PMID: 39491431 DOI: 10.1016/j.ejmech.2023.115896] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
Bacterial infections are characterized by their rapid and widespread proliferation, leading to significant morbidity. Despite the availability of a variety of antimicrobial drugs, the resistance exhibited by pathogenic microorganisms towards these drugs demonstrates a consistent upward trajectory year after year. This trend can be attributed to the abuse or misuse of antibiotics. Although antimicrobial peptides can avoid the emergence of drug resistance to a certain extent, their clinical application has been hindered by factors such as their high production cost, poor in vivo stability, and potential cytotoxicity. Consequently, there arises an urgent need for the development of novel antimicrobial drugs. Small-molecule amphiphatic antimicrobials have a good prospect for research and development. These peptides hold the potential to address several issues, including the high cost of antimicrobial peptide production, poor in vivo stability, and cytotoxicity. Moreover, they exhibit the capability to overcome bacterial resistance, thereby considerably satisfying market demands and clinical needs. This paper reviews recent research pertaining to small molecule host-defending amphiphatic antimicrobials with cationic amphiphilic structures. It focuses on the design concepts, inherent relationships, drug-like properties, antimicrobial activities, application prospects, and emerging screening methods for novel antimicrobial. This review assumes paramount importance in mitigating the current shortcomings of antimicrobial agents. It also provides potential new ideas and methodologies for the research and development of antimicrobial agents.
Collapse
Affiliation(s)
- Jiani Yuan
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Xiaoxue Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ya Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jinghong Xian
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Chengyong Wu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
21
|
Cai T, Cai B. Pharmacological activities of esculin and esculetin: A review. Medicine (Baltimore) 2023; 102:e35306. [PMID: 37800835 PMCID: PMC10553009 DOI: 10.1097/md.0000000000035306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
Esculin and esculetin are 2 widely studied coumarin components of Cortex Fraxini, which is a well-known herbal medicine with a 2000-year history. In vivo and in vitro studies have demonstrated that both have a variety of pharmacological activities, including antioxidant, anti-tumor, anti-inflammatory, antibacterial, antidiabetic, immunomodulatory, anti-atherosclerotic, and so on. Their underlying mechanisms of action and biological activities include scavenging free radicals, modulating the nuclear factor erythroid 2-related factor 2 pathway, regulating the cell cycle, inhibiting tumor cell proliferation and migration, promoting mitochondrial pathway apoptosis, inhibiting the NF-κB and MAPK signaling pathways, regulating CD4+ T cells differentiation and associated cytokine release, inhibiting vascular smooth muscle cells, etc. This review aims to provide comprehensive information on pharmacological studies of esculin and esculetin, which is of noteworthy importance in exploring the therapeutic potential of both coumarin compounds.
Collapse
Affiliation(s)
- Ting Cai
- Department of Nephrology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Wuxi, China
| | - Bin Cai
- Department of Anorectal Surgery, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| |
Collapse
|
22
|
Dos Santos Silva E, Matos MJ, Maistro EL. Evaluation of in vitro cytotoxic and genotoxic effects of the 3-(3,4-dihydroxyphenyl)-8-hydroxycoumarin. J Appl Toxicol 2023; 43:1488-1498. [PMID: 37118884 DOI: 10.1002/jat.4479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 04/30/2023]
Abstract
A wide variety of natural and synthetic coumarins present therapeutic potential. Therefore, the assessment of their safety for humans is essential. 3-(3,4-Dihydroxyphenyl)-8-hydroxycoumarin is a coumarin derivative with antioxidant properties, among other biological activities. The aim of this study is to evaluate the cytotoxic and genotoxic potential of this molecule on peripheral blood mononuclear cells (PBMC) and human hepatocellular carcinoma cells (HepG2/C3A). The results obtained for the cytotoxicity assays, evaluated by the trypan blue staining assay, using concentrations between 0.1 and 20 μg/mL, showed that there is no decrease in cell viability for both cell lines. The MTT assay showed a significant decrease in the viability of HepG2/C3A cells at the highest concentrations tested, after 48 h, for all the tested concentrations, after 72 h of exposure. Regarding the genotoxic assays, the data obtained by the comet assay and the micronucleus test, up to the tested concentration of 10 μg/mL, do not show significant DNA damage and/or chromosomal mutations, for both cell lines. However, at the highest tested concentration of 20 μg/mL, a small but significant genotoxic effect was observed in PBMC. In view of the observed results, it can be concluded that the 3-(3,4-dihydroxyphenyl)-8-hydroxycoumarin, up to a concentration of 10 μg/mL, does not present genotoxic effects in human cells with and without liver enzymes metabolism. Additional studies with higher concentrations of this molecule need to be performed to address its complete biosafety.
Collapse
Affiliation(s)
| | - Maria João Matos
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Edson Luis Maistro
- Faculdade de Medicina de Marilia, FAMEMA, Marília, Brazil
- Faculdade de Filosofia e Ciências, Departamento de Fonoaudiologia, Universidade Estadual Paulista-UNESP, Marília, Brazil
| |
Collapse
|
23
|
Kostenko V, Akimov O, Gutnik O, Kostenko H, Kostenko V, Romantseva T, Morhun Y, Nazarenko S, Taran O. Modulation of redox-sensitive transcription factors with polyphenols as pathogenetically grounded approach in therapy of systemic inflammatory response. Heliyon 2023; 9:e15551. [PMID: 37180884 PMCID: PMC10171461 DOI: 10.1016/j.heliyon.2023.e15551] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/09/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
One of the adverse outcomes of acute inflammatory response is progressing to the chronic stage or transforming into an aggressive process, which can develop rapidly and result in the multiple organ dysfunction syndrome. The leading role in this process is played by the Systemic Inflammatory Response that is accompanied by the production of pro- and anti-inflammatory cytokines, acute phase proteins, and reactive oxygen and nitrogen species. The purpose of this review that highlights both the recent reports and the results of the authors' own research is to encourage scientists to develop new approaches to the differentiated therapy of various SIR manifestations (low- and high-grade systemic inflammatory response phenotypes) by modulating redox-sensitive transcription factors with polyphenols and to evaluate the saturation of the pharmaceutical market with appropriate dosage forms tailored for targeted delivery of these compounds. Redox-sensitive transcription factors such as NFκB, STAT3, AP1 and Nrf2 have a leading role in mechanisms of the formation of low- and high-grade systemic inflammatory phenotypes as variants of SIR. These phenotypic variants underlie the pathogenesis of the most dangerous diseases of internal organs, endocrine and nervous systems, surgical pathologies, and post-traumatic disorders. The use of individual chemical compounds of the class of polyphenols, or their combinations can be an effective technology in the therapy of SIR. Administering natural polyphenols in oral dosage forms is very beneficial in the therapy and management of the number of diseases accompanied with low-grade systemic inflammatory phenotype. The therapy of diseases associated with high-grade systemic inflammatory phenotype requires medicinal phenol preparations manufactured for parenteral administration.
Collapse
Affiliation(s)
- Vitalii Kostenko
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| | - Oleh Akimov
- Poltava State Medical University, Department of Pathophysiology, Ukraine
- Corresponding author.
| | - Oleksandr Gutnik
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| | - Heorhii Kostenko
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| | - Viktoriia Kostenko
- Poltava State Medical University, Department of Foreign Languages with Latin and Medical Terminology, Ukraine
| | - Tamara Romantseva
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| | - Yevhen Morhun
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| | - Svitlana Nazarenko
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| | - Olena Taran
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| |
Collapse
|
24
|
Lo J, Wu HE, Liu CC, Chang KC, Lee PY, Liu PL, Huang SP, Wu PC, Lin TC, Lai YH, Chang YC, Chen YR, Lee SI, Huang YK, Wang SC, Li CY. Nordalbergin Exerts Anti-Neuroinflammatory Effects by Attenuating MAPK Signaling Pathway, NLRP3 Inflammasome Activation and ROS Production in LPS-Stimulated BV2 Microglia. Int J Mol Sci 2023; 24:ijms24087300. [PMID: 37108458 PMCID: PMC10138998 DOI: 10.3390/ijms24087300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/02/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Microglia-associated neuroinflammation is recognized as a critical factor in the pathogenesis of neurodegenerative diseases; however, there is no effective treatment for the blockage of neurodegenerative disease progression. In this study, the effect of nordalbergin, a coumarin isolated from the wood bark of Dalbergia sissoo, on lipopolysaccharide (LPS)-induced inflammatory responses was investigated using murine microglial BV2 cells. Cell viability was assessed using the MTT assay, whereas nitric oxide (NO) production was analyzed using the Griess reagent. Secretion of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) was detected by the ELISA. The expression of inducible NO synthase (iNOS), cyclooxygenase (COX)-2, mitogen-activated protein kinases (MAPKs) and NLRP3 inflammasome-related proteins was assessed by Western blot. The production of mitochondrial reactive oxygen species (ROS) and intracellular ROS was detected using flow cytometry. Our experimental results indicated that nordalbergin ≤20 µM suppressed NO, IL-6, TNF-α and IL-1β production; decreased iNOS and COX-2 expression; inhibited MAPKs activation; attenuated NLRP3 inflammasome activation; and reduced both intracellular and mitochondrial ROS production by LPS-stimulated BV2 cells in a dose-dependent manner. These results demonstrate that nordalbergin exhibits anti-inflammatory and anti-oxidative activities through inhibiting MAPK signaling pathway, NLRP3 inflammasome activation and ROS production, suggesting that nordalbergin might have the potential to inhibit neurodegenerative disease progression.
Collapse
Affiliation(s)
- Jung Lo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Hsin-En Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Chih Liu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Ophthalmology, Chi Mei Medical Center, Tainan 71004, Taiwan
| | - Kun-Che Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Po-Yen Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Po-Len Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shu-Pin Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Pei-Chang Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Tzu-Chieh Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yu-Hung Lai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yo-Chen Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yuan-Ru Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Sheng-I Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yu-Kai Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
25
|
Szewczyk A, Marino A, Taviano MF, Cambria L, Davì F, Trepa M, Grabowski M, Miceli N. Studies on the Accumulation of Secondary Metabolites and Evaluation of Biological Activity of In Vitro Cultures of Ruta montana L. in Temporary Immersion Bioreactors. Int J Mol Sci 2023; 24:ijms24087045. [PMID: 37108206 PMCID: PMC10138805 DOI: 10.3390/ijms24087045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The present work focuses on in vitro cultures of Ruta montana L. in temporary immersion PlantformTM bioreactors. The main aim of the study was to evaluate the effects of cultivation time (5 and 6 weeks) and different concentrations (0.1-1.0 mg/L) of plant growth and development regulators (NAA and BAP) on the increase in biomass and the accumulation of secondary metabolites. Consequently, the antioxidant, antibacterial, and antibiofilm potentials of methanol extracts obtained from the in vitro-cultured biomass of R. montana were evaluated. High-performance liquid chromatography analysis was performed to characterize furanocoumarins, furoquinoline alkaloids, phenolic acids, and catechins. The major secondary metabolites in R. montana cultures were coumarins (maximum total content of 1824.3 mg/100 g DM), and the dominant compounds among them were xanthotoxin and bergapten. The maximum content of alkaloids was 561.7 mg/100 g DM. Concerning the antioxidant activity, the extract obtained from the biomass grown on the 0.1/0.1 LS medium variant, with an IC50 0.90 ± 0.03 mg/mL, showed the best chelating ability among the extracts, while the 0.1/0.1 and 0.5/1.0 LS media variants showed the best antibacterial (MIC range 125-500 µg/mL) and antibiofilm activity against resistant Staphylococcus aureus strains.
Collapse
Affiliation(s)
- Agnieszka Szewczyk
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Andreana Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy
| | - Maria Fernanda Taviano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy
| | - Lucia Cambria
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy
| | - Federica Davì
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy
- Foundation "Prof. Antonio Imbesi", University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Monika Trepa
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Mariusz Grabowski
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy
| |
Collapse
|
26
|
Di Stasi LC. Natural Coumarin Derivatives Activating Nrf2 Signaling Pathway as Lead Compounds for the Design and Synthesis of Intestinal Anti-Inflammatory Drugs. Pharmaceuticals (Basel) 2023; 16:ph16040511. [PMID: 37111267 PMCID: PMC10142712 DOI: 10.3390/ph16040511] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Nrf2 (nuclear factor erythroid 2-related factor 2) is a transcription factor related to stress response and cellular homeostasis that plays a key role in maintaining the redox system. The imbalance of the redox system is a triggering factor for the initiation and progression of non-communicable diseases (NCDs), including Inflammatory Bowel Disease (IBD). Nrf2 and its inhibitor Kelch-like ECH-associated protein 1 (Keap1) are the main regulators of oxidative stress and their activation has been recognized as a promising strategy for the treatment or prevention of several acute and chronic diseases. Moreover, activation of Nrf2/keap signaling pathway promotes inhibition of NF-κB, a transcriptional factor related to pro-inflammatory cytokines expression, synchronically promoting an anti-inflammatory response. Several natural coumarins have been reported as potent antioxidant and intestinal anti-inflammatory compounds, acting by different mechanisms, mainly as a modulator of Nrf2/keap signaling pathway. Based on in vivo and in vitro studies, this review focuses on the natural coumarins obtained from both plant products and fermentative processes of food plants by gut microbiota, which activate Nrf2/keap signaling pathway and produce intestinal anti-inflammatory activity. Although gut metabolites urolithin A and urolithin B as well as other plant-derived coumarins display intestinal anti-inflammatory activity modulating Nrf2 signaling pathway, in vitro and in vivo studies are necessary for better pharmacological characterization and evaluation of their potential as lead compounds. Esculetin, 4-methylesculetin, daphnetin, osthole, and imperatorin are the most promising coumarin derivatives as lead compounds for the design and synthesis of Nrf2 activators with intestinal anti-inflammatory activity. However, further structure-activity relationships studies with coumarin derivatives in experimental models of intestinal inflammation and subsequent clinical trials in health and disease volunteers are essential to determine the efficacy and safety in IBD patients.
Collapse
Affiliation(s)
- Luiz C Di Stasi
- Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTech), Department of Biophysics and Pharmacology, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| |
Collapse
|
27
|
Badreddin Musatat A, Kılıçcıoğlu İ, Kurman Y, Dülger G, Alpay M, Yağcı R, Atahan A, Durmuş S. Antimicrobial, Antiproliferative Effects and Docking Studies of Methoxy Group Enriched Coumarin-Chalcone Hybrids. Chem Biodivers 2023; 20:e202200973. [PMID: 36691991 DOI: 10.1002/cbdv.202200973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/25/2023]
Abstract
Methoxy group enriched eight coumarin-chalcone hybrid derivatives were synthesized. Antimicrobial/ antiproliferative activities were tested against eight human pathogenic microorganisms and four cancer cell lines (AGS, HepG2, MCF-7 and PC-3), respectively. Antimicrobial results showed that most of the compounds were almost more active than used standard antibiotics. Cytotoxicity results showed that 2,3,4-trimethoxyphenyl and thiophene containing structures have promising antiproliferative effects against AGS gastric cell lines with ∼5 μg/ml IC50 values. At the same time, 2,4-dimethoxyphenyl bearing derivative exhibited the lowest IC50 values against HepG2 (∼10 μg/ml) and PC-3 (∼5 μg/ml) cell lines. Particularly, the cell viabilities of MCF-7 cell lines were remarkably inhibited by all the compounds with lower IC50 values. Therefore, molecular docking studies between hybrid ligands and quinone reductase-2 enzyme (regulates in MCF-7 cancer cells) were performed. The results demonstrated that all the derivatives can smoothly interact with interested enzyme in agreement with the experimental results. Finally, ADME parameters were studied to reveal drug-likeness potentials of the coumarin-chalcone hybrids.
Collapse
Affiliation(s)
- Ahmad Badreddin Musatat
- Department of Chemistry, Düzce University, Faculty of Art & Sciences, 81620, Düzce, Türkiye
- Department of Chemistry, Sakarya University, Faculty of Sciences, Department of Chemistry, 54187, Sakarya, Türkiye
| | - İlker Kılıçcıoğlu
- Department of Medical Biology, Düzce University, Faculty of Medicine, 81620, Düzce, Türkiye
| | - Yener Kurman
- Department of Medical Biology, Düzce University, Faculty of Medicine, 81620, Düzce, Türkiye
| | - Görkem Dülger
- Department of Medical Biology, Düzce University, Faculty of Medicine, 81620, Düzce, Türkiye
| | - Merve Alpay
- Department of Medical Biochemistry, Düzce University, Faculty of Medicine, 81620, Düzce, Türkiye
| | - Ravza Yağcı
- Department of Chemistry, Düzce University, Faculty of Art & Sciences, 81620, Düzce, Türkiye
| | - Alparslan Atahan
- Department of Chemistry, Düzce University, Faculty of Art & Sciences, 81620, Düzce, Türkiye
| | - Sefa Durmuş
- Department of Chemistry, Düzce University, Faculty of Art & Sciences, 81620, Düzce, Türkiye
| |
Collapse
|
28
|
Gümüş M, Koca İ, Sert Y, Dişli A, Yenilmez Tunoğlu EN, Tutar L, Tutar Y. Triad pyrazole-thiazole-coumarin heterocyclic core effectively inhibit HSP and drive cancer cells to apoptosis. J Biomol Struct Dyn 2023; 41:14382-14397. [PMID: 36826447 DOI: 10.1080/07391102.2023.2181643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/11/2023] [Indexed: 02/25/2023]
Abstract
Intensive studies on hepatocellular carcinoma (HCC), which is spreading rapidly around the world and has a high mortality rate, is due to the lack of adequate preventive or curative treatment methods. Treating patients with HCC has become very challenging because of the heterogeneity in the patient population lead activation of different signaling pathways, and pathway crosstalk for patients. Therefore, understanding these molecular mechanisms and combining drugs with molecular therapies to overcome these drawbacks has become an area of utmost importance. In this study, the biological activities of the designed and characterized triad Pyrazole-Thiazol-Coumarin (PTC) compounds were determined by performing cell viability, qPCR array, apoptosis and cell cycle assays. One of the compounds (PTC10) implicitly suppresses multiple pathways (RAS/MAP kinase and PI3K-AKT) simultaneously. This action is provided by (i) arresting cancer cells at G2 phase, (ii) driving cancer cells to apoptosis and (iii) inhibiting HSP network. Remarkably, HSP is an apoptotic factor and help cancer cell to survive. HSP90 also coordinates with Cdk4/Cdc37, therefore inhibiting HSP both drives cells to arrest and apoptosis. ATP hydrolysis and aggregation assay further displayed specific HSP inhibition. Therefore, PTC provides a unique drug template for HCC treatment.
Collapse
Affiliation(s)
- Mehmet Gümüş
- Akdağmadeni Health College, Yozgat Bozok University, Yozgat, Türkiye
| | - İrfan Koca
- Department of Chemistry, Faculty of Arts and Science, Yozgat Bozok University, Yozgat, Türkiye
| | - Yusuf Sert
- Sorgun Vocational School, Yozgat Bozok University, Yozgat, Türkiye
| | - Ali Dişli
- Department of Chemistry, Faculty of Sciences, Gazi University, Ankara, Türkiye
| | | | - Lütfi Tutar
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Ahi Evran University, Kırşehir, Türkiye
| | - Yusuf Tutar
- Division of Biochemistry, Faculty of Pharmacy, University of Health Sciences, Istanbul, Türkiye
- Molecular Oncology Division, Health Sciences Institutes, Istanbul, Türkiye
- Personalized and Immunotherapy Applied Research Center, University of Health Sciences, Istanbul, Türkiye
| |
Collapse
|
29
|
de Oliveira LMG, Carreira RB, de Oliveira JVR, do Nascimento RP, Dos Santos Souza C, Trias E, da Silva VDA, Costa SL. Impact of Plant-Derived Compounds on Amyotrophic Lateral Sclerosis. Neurotox Res 2023; 41:288-309. [PMID: 36800114 DOI: 10.1007/s12640-022-00632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 09/23/2022] [Accepted: 12/29/2022] [Indexed: 02/18/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal illness characterized by progressive motor neuron degeneration. Conventional therapies for ALS are based on treatment of symptoms, and the disease remains incurable. Molecular mechanisms are unclear, but studies have been pointing to involvement of glia, neuroinflammation, oxidative stress, and glutamate excitotoxicity as a key factor. Nowadays, we have few treatments for this disease that only delays death, but also does not stop the neurodegenerative process. These treatments are based on glutamate blockage (riluzole), tyrosine kinase inhibition (masitinib), and antioxidant activity (edaravone). In the past few years, plant-derived compounds have been studied for neurodegenerative disorder therapies based on neuroprotection and glial cell response. In this review, we describe mechanisms of action of natural compounds associated with neuroprotective effects, and the possibilities for new therapeutic strategies in ALS.
Collapse
Affiliation(s)
- Lucas Matheus Gonçalves de Oliveira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Rodrigo Barreto Carreira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Juciele Valeria Ribeiro de Oliveira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Ravena Pereira do Nascimento
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Cleide Dos Santos Souza
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | | | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil.
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil.
| |
Collapse
|
30
|
Kumar G, Kiran Tudu A. Tackling multidrug-resistant Staphylococcus aureus by natural products and their analogues acting as NorA efflux pump inhibitors. Bioorg Med Chem 2023; 80:117187. [PMID: 36731248 DOI: 10.1016/j.bmc.2023.117187] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/29/2023]
Abstract
Staphylococcus aureus (S. aureus) is a pathogen responsible for various community and hospital-acquired infections with life-threatening complications like bacteraemia, endocarditis, meningitis, liver abscess, and spinal cord epidural abscess. Antibiotics have been used to treat microbial infections since the introduction of penicillin in 1940. In recent decades, the abuse and misuse of antibiotics in humans, animals, plants, and fungi, including the treatment of non-microbial diseases, have led to the rapid emergence of multidrug-resistant pathogens with increased virulence. Bacteria have developed several complementary mechanisms to avoid the effects of antibiotics. These mechanisms include chemical transformations and enzymatic inactivation of antibiotics, modification of antibiotics' target site, and reduction of intracellular antibiotics concentration by changes in membrane permeability or by the overexpression of efflux pumps (EPs). The strategy to check antibiotic resistance includes synthesis of the antibiotic analogues, or antibiotics are given in combination with the adjuvant. The inhibitors of multidrug EPs are considered promising alternative therapeutic options with the potential to revive the effects of antibiotics and reduce bacterial virulence. Natural products played a vital role in drug discovery and significantly contributed to the area of infectious diseases. Also, natural products provide lead compounds that sometimes need modification based on structural and biological properties to meet the drug criteria. This review discusses natural products and their derived compounds as NorA efflux pump inhibitors (EPIs).
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, Telangana 500037, India.
| | - Asha Kiran Tudu
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, Telangana 500037, India
| |
Collapse
|
31
|
The synthesis, biological evaluation, and fluorescence study of 3-aminocoumarin and their derivatives: a brief review. MONATSHEFTE FUR CHEMIE 2023. [DOI: 10.1007/s00706-022-03010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
|
33
|
Fernández-Peña L, Matos MJ, López E. Recent Advances in Biologically Active Coumarins from Marine Sources: Synthesis and Evaluation. Mar Drugs 2022; 21:37. [PMID: 36662210 PMCID: PMC9864071 DOI: 10.3390/md21010037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Coumarin and its derivatives have significantly attracted the attention of medicinal chemists and chemical biologists due to their huge range of biological, and in particular, pharmacological properties. Interesting families of coumarins have been found from marine sources, which has accelerated the drug discovery process by inspiring innovation or even by the identification of analogues with remarkable biological properties. The purpose of this review is to showcase the most interesting marine-derived coumarins from a medicinal chemistry point of view, as well as the novel and useful synthetic routes described to date to achieve these chemical structures. The references that compose this overview were collected from PubMed, Mendeley and SciFinder.
Collapse
Affiliation(s)
- Laura Fernández-Peña
- Department of Organic Chemistry, University of Valladolid, Campus Miguel Delibes, 47011 Valladolid, Spain
| | - Maria João Matos
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Enol López
- Department of Organic Chemistry, University of Valladolid, Campus Miguel Delibes, 47011 Valladolid, Spain
| |
Collapse
|
34
|
Laskova J, Serdyukov A, Kosenko I, Ananyev I, Titova E, Druzina A, Sivaev I, Antonets AA, Nazarov AA, Bregadze VI. New Azido Coumarins as Potential Agents for Fluorescent Labeling and Their "Click" Chemistry Reactions for the Conjugation with closo-Dodecaborate Anion. Molecules 2022; 27:molecules27238575. [PMID: 36500667 PMCID: PMC9738631 DOI: 10.3390/molecules27238575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Novel fluorescent 7-methoxy- and 7-(diethylamino)-coumarins modified with azido-group on the side chain have been synthesized. Their photophysical properties and single crystals structure characteristics have been studied. In order to demonstrate the possibilities of fluorescent labeling, obtained coumarins have been tested with closo-dodecaborate derivative bearing terminal alkynyl group. CuI catalyzed Huisgen 1,3-dipolar cycloaddition reaction has led to fluorescent conjugates formation. The absorption-emission spectra of the formed conjugates have been presented. The antiproliferative activity and uptake of compounds against several human cell lines were evaluated.
Collapse
Affiliation(s)
- Julia Laskova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119334 Moscow, Russia
- Correspondence: ; Tel.: +41-78-243-1408
| | - Alexander Serdyukov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119334 Moscow, Russia
- M.V. Lomonosov Institute of Fine Chemical Technology, MIREA—Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia
| | - Irina Kosenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119334 Moscow, Russia
| | - Ivan Ananyev
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky Avenue, 119991 Moscow, Russia
| | - Ekaterina Titova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119334 Moscow, Russia
| | - Anna Druzina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119334 Moscow, Russia
| | - Igor Sivaev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119334 Moscow, Russia
- Basic Department of Chemistry of Innovative Materials and Technologies, G.V. Plekhanov Russian University of Economics, 36 Stremyannyi Line, 117997 Moscow, Russia
| | - Anastasia A. Antonets
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Alexey A. Nazarov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Vladimir I. Bregadze
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119334 Moscow, Russia
| |
Collapse
|
35
|
Belakhov VV. Polyfunctional Drugs: Search, Development, Use in Medical Practice, and Environmental Aspects of Preparation and Application (A Review). RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222130047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
36
|
Synthesis, docking, and biological investigations of new coumarin-piperazine hybrids as potential antibacterial and anticancer agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Szymaszek P, Środa P, Tyszka-Czochara M, Chachaj-Brekiesz A, Świergosz T, Ortyl J. Development of novel fluorescent probes to detect and quantify specific reactive oxygen species. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Patra P, Manna S, Patra S, Samanta K, Roy D. A Brief Review on the Synthesis of Pyrrolo[2,3- c]coumarins, including Lamellarin and Ningalin Scaffolds. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2022.2116909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Prasanta Patra
- Department of Chemistry, Jhargram Raj College, Jhargram, India
| | - Sibasish Manna
- Department of Chemistry, Jhargram Raj College, Jhargram, India
| | - Susanta Patra
- Department of Chemistry, IIT(ISM) Dhanbad, Dhanbad, India
| | - Khokan Samanta
- Department of Chemistry, Haldia Government College, Haldia, Purba Medinipur, India
| | - Debnarayan Roy
- Department of Zoology, Jhargram Raj College, Jhargram, India
| |
Collapse
|
39
|
Design, Synthesis, Biological evaluation of Isonicotinoyl-pyrazolyl-coumarin derivatives and computational study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Patra P. A short review on the synthesis of pyrrolo[3,4- c]coumarins an isolamellarin-B scaffolds. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2119413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Prasanta Patra
- Department of Chemistry, Jhargram Raj College, Jhargram, India
| |
Collapse
|
41
|
Liu Y, Su S, Yu M, Zhai D, Hou Y, Zhao H, Ma X, Jia M, Xue X, Li M. Pyrancoumarin derivative LP4C targeting of pyrimidine de novo synthesis pathway inhibits MRSA biofilm and virulence. Front Pharmacol 2022; 13:959736. [PMID: 36147327 PMCID: PMC9486200 DOI: 10.3389/fphar.2022.959736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022] Open
Abstract
Staphylococcus aureus poses a serious public health threat because of its multidrug resistance and biofilm formation ability. Hence, developing novel anti-biofilm agents and finding targets are needed to mitigate the proliferation of drug-resistant pathogens. In our previous study, we showed that the pyrancoumarin derivative 2-amino-4-(2,6-dichlorophenyl)-3-cyano-5-oxo-4H, 5H- pyrano [3,2c] chromene (LP4C) can destroy the biofilm of methicillin-resistant S. aureus (MRSA) in vitro and in vivo. Here, we further explored the possible mechanism of LP4C as a potential anti-biofilm drug. We found that LP4C inhibits the expression of enzymes involved in the de novo pyrimidine pathway and attenuates the virulence of MRSA USA300 strain without affecting the agr or luxS quorum sensing system. The molecular docking results indicated that LP4C forms interactions with the key amino acid residues of pyrR protein, which functions as the important regulator of bacterial pyrimidine synthesis. These findings reveal that pyrancoumarin derivative LP4C inhibits MRSA biofilm formation and targeting pyrimidine de novo synthesis pathway.
Collapse
Affiliation(s)
- Yongsheng Liu
- Department of Pharmacology, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
| | - Shan Su
- Department of Pharmacology, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
| | - Moxi Yu
- Department of Pharmacology, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
| | - Dongshen Zhai
- Department of Pharmacology, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
| | - Yachen Hou
- Department of Pharmacology, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
| | - Hui Zhao
- Department of Pharmacology, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
| | - Xue Ma
- Department of Pharmacology, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
| | - Min Jia
- Department of Pharmacology, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
| | - Xiaoyan Xue
- Department of Pharmacology, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Mingkai Li, ; Xiaoyan Xue,
| | - Mingkai Li
- Department of Pharmacology, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
- Precision Pharmacy and Drug Development Center, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Mingkai Li, ; Xiaoyan Xue,
| |
Collapse
|
42
|
Anjaneyulu V, Vaarla K, Vermeire K, Leelavathi P. Microwave assisted one pot multicomponent synthesis of 2‐(‐4‐oxo‐2‐(1‐(2‐oxo‐2h‐Chromen‐3‐Yl) ethylidene)hydrazono)thiazolidin‐5‐Yl) acetic acid derivatives and their antiviral activity. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- V. Anjaneyulu
- Department of Chemistry, University College of Science Osmania University Hyderabad India
| | | | - Kurt Vermeire
- KU Leuven‐ University of Leuven, Department of Microbiologyand Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy Leuven Belgium
| | - Panaganti Leelavathi
- Department of Chemistry, University College of Science Osmania University Hyderabad India
| |
Collapse
|
43
|
Hasanpour Galehban M, Zeynizadeh B, Mousavi H. Diverse and efficient catalytic applications of new cockscomb flower-like Fe 3O 4@SiO 2@KCC-1@MPTMS@Cu II mesoporous nanocomposite in the environmentally benign reduction and reductive acetylation of nitroarenes and one-pot synthesis of some coumarin compounds. RSC Adv 2022; 12:11164-11189. [PMID: 35479105 PMCID: PMC9020196 DOI: 10.1039/d1ra08763k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
In this research, Fe3O4@SiO2@KCC-1@MPTMS@CuII as a new cockscomb flower-like mesoporous nanocomposite was prepared and characterized by various techniques including Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), SEM-based energy-dispersive X-ray (EDX) spectroscopy, inductively coupled plasma-optical emission spectrometry (ICP-OES), thermogravimetric analysis/differential thermal analysis (TGA/DTA), vibrating sample magnetometry (VSM), UV-Vis spectroscopy, and Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) analyses. The as-prepared Fe3O4@SiO2@KCC-1@MPTMS@CuII mesoporous nanocomposite exhibited satisfactory catalytic activity in the reduction and reductive acetylation of nitroarenes in a water medium and solvent-free one-pot synthesis of some coumarin compounds including 3,3'-(arylmethylene)bis(4-hydroxy-2H-chromen-2-ones) (namely, bis-coumarins) (3a-n) and 2-amino-4-aryl-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitriles (6a-n) along with acceptable turnover numbers (TONs) and turnover frequencies (TOFs). Furthermore, the mentioned CuII-containing mesoporous nanocatalyst was conveniently recovered by a magnet from reaction environments and reused for at least seven cycles without any significant loss in activity, which confirms its good stability.
Collapse
Affiliation(s)
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| |
Collapse
|
44
|
Rostom B, Karaky R, Kassab I, Sylla-Iyarreta Veitia M. Coumarins derivatives and inflammation: Review of their effects on the inflammatory signaling pathways. Eur J Pharmacol 2022; 922:174867. [DOI: 10.1016/j.ejphar.2022.174867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 12/27/2022]
|
45
|
Benazzouz-Touami A, Chouh A, Halit S, Terrachet-Bouaziz S, Makhloufi-Chebli M, Ighil-Ahriz K, Silva AM. New Coumarin-Pyrazole hybrids: Synthesis, Docking studies and Biological evaluation as potential cholinesterase inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
46
|
Li Z, Kong D, Liu Y, Li M. Pharmacological perspectives and molecular mechanisms of coumarin derivatives against virus disease. Genes Dis 2022; 9:80-94. [PMID: 35005109 PMCID: PMC8720699 DOI: 10.1016/j.gendis.2021.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Infections caused by viruses are one of the foremost causes of morbidity and mortality in the world. Although a number of antiviral drugs are currently used for treatment of various kinds of viral infection diseases, there is still no available therapeutic agent for most of the viruses in clinical practice. Coumarin is a chemical compound which is found naturally in a variety of plants, it can also be synthetically produced possessing diverse biological effects. More recently, reports have highlighted the potential role of coumarin derivatives as antiviral agents. This review outlines the advances in coumarin-based compounds against various viruses including human immunodeficiency virus, hepatitis virus, herpes simplex virus, Chikungunya virus and Enterovirus 71, as well as the structure activity relationship and the possible mechanism of action of the most potent coumarin derivatives.
Collapse
Affiliation(s)
- Zhoupeng Li
- Department of Pharmacology & Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shanxi 710032, PR China
| | - Dehui Kong
- School of Nursing, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Yongsheng Liu
- Department of Pharmacology & Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shanxi 710032, PR China
| | - Mingkai Li
- Department of Pharmacology & Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shanxi 710032, PR China
- Precision Pharmacy & Drug Development Center, The Fourth Military Medical University, Xi'an, Shanxi 710032, PR China
- Corresponding author. Department of Pharmacology & Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shanxi Province 710032, PR China.
| |
Collapse
|
47
|
Advances in the application of 1,2,4-triazole-containing hybrids as anti-tuberculosis agents. Future Med Chem 2021; 13:2107-2124. [PMID: 34698509 DOI: 10.4155/fmc-2020-0295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tuberculosis is a deadly communicable disease caused by the bacillus Mycobacterium tuberculosis (MTB), and pulmonary tuberculosis accounts for over 80% of the total cases. The 1,2,4-triazole is a privileged structure in the discovery of new drugs, and its derivatives act on various targets in MTB. In particular, 1,2,4-triazole hybrids can not only exert dual or multiple antitubercular mechanisms of action but also have the potential to enhance efficacy and reduce side effects. The present work aims to summarize the current status of 1,2,4-triazole hybrids as potential antitubercular agents, covering articles published between 2010 and 2020, to aid the further rational design of novel potential drug candidates endowed with higher efficacy, better compliance and fewer side effects.
Collapse
|
48
|
Zhong R, Li H, Li H, Fang S, Liu J, Chen Y, Liu S, Lin S. Development of Amphiphilic Coumarin Derivatives as Membrane-Active Antimicrobial Agents with Potent In Vivo Efficacy against Gram-Positive Pathogenic Bacteria. ACS Infect Dis 2021; 7:2864-2875. [PMID: 34505771 DOI: 10.1021/acsinfecdis.1c00246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Increases in drug-resistant pathogens are becoming a serious detriment to human health. To combat pathogen infections, a new series of amphiphilic coumarin derivatives were designed and synthesized as antimicrobial agents with membrane-targeting action. We herein report a lead compound, 25, that displayed potent antibacterial activity against Gram-positive bacteria, including MRSA. Compound 25 exhibited weak hemolytic activity and low toxicity to mammalian cells and can kill Gram-positive bacteria quickly (within 0.5 h) by directly disrupting the bacterial cell membranes. Additionally, compound 25 demonstrated excellent efficacy in a murine corneal infection caused by Staphylococcus aureus. These results suggest that 25 has great potential to be a potent antimicrobial agent for treating drug-resistant Gram-positive bacterial infections.
Collapse
Affiliation(s)
- Rongcui Zhong
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Haizhou Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Hongxia Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Shanfang Fang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Jiayong Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Yongzhi Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Shouping Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Shuimu Lin
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| |
Collapse
|
49
|
Bittner Fialová S, Rendeková K, Mučaji P, Nagy M, Slobodníková L. Antibacterial Activity of Medicinal Plants and Their Constituents in the Context of Skin and Wound Infections, Considering European Legislation and Folk Medicine-A Review. Int J Mol Sci 2021; 22:ijms221910746. [PMID: 34639087 PMCID: PMC8509446 DOI: 10.3390/ijms221910746] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/26/2021] [Accepted: 10/01/2021] [Indexed: 12/24/2022] Open
Abstract
Bacterial infections of skin and wounds may seriously decrease the quality of life and even cause death in some patients. One of the largest concerns in their treatment is the growing antimicrobial resistance of bacterial infectious agents and the spread of resistant strains not only in the hospitals but also in the community. This trend encourages researchers to seek for new effective and safe therapeutical agents. The pharmaceutical industry, focusing mainly on libraries of synthetic compounds as a drug discovery source, is often failing in the battle with bacteria. In contrast, many of the natural compounds, and/or the whole and complex plants extracts, are effective in this field, inactivating the resistant bacterial strains or decreasing their virulence. Natural products act comprehensively; many of them have not only antibacterial, but also anti-inflammatory effects and may support tissue regeneration and wound healing. The European legislative is in the field of natural products medicinal use formed by European Medicines Agency (EMA), based on the scientific work of its Committee on Herbal Medicinal Products (HMPC). HMPC establishes EU monographs covering the therapeutic uses and safe conditions for herbal substances and preparations, mostly based on folk medicine, but including data from scientific research. In this review, the medicinal plants and their active constituents recommended by EMA for skin disorders are discussed in terms of their antibacterial effect. The source of information about these plant products in the review is represented by research articles listed in scientific databases (Science Direct, PubMed, Scopus, Web of Science, etc.) published in recent years.
Collapse
Affiliation(s)
- Silvia Bittner Fialová
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (K.R.); (P.M.); (M.N.)
- Correspondence: ; Tel.: +421-250-117-206
| | - Katarína Rendeková
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (K.R.); (P.M.); (M.N.)
| | - Pavel Mučaji
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (K.R.); (P.M.); (M.N.)
| | - Milan Nagy
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (K.R.); (P.M.); (M.N.)
| | - Lívia Slobodníková
- Institute of Microbiology, Faculty of Medicine and the University Hospital in Bratislava, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia;
| |
Collapse
|
50
|
Transition metal-catalyzed synthesis of new 3-substituted coumarin derivatives as antibacterial and cytostatic agents. Future Med Chem 2021; 13:1865-1884. [PMID: 34533068 DOI: 10.4155/fmc-2021-0161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: The aim of this study was to synthesize new coumarin-based compounds and evaluate their antibacterial and antitumor potential. Results: Using transition metal-catalyzed reactions, a series of 7-hydroxycoumarin derivatives were synthesized with aliphatic and aryl moiety attached directly at C-3 of the coumarin ring and through the ethynyl or 1,2,3-triazole linker. The 3-substituted coumarin derivative bearing bistrifluoromethylphenyl at the C-4 position of 1,2,3-triazole (33) showed strong and selective antiproliferative activity against cervical carcinoma cells. The 7-hydroxy-4-methylcoumarin with a phenyl ring directly attached to coumarin at C-3 (10) showed good potency against the methicillin-resistant Staphylococcus aureus and vancomycin-resistant strains. Conclusion: The most active coumarin derivatives owe their antiproliferative potential to the 3,5-ditrifluoromethylphenyl substituent (in 33) and antibacterial activity to the aromatic moiety (in 10); their structure can be optimized further for improved effect.
Collapse
|