1
|
Kos J, Strharsky T, Tosso R, Gutierrez L, Kos D, Jurica J, Zendulka O, Pes O, Gregorova J, Degotte G, Gonec T, Oravec M, Vojackova V, Krystof V, Cizek A, Francotte P, Frederich M, Jampilek J, Enriz D. Trifluoromethylcinnamanilides - Effective dual inhibitors of Mycobacterium smegmatis and Plasmodium falciparum. Bioorg Chem 2025; 154:107957. [PMID: 39615279 DOI: 10.1016/j.bioorg.2024.107957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 01/15/2025]
Abstract
A series of eighteen new 2-trifluoromethylcinnamanilides (1a-r) were synthesized by microwave synthesis and investigated for their antimycobacterial and antimalarial activities, along with the complementary (2E)-3-[3-(trifluoromethyl)phenyl]-N-arylprop-2-enanilides (2a-r) and (2E)-3-[4-(trifluoromethyl)phenyl]-N-arylprop-2-enanilides (3a-r) prepared earlier. All the compounds were evaluated in vitro against Mycobacterium smegmatis ATCC 700084 and a chloroquine-sensitive strain of Plasmodium falciparum 3D7/MRA-102. The most active compounds against M. smegmatis (MIC values in the range of 1.17-11.1 µM, more effective than rifampicin) were anilides substituted by 3,5-CF3 (1q, 2q, 3q), 4-OCF3 (1k), and 4-CF3 (1j, 2j). The most effective agents against P. falciparum (IC50 values in the range of 0.32-4.5 µM, comparable to chloroquine) were anilides substituted by 3,5-CF3 (1q, 2q, 3q), 2-Br-4-OCF3 (1r), 4-CF3 (1j, 3j), 4-F (2d), 4-Cl (2g), 2-Cl (1e, 2e). A preliminary in vitro cytotoxicity screening was assessed using human leukemic cell lines and human dermal fibroblasts, revealing the toxic effect of 3,5-CF3 substituted anilides. On the other hand, the other investigated agents showed insignificant cytotoxic effects. Stability assays using rat liver microsomes demonstrated that compounds 1r (R = 2-Br-4-OCF3) and 1q (R = 3,5-CF3) are neither metabolized nor affect cytochrome P450 metabolizing capacity in vitro. Furthermore, complex in silico studies were performed - a combined approach (docking/MD simulations/QTAIM calculations) helped to define the molecular interactions that were applied during the binding of active agents and the subsequent inhibition of their molecular targets - InhA (activity against M. smegmatis) and arginase (activity against P. falciparum). In conclusion, promising active agents with dual antimycobacterial and antimalarial effects were identified.
Collapse
Affiliation(s)
- Jiri Kos
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Tomas Strharsky
- Department of Chemical Drugs, Faculty of Pharmacy, Masaryk University, Palackeho 1946/1, 612 00 Brno, Czech Republic.
| | - Rodrigo Tosso
- Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, IMIBIO-CONICET, Ejército de los Andes 950, 5700 San Luis, Argentina.
| | - Lucas Gutierrez
- Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, IMIBIO-CONICET, Ejército de los Andes 950, 5700 San Luis, Argentina.
| | - Dominika Kos
- Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Palackeho 1946/1, 612 00 Brno, Czech Republic.
| | - Jan Jurica
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Ondrej Zendulka
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Ondrej Pes
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Jana Gregorova
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Gilles Degotte
- Renslo's Lab, Department of Pharmaceutical Chemistry, University California San Francisco, 600 16(th) Street, 94143 San Francisco, CA, USA.
| | - Tomas Gonec
- Department of Chemical Drugs, Faculty of Pharmacy, Masaryk University, Palackeho 1946/1, 612 00 Brno, Czech Republic.
| | - Michal Oravec
- Global Change Research Institute CAS, Belidla 986/4a, 603 00 Brno, Czech Republic.
| | - Veronika Vojackova
- Department of Experimental Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 779 00 Olomouc, Czech Republic.
| | - Vladimir Krystof
- Department of Experimental Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 779 00 Olomouc, Czech Republic.
| | - Alois Cizek
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic.
| | - Pierre Francotte
- Laboratory of Medicinal Chemistry, CIRM - Center for Interdisciplinary Research on Medicines, University of Liege, Avenue Hippocrate 15, 4000 Liege, Belgium.
| | - Michel Frederich
- Laboratory of Pharmacognosy, CIRM - Center for Interdisciplinary Research on Medicines, University of Liege, Avenue Hippocrate 15, 4000 Liege, Belgium.
| | - Josef Jampilek
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 779 00 Olomouc, Czech Republic; Institute of Chemistry, University of Silesia, Szkolna 9, 40-007 Katowice, Poland.
| | - Daniel Enriz
- Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, IMIBIO-CONICET, Ejército de los Andes 950, 5700 San Luis, Argentina.
| |
Collapse
|
2
|
Farag AB, Othman AH, El-Ashrey MK, Abbas SES, Elwaie TA. New 6-nitro-4-substituted quinazoline derivatives targeting epidermal growth factor receptor: design, synthesis and in vitro anticancer studies. Future Med Chem 2024; 16:2025-2041. [PMID: 39230501 PMCID: PMC11485908 DOI: 10.1080/17568919.2024.2389772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/24/2024] [Indexed: 09/05/2024] Open
Abstract
Aim: Twenty compounds of 6-nitro-4-substituted quinazolines were synthesized.Materials & methods: The new derivatives were evaluated for their epidermal growth factor receptor (EGFR) inhibitory activity. The most potent derivatives were assessed for their cytotoxicity against colon cancer and lung cancer cells, in addition to normal fibroblast cells.Results & discussion: compound 6c showed a superior to nearly equal cytotoxicity in comparison to gefitinib, it also revealed a good safety profile. Compound 6c caused a cell cycle arrest at G2/M phase in addition to induction of apoptosis. A molecular docking study was conducted on the most active compounds to gain insights of their binding mode in the active site of EGFR enzyme besides ADME prediction of their physicochemical properties and drug likeness profile.
Collapse
Affiliation(s)
- Ayman B Farag
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Aya H Othman
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Mohamed K El-Ashrey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Elini St., Cairo, 11562, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, 46612, Egypt
| | - Safinaz E-S. Abbas
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Elini St., Cairo, 11562, Egypt
| | - Tamer A Elwaie
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Elini St., Cairo, 11562, Egypt
- Department of Chemistry and Biochemistry, Center for Translational Medicine, University of Montana, Missoula, MT59812, USA
| |
Collapse
|
3
|
Abdelkhalek AS, Kothayer H, Soltan MK, Ibrahim SM, Elbaramawi SS. Novel 2-[thio]acetamide linked quinazoline/1,2,4-triazole/chalcone hybrids: Design, synthesis, and anticancer activity as EGFR inhibitors and apoptotic inducers. Arch Pharm (Weinheim) 2024; 357:e2300627. [PMID: 38593298 DOI: 10.1002/ardp.202300627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
Novel triazoloquinazolines carrying the 2-[thio]acetamide entity (4 and 5a-d) and triazoloquinazoline/chalcone hybrids incorporating the 2-[thio]acetamide linker (8a-b and 9a-f) were developed as anticancer candidates. NCI screening of the synthesized compounds at 10 μM concentration displayed growth inhibition not only up to 99.74% as observed for 9a but also a lethal effect could be achieved as stated for compounds 9c (RPMI-8226 and HCT-116) and 8b, 9a, and 9e on the HCT-116 cell line. The antiproliferative activity was determined for the chalcone series on three cell lines: RPMI-8226, HCT-116, and MCF-7. Compounds 8b, 9a, 9b, and 9f were the most active ones. To understand the mechanistic study, the inhibitory effect on the epidermal growth factor receptor (EGFR) kinase was evaluated. The results stated that the activity of compound 8b (IC50 = 0.07 μM) was near that of the reference drug erlotinib (IC50 = 0.052 μM) whereas compound 9b (IC50 = 0.045 μM) was found to be more potent than erlotinib. Both compounds 8b and 9b were selected for cell cycle analysis and apoptotic assays. Moreover, molecular docking results of the selected chalcone hybrids showed high binding scores and good binding affinities especially for 8b and 9b, which were consistent with the biological activity (EGFR).
Collapse
Affiliation(s)
- Ahmed S Abdelkhalek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Hend Kothayer
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mostafa K Soltan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Pharmacy Program, Oman College of Health Sciences, Muscat, Sultanate of Oman
| | - Samy M Ibrahim
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Samar S Elbaramawi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
4
|
Branković J, Matejić V, Simijonović D, Vukić MD, Kačaniova M, Živanović M, Mirić A, Košarić J, Branković M, Petrović VP. Novel N-pyrocatechoyl and N-pyrogalloyl hydrazone antioxidants endowed with cytotoxic and antibacterial activity. Arch Pharm (Weinheim) 2024; 357:e2300725. [PMID: 38346258 DOI: 10.1002/ardp.202300725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 05/08/2024]
Abstract
Over the years, pharmacological agents bearing antioxidant merits arose as beneficial in the prophylaxis and treatment of various health conditions. Hazardous effects of radical species hyperproduction disrupt normal cell functioning, thus increasing the possibility for the development of various oxidative stress-associated disorders, such as cancer. Contributing to the efforts for efficient antioxidant drug discovery, a thorough in vitro and in silico assessment of antioxidant properties of 14 newly synthesized N-pyrocatechoyl and N-pyrogalloyl hydrazones (N-PYRs) was accomplished. All compounds exhibited excellent antioxidant potency against the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. The extensive in silico analysis revealed multiple favorable features of N-PYRs to inactivate harmful radical species, which supported the obtained in vitro results. Also, in silico experiments provided insights into the preferable antioxidant pathways. Prompted by these findings, the cytotoxicity effects and the influence on the redox status of cancer HCT-116 cells and healthy fibroblasts MRC-5 were evaluated. These investigations exposed four analogs exhibiting both cytotoxicity and selectivity toward cancer cells. Furthermore, the frequently uncovered antimicrobial potency of hydrazone-type hybrids encouraged investigations on G+ and G- bacterial strains, which revealed the antibacterial potency of several N-PYRs. These findings highlighted the N-PYRs as excellent antioxidant agents endowed with cytotoxic and antibacterial features.
Collapse
Affiliation(s)
- Jovica Branković
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Vesna Matejić
- Department of Chemistry and Chemical Engineering, Faculty of Agronomy, University of Kragujevac, Čačak, Serbia
| | - Dušica Simijonović
- Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| | - Milena D Vukić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Miroslava Kačaniova
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Marko Živanović
- Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| | - Ana Mirić
- Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Košarić
- Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| | - Marija Branković
- Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir P Petrović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
5
|
Canales CSC, Pavan AR, Dos Santos JL, Pavan FR. In silico drug design strategies for discovering novel tuberculosis therapeutics. Expert Opin Drug Discov 2024; 19:471-491. [PMID: 38374606 DOI: 10.1080/17460441.2024.2319042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
INTRODUCTION Tuberculosis remains a significant concern in global public health due to its intricate biology and propensity for developing antibiotic resistance. Discovering new drugs is a protracted and expensive endeavor, often spanning over a decade and incurring costs in the billions. However, computer-aided drug design (CADD) has surfaced as a nimbler and more cost-effective alternative. CADD tools enable us to decipher the interactions between therapeutic targets and novel drugs, making them invaluable in the quest for new tuberculosis treatments. AREAS COVERED In this review, the authors explore recent advancements in tuberculosis drug discovery enabled by in silico tools. The main objectives of this review article are to highlight emerging drug candidates identified through in silico methods and to provide an update on the therapeutic targets associated with Mycobacterium tuberculosis. EXPERT OPINION These in silico methods have not only streamlined the drug discovery process but also opened up new horizons for finding novel drug candidates and repositioning existing ones. The continued advancements in these fields hold great promise for more efficient, ethical, and successful drug development in the future.
Collapse
Affiliation(s)
- Christian S Carnero Canales
- School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
- School of Pharmacy, biochemistry and biotechnology, Santa Maria Catholic University, Arequipa, Perú
| | - Aline Renata Pavan
- School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
| | | | - Fernando Rogério Pavan
- School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|