1
|
Brouwer MAE, van de Schoor FR, Vrijmoeth HD, Netea MG, Joosten LAB. A joint effort: The interplay between the innate and the adaptive immune system in Lyme arthritis. Immunol Rev 2020; 294:63-79. [PMID: 31930745 PMCID: PMC7065069 DOI: 10.1111/imr.12837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022]
Abstract
Articular joints are a major target of Borrelia burgdorferi, the causative agent of Lyme arthritis. Despite antibiotic treatment, recurrent or persistent Lyme arthritis is observed in a significant number of patients. The host immune response plays a crucial role in this chronic arthritic joint complication of Borrelia infections. During the early stages of B. burgdorferi infection, a major hinder in generating a proper host immune response is the lack of induction of a strong adaptive immune response. This may lead to a delayed hyperinflammatory reaction later in the disease. Several mechanisms have been suggested that might be pivotal for the development of Lyme arthritis and will be highlighted in this review, from molecular mimicry of matrix metallopeptidases and glycosaminoglycans, to autoimmune responses to live bacteria, or remnants of Borrelia spirochetes in joints. Murine studies have suggested that the inflammatory responses are initiated by innate immune cells, but this does not exclude the involvement of the adaptive immune system in this dysregulated immune profile. Genetic predisposition, via human leukocyte antigen-DR isotype and microRNA expression, has been associated with the development of antibiotic-refractory Lyme arthritis. Yet the ultimate cause for (antibiotic-refractory) Lyme arthritis remains unknown. Complex processes of different immune cells and signaling cascades are involved in the development of Lyme arthritis. When these various mechanisms are fully been unraveled, new treatment strategies can be developed to target (antibiotic-refractory) Lyme arthritis more effectively.
Collapse
Affiliation(s)
- Michelle A. E. Brouwer
- Department of Internal MedicineRadboud Center for Infectious Diseases (RCI)Radboud Institute of Molecular Life Sciences (RIMLS)Radboud Institute of Health Sciences (RIHS)Radboud University Medical CenterNijmegenThe Netherlands
| | - Freek R. van de Schoor
- Department of Internal MedicineRadboud Center for Infectious Diseases (RCI)Radboud Institute of Molecular Life Sciences (RIMLS)Radboud Institute of Health Sciences (RIHS)Radboud University Medical CenterNijmegenThe Netherlands
| | - Hedwig D. Vrijmoeth
- Department of Internal MedicineRadboud Center for Infectious Diseases (RCI)Radboud Institute of Molecular Life Sciences (RIMLS)Radboud Institute of Health Sciences (RIHS)Radboud University Medical CenterNijmegenThe Netherlands
| | - Mihai G. Netea
- Department of Internal MedicineRadboud Center for Infectious Diseases (RCI)Radboud Institute of Molecular Life Sciences (RIMLS)Radboud Institute of Health Sciences (RIHS)Radboud University Medical CenterNijmegenThe Netherlands
- Department for Genomics & ImmunoregulationLife and Medical Sciences Institute (LIMES)University of BonnBonnGermany
| | - Leo A. B. Joosten
- Department of Internal MedicineRadboud Center for Infectious Diseases (RCI)Radboud Institute of Molecular Life Sciences (RIMLS)Radboud Institute of Health Sciences (RIHS)Radboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
2
|
Borrelia burgdorferi peptidoglycan is a persistent antigen in patients with Lyme arthritis. Proc Natl Acad Sci U S A 2019; 116:13498-13507. [PMID: 31209025 PMCID: PMC6613144 DOI: 10.1073/pnas.1904170116] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lyme disease, caused by the spirochete Borrelia burgdorferi, is the most common vector-borne disease in North America. If early infection is untreated, it can result in late-stage manifestations, including arthritis. Although antibiotics are generally effective at all stages of the disease, arthritis may persist in some patients for months to several years despite oral and intravenous antibiotic treatment. Excessive, dysregulated host immune responses are thought to play an important role in this outcome, but the underlying mechanisms are not completely understood. This study identifies the B. burgdorferi peptidoglycan, a major component of the cell wall, as an immunogen likely to contribute to inflammation during infection and in cases of postinfectious Lyme arthritis. Lyme disease is a multisystem disorder caused by the spirochete Borrelia burgdorferi. A common late-stage complication of this disease is oligoarticular arthritis, often involving the knee. In ∼10% of cases, arthritis persists after appropriate antibiotic treatment, leading to a proliferative synovitis typical of chronic inflammatory arthritides. Here, we provide evidence that peptidoglycan (PG), a major component of the B. burgdorferi cell envelope, may contribute to the development and persistence of Lyme arthritis (LA). We show that B. burgdorferi has a chemically atypical PG (PGBb) that is not recycled during cell-wall turnover. Instead, this pathogen sheds PGBb fragments into its environment during growth. Patients with LA mount a specific immunoglobulin G response against PGBb, which is significantly higher in the synovial fluid than in the serum of the same patient. We also detect PGBb in 94% of synovial fluid samples (32 of 34) from patients with LA, many of whom had undergone oral and intravenous antibiotic treatment. These same synovial fluid samples contain proinflammatory cytokines, similar to those produced by human peripheral blood mononuclear cells stimulated with PGBb. In addition, systemic administration of PGBb in BALB/c mice elicits acute arthritis. Altogether, our study identifies PGBb as a likely contributor to inflammatory responses in LA. Persistence of this antigen in the joint may contribute to synovitis after antibiotics eradicate the pathogen. Furthermore, our finding that B. burgdorferi sheds immunogenic PGBb fragments during growth suggests a potential role for PGBb in the immunopathogenesis of other Lyme disease manifestations.
Collapse
|
3
|
Badawi A. The Potential of Omics Technologies in Lyme Disease Biomarker Discovery and Early Detection. Infect Dis Ther 2016; 6:85-102. [PMID: 27900646 PMCID: PMC5336413 DOI: 10.1007/s40121-016-0138-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Indexed: 12/31/2022] Open
Abstract
Lyme borreliosis (LB) is the most prevalent arthropod-borne infectious disease in North America and many countries of the temperate Northern Hemisphere. It is associated with local and systemic manifestations and has persistent post-treatment health complications in some individuals. Innate and acquired immunity-related inflammation is likely to play a critical role in both host defense against Borrelia burgdorferi and disease severity. Large-scale analytical approaches to quantify gene expression (transcriptomics), proteins (proteomics) and metabolites (metabolomics) in LB have recently emerged with a potential to advance the development of disease biomarkers in early, disseminated and posttreatment disease stages. These technologies may permit defining the disease stage and facilitate its early detection to improve diagnosis. They will also likely allow elucidating the underlying molecular pathways to aid in identifying molecular targets for therapy. This article reviews the findings within the field of omics relevant to LB and its prospective utility in developing an array of biomarkers that can be employed in LB diagnosis and detection particularly at the early disease stages.
Collapse
Affiliation(s)
- Alaa Badawi
- Public Health Risk Sciences Division, Public Health Agency of Canada, 180 Queen Street West, Toronto, ON, Canada. .,Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College Street, Toronto, ON, Canada.
| |
Collapse
|
4
|
Rahman S, Shering M, Ogden NH, Lindsay R, Badawi A. Toll-like receptor cascade and gene polymorphism in host-pathogen interaction in Lyme disease. J Inflamm Res 2016; 9:91-102. [PMID: 27330321 PMCID: PMC4898433 DOI: 10.2147/jir.s104790] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Lyme disease (LD) risk occurs in North America and Europe where the tick vectors of the causal agent Borrelia burgdorferi sensu lato are found. It is associated with local and systemic manifestations, and has persistent posttreatment health complications in some individuals. The innate immune system likely plays a critical role in both host defense against B. burgdorferi and disease severity. Recognition of B. burgdorferi, activation of the innate immune system, production of proinflammatory cytokines, and modulation of the host adaptive responses are all initiated by Toll-like receptors (TLRs). A number of Borrelia outer-surface proteins (eg, OspA and OspB) are recognized by TLRs. Specifically, TLR1 and TLR2 were identified as the receptors most relevant to LD. Several functional single-nucleotide polymorphisms have been identified in TLR genes, and are associated with varying cytokines types and synthesis levels, altered pathogen recognition, and disruption of the downstream signaling cascade. These single-nucleotide polymorphism-related functional alterations are postulated to be linked to disease development and posttreatment persistent illness. Elucidating the role of TLRs in LD may facilitate a better understanding of disease pathogenesis and can provide an insight into novel therapeutic targets during active disease or postinfection and posttreatment stages.
Collapse
Affiliation(s)
- Shusmita Rahman
- National Microbiology Laboratory, Public Health Agency of Canada, Toronto, ON, Canada
| | - Maria Shering
- Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - Nicholas H Ogden
- National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, QC, Canada
| | - Robbin Lindsay
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Alaa Badawi
- National Microbiology Laboratory, Public Health Agency of Canada, Toronto, ON, Canada
| |
Collapse
|
5
|
Bernard Q, Gallo RL, Jaulhac B, Nakatsuji T, Luft B, Yang X, Boulanger N. Ixodes tick saliva suppresses the keratinocyte cytokine response to TLR2/TLR3 ligands during early exposure to Lyme borreliosis. Exp Dermatol 2015; 25:26-31. [PMID: 26307945 DOI: 10.1111/exd.12853] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2015] [Indexed: 12/28/2022]
Abstract
Ixodes hard tick induces skin injury by its sophisticated biting process. Its saliva plays a key role to enable an efficient blood meal that lasts for several days. We hypothesized that this feeding process may also be exploited by pathogens to facilitate their transmission, especially in the context of arthropod-borne diseases. To test this, we used Lyme borreliosis as a model. This bacterial infection is caused by Borrelia burgdorferi sensu lato transmitted by Ixodes. We co-incubated Borrelia with human keratinocytes in the presence of poly (I: C), a dsRNA TLR3 agonist generated by skin injury. This induced a strong cytokine response from human primary keratinocytes that was much greater than that induced by Borrelia alone. OspC, a TLR2/1 agonist and a major surface lipoprotein of Borrelia also amplified the process. Interestingly, tick saliva inhibited cytokine responses by keratinocytes to these TLR agonists. We propose that Borrelia uses the immunoprivileged site produced by tick saliva to facilitate its transmission.
Collapse
Affiliation(s)
- Quentin Bernard
- EA7290 Virulence bactérienne précoce: groupe borréliose de Lyme, Fédération de médecine Translationnelle et Faculté de Pharmacie de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, CA, USA
| | - Benoît Jaulhac
- EA7290 Virulence bactérienne précoce: groupe borréliose de Lyme, Fédération de médecine Translationnelle et Faculté de Pharmacie de Strasbourg, Université de Strasbourg, Strasbourg, France.,Centre National de Reference Borrelia, Centre Hospitalier Universitaire, Strasbourg, France
| | - Teruaki Nakatsuji
- Department of Dermatology, University of California, San Diego, CA, USA
| | - Benjamin Luft
- Department of Medicine, State University of New York, Stony Brook, NY, USA
| | - Xiahoua Yang
- Department of Medicine, State University of New York, Stony Brook, NY, USA
| | - Nathalie Boulanger
- EA7290 Virulence bactérienne précoce: groupe borréliose de Lyme, Fédération de médecine Translationnelle et Faculté de Pharmacie de Strasbourg, Université de Strasbourg, Strasbourg, France.,Centre National de Reference Borrelia, Centre Hospitalier Universitaire, Strasbourg, France
| |
Collapse
|
6
|
Cervantes JL, Hawley KL, Benjamin SJ, Weinerman B, Luu SM, Salazar JC. Phagosomal TLR signaling upon Borrelia burgdorferi infection. Front Cell Infect Microbiol 2014; 4:55. [PMID: 24904837 PMCID: PMC4033037 DOI: 10.3389/fcimb.2014.00055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/09/2014] [Indexed: 12/31/2022] Open
Abstract
Internalization and degradation of live Bb within phagosomal compartments of monocytes, macrophages and dendritic cells (DCs), allows for the release of lipoproteins, nucleic acids and other microbial products, triggering a broad and robust inflammatory response. Toll-like receptors (TLRs) are key players in the recognition of spirochetal ligands from whole viable organisms (i.e., vita-PAMPs). Herein we will review the role of endosomal TLRs in the response to the Lyme disease spirochete.
Collapse
Affiliation(s)
- Jorge L Cervantes
- Department of Pediatrics, University of Connecticut Health Center Farmington, CT, USA ; Division of Infectious Diseases, Connecticut Children's Medical Center Hartford, CT, USA
| | - Kelly L Hawley
- Department of Pediatrics, University of Connecticut Health Center Farmington, CT, USA ; Division of Infectious Diseases, Connecticut Children's Medical Center Hartford, CT, USA
| | - Sarah J Benjamin
- Department of Pediatrics, University of Connecticut Health Center Farmington, CT, USA
| | - Bennett Weinerman
- Department of Pediatrics, University of Connecticut Health Center Farmington, CT, USA
| | - Stephanie M Luu
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center Farmington, CT, USA
| | - Juan C Salazar
- Department of Pediatrics, University of Connecticut Health Center Farmington, CT, USA ; Division of Infectious Diseases, Connecticut Children's Medical Center Hartford, CT, USA ; Department of Immunology, University of Connecticut Health Center Farmington, CT, USA
| |
Collapse
|
7
|
Wormser GP, Nadelman RB, Schwartz I. The amber theory of Lyme arthritis: initial description and clinical implications. Clin Rheumatol 2012; 31:989-94. [PMID: 22411576 DOI: 10.1007/s10067-012-1964-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/24/2012] [Accepted: 02/18/2012] [Indexed: 01/12/2023]
Abstract
Lyme arthritis differs in many respects from other bacterial causes of arthritis. Based on an observation made for a patient with Lyme arthritis, we propose that the pathogenesis of joint swelling in Lyme arthritis is due to the introduction into the joint space of non-viable spirochetes or more likely spirochetal debris enmeshed in a host-derived fibrinous or collagenous matrix. This "amber" hypothesis can account for the clinical and laboratory features of Lyme arthritis and is amenable to experimental validation. Validation would directly impact the clinical management of patients with Lyme arthritis.
Collapse
Affiliation(s)
- Gary P Wormser
- Division of Infectious Diseases of the Department of Medicine, New York Medical College, Valhalla, NY 10595, USA.
| | | | | |
Collapse
|
8
|
Long-term intrathecal infusion of outer surface protein C from Borrelia burgdorferi causes axonal damage. J Neuropathol Exp Neurol 2011; 70:748-57. [PMID: 21865883 DOI: 10.1097/nen.0b013e3182289acd] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Lyme neuroborreliosis (LNB) is the most frequent tick-borne infectious disease of the central nervous system. In acute LNB and the rare chronic state of infection, patients can experience cognitive deficits such as attention and memory disturbances. During LNB, single compounds of Borrelia burgdorferi sensu lato are released into the subarachnoid space.To investigate the pathogenesis of neurologic dysfunction in LNB, we determined that the outer surface protein C (OspC), a major virulence factor of B. burgdorferi, stimulated mouse microglial cells in a dose-dependent manner to release nitric oxide (EC50 = 0.24 mg/L) in vitro. To mimic pathophysiologic conditions of long-term release of this bacterial component in vivo, we treated C57BL/6 mice with recombinant OspC from Borrelia garinii or buffer by intraventricular infusion and tested them for behavioral deficits. After 4weeks, brains were examined by routine histology and immunohistochemistry. Assessment of spatial learning and memory of treated mice during OspC exposure did not reveal significant differences from controls. Continuous exposure to intrathecal B. burgdorferi OspC led to activation of microglia and axonal damage without demonstrable cognitive impairment in experimental mice. These results suggest that long-term intrathecal exposure to OspC resulted in axonal damage that may underlie the neurologic manifestations in chronic LNB.
Collapse
|
9
|
Batsford S, Dunn J, Mihatsch M. Induction of Experimental Arthritis by Borrelial Lipoprotein and CpG Motifs: Are Toll-Like Receptors 2, 4, 9 or CD-14 Involved? Open Rheumatol J 2011; 5:18-23. [PMID: 21804904 PMCID: PMC3141342 DOI: 10.2174/1874312901105010018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 05/02/2011] [Accepted: 05/13/2011] [Indexed: 12/22/2022] Open
Abstract
Bacterial lipoproteins and CpG-DNA are ligands for Toll-Like-Receptors (TLR) 2 and 9 respectively. Both classes of molecules were reported to induce experimental arthritis in rodents following direct intra-articular injection. Here we studied: 1) whether arthritis induction by Outer surface (Lipo)protein A (OspA) (B.burgdorferi) involved the TLR-2 as well as the TLR-4 or the CD-14 receptors in addition, and 2) re-examined the arthritogenic potential of CpG-DNA motifs in mice. Following intra-articular injection of the test substances [20µg recombinant, lipidated OspA; 1nM(6µg) to 10nM(60µg) synthetic CpG-DNA], inflammation was monitored by 99Tc scintigraphy (ratio left/right knee joint uptake > 1.1 indicates inflammation) and by histology. Lipoprotein OspA induced severe, acute arthritis in TLR-2+/+ w.t. but not in TLR-2-/- mice (p<0.01). There were no significant differences in the severity of arthritis induced in TLR-4+/+ w.t. and TLR-4-/- mutant mice, or between CD14+/+ w.t. and CD14-/- mice. CpG-DNA (1or 10 nM) did not cause notable inflammation in C57BL/6 mice; 99Tc ratios were < 1.0 and histology showed only minimal changes. Induction of arthritis by the OspA lipoprotein of B.burgdorferi involves the TLR-2 receptor, no evidence for additional participation of TLR-4 or CD14 receptors was found. Intra-articular injection of CpG-DNA did not produce manifest joint injury in mice, at variance with previous reports.
Collapse
Affiliation(s)
- Stephen Batsford
- Department of Immunology, Institute of Medical Microbiology and Hygiene, Albert Ludwigs University Freiburg, D-79104 Germany
| | | | | |
Collapse
|
10
|
Prevention of Lyme Disease: Promising Research or Sisyphean Task? Arch Immunol Ther Exp (Warsz) 2011; 59:261-75. [DOI: 10.1007/s00005-011-0128-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 03/02/2011] [Indexed: 11/26/2022]
|
11
|
Heller JE, Shadick NA. Lyme disease. Rheumatology (Oxford) 2011. [DOI: 10.1016/b978-0-323-06551-1.00106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
12
|
Abstract
Tick saliva has potent immunomodulatory properties. In arthropod-borne diseases, this effect is largely used by microorganisms to increase their pathogenicity and to evade host immune responses. We show that in Lyme borreliosis, tick salivary gland extract and a tick saliva protein, Salp15, inhibit in vitro keratinocyte inflammation induced by Borrelia burgdorferi sensu stricto or by the major outer surface lipoprotein of Borrelia, OspC. Chemokines (interleukin-8 [IL-8] and monocyte chemoattractant protein 1 [MCP-1]) and several antimicrobial peptides (defensins, cathelicidin, psoriasin, and RNase 7) were downregulated. Interestingly, antimicrobial peptides (AMPs) transiently inhibited bacterial motility but did not kill the organisms when tested in vitro. We conclude that tick saliva affects the chemotactic properties of chemokines and AMPs on immune cells and has an antialarmin effect on human primary keratinocytes. Alarmins are mediators that mobilize and activate antigen-presenting cells. Inhibition of cutaneous innate immunity and of the migration of immune cells to the site of the tick bite ensures a favorable environment for Borrelia. The bacterium can then multiply locally and, subsequently, disseminate to the target organs, including joints, heart, and the central nervous system.
Collapse
|
13
|
Strother KO, Hodzic E, Barthold SW, de Silva AM. Infection of mice with lyme disease spirochetes constitutively producing outer surface proteins a and B. Infect Immun 2007; 75:2786-94. [PMID: 17371860 PMCID: PMC1932870 DOI: 10.1128/iai.01307-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Outer surface protein A (OspA) of the Lyme disease spirochete is primarily produced in the tick vector. OspA, which is a receptor for attaching spirochetes to the tick gut, is down regulated as the spirochetes leave the tick and enter the mammalian host. Although OspA is not a major antigen produced in the mammal, the protein appears to be produced under some conditions and production has been linked to more severe disease. A Lyme disease vaccine based on recombinant OspA has been approved for human use. However, the vaccine is no longer available, in part because of fears that OspA causes arthritis in people. To further understand the consequences of OspA production in the host, we created a Borrelia burgdorferi mutant that was unable to down regulate OspA. C3H/HeN mice infected with this mutant developed a specific anti-OspA immune response, and the spirochetes were unable to persist in these mice. In contrast, immunodeficient SCID mice were persistently infected with the mutant. We conclude that spirochetes producing OspA and B from the flaB promoter in immunocompetent mice stimulate an immune response that clear the bacteria without any signs of disease development in the mice.
Collapse
Affiliation(s)
- Keith O Strother
- Department of Microbiology and Immunology, University of Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
14
|
Butler C, Houwers D, Jongejan F, van der Kolk J. Borrelia burgdorferiinfections with special reference to horses. A review. Vet Q 2005. [DOI: 10.1080/01652176.2002.9695196] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|