1
|
Systematic review of robust experimental models of rheumatoid arthritis for basic research. DIGITAL CHINESE MEDICINE 2021. [DOI: 10.1016/j.dcmed.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
2
|
Zuo Y, Deng GM. Fc Gamma Receptors as Regulators of Bone Destruction in Inflammatory Arthritis. Front Immunol 2021; 12:688201. [PMID: 34248975 PMCID: PMC8262610 DOI: 10.3389/fimmu.2021.688201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/09/2021] [Indexed: 12/29/2022] Open
Abstract
Bone erosion is one of the primary features of inflammatory arthritis and is caused by excessive differentiation and activation of osteoclasts. Fc gamma receptors (FcγRs) have been implicated in osteoclastogenesis. Our recent studies demonstrate that joint-deposited lupus IgG inhibited RANKL-induced osteoclastogenesis. FcγRI is required for RANKL-induced osteoclastogenesis and lupus IgG-induced signaling transduction. We reviewed the results of studies that analyzed the association between FcγRs and bone erosion in inflammatory arthritis. The analysis revealed the dual roles of FcγRs in bone destruction in inflammatory arthritis. Thus, IgG/FcγR signaling molecules may serve as potential therapeutic targets against bone erosion.
Collapse
Affiliation(s)
- Yuyue Zuo
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo-Min Deng
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Di Ceglie I, Kruisbergen NNL, van den Bosch MHJ, van Lent PLEM. Fc-gamma receptors and S100A8/A9 cause bone erosion during rheumatoid arthritis. Do they act as partners in crime? Rheumatology (Oxford) 2020; 58:1331-1343. [PMID: 31180451 DOI: 10.1093/rheumatology/kez218] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/25/2019] [Indexed: 12/19/2022] Open
Abstract
Bone erosion is one of the central hallmarks of RA and is caused by excessive differentiation and activation of osteoclasts. Presence of autoantibodies in seropositive arthritis is associated with radiographic disease progression. ICs, formed by autoantibodies and their antigens, activate Fcγ-receptor signalling in immune cells, and as such stimulate inflammation-mediated bone erosion. Interestingly, ICs can also directly activate osteoclasts by binding to FcγRs on their surface. Next to autoantibodies, high levels of alarmins, among which is S100A8/A9, are typical for RA and they can further activate the immune system but also directly promote osteoclast function. Therefore, IC-activated FcγRs and S100A8/A9 might act as partners in crime to stimulate inflammation and osteoclasts differentiation and function, thereby stimulating bone erosion. This review discusses the separate roles of ICs, FcγRs and alarmins in bone erosion and sheds new light on the possible interplay between them, which could fuel bone erosion.
Collapse
Affiliation(s)
- Irene Di Ceglie
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nik N L Kruisbergen
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Peter L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Spiering R, Margry B, Keijzer C, Petzold C, Hoek A, Wagenaar-Hilbers J, van der Zee R, van Eden W, Kretschmer K, Broere F. DEC205+ Dendritic Cell-Targeted Tolerogenic Vaccination Promotes Immune Tolerance in Experimental Autoimmune Arthritis. THE JOURNAL OF IMMUNOLOGY 2015; 194:4804-13. [PMID: 25862815 DOI: 10.4049/jimmunol.1400986] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 03/14/2015] [Indexed: 11/19/2022]
Abstract
Previous studies in mouse models of autoimmune diabetes and encephalomyelitis have indicated that the selective delivery of self-antigen to the endocytic receptor DEC205 on steady-state dendritic cells (DCs) may represent a suitable approach to induce Ag-specific immune tolerance. In this study, we aimed to examine whether DEC205(+) DC targeting of a single immunodominant peptide derived from human cartilage proteoglycan (PG) can promote immune tolerance in PG-induced arthritis (PGIA). Besides disease induction by immunization with whole PG protein with a high degree of antigenic complexity, PGIA substantially differs from previously studied autoimmune models not only in the target tissue of autoimmune destruction but also in the nature of pathogenic immune effector cells. Our results show that DEC205(+) DC targeting of the PG peptide 70-84 is sufficient to efficiently protect against PGIA development. Complementary mechanistic studies support a model in which DEC205(+) DC targeting leads to insufficient germinal center B cell support by PG-specific follicular helper T cells. Consequently, impaired germinal center formation results in lower Ab titers, severely compromising the development of PGIA. Overall, this study further corroborates the potential of prospective tolerogenic DEC205(+) DC vaccination to interfere with autoimmune diseases, such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Rachel Spiering
- Department of Infectious Diseases and Immunology, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Bram Margry
- Department of Infectious Diseases and Immunology, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Chantal Keijzer
- Department of Infectious Diseases and Immunology, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Cathleen Petzold
- Department of Molecular and Cellular Immunology/Immune Regulation, German Research Foundation-Center for Regenerative Therapies Dresden, Dresden University of Technology, 01307 Dresden, Germany; and
| | - Aad Hoek
- Department of Infectious Diseases and Immunology, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Josée Wagenaar-Hilbers
- Department of Infectious Diseases and Immunology, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Ruurd van der Zee
- Department of Infectious Diseases and Immunology, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Willem van Eden
- Department of Infectious Diseases and Immunology, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Karsten Kretschmer
- Department of Molecular and Cellular Immunology/Immune Regulation, German Research Foundation-Center for Regenerative Therapies Dresden, Dresden University of Technology, 01307 Dresden, Germany; and Paul Langerhans Institute Dresden, German Center for Diabetes Research, 01307 Dresden, Germany
| | - Femke Broere
- Department of Infectious Diseases and Immunology, Utrecht University, 3584 CL Utrecht, the Netherlands;
| |
Collapse
|
5
|
el Bannoudi H, Ioan-Facsinay A, Toes REM. Bridging autoantibodies and arthritis: the role of Fc receptors. Curr Top Microbiol Immunol 2014; 382:303-19. [PMID: 25116106 DOI: 10.1007/978-3-319-07911-0_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Autoantibodies represent a hallmark of Rheumatoid arthritis (RA), which is a chronic inflammatory autoimmune disease characterized by inflammation and damage in the joints. Anti-Citrullinated Protein Antibodies (ACPA) are the most prominent autoantibodies present in RA patients. These autoantibodies have been intensively investigated during the last 20 years due to their diagnostic and predictive value. Furthermore, they are believed to be involved in mediating the damage associated with RA. Antibodies of the IgG isotype interact with the immune system via Fcγ receptors expressed on immune cells as well as nonimmune cells. These receptors, therefore, form the bridge between Fcγ receptor-positive cells and antibodies complexed to antigen allowing the modulation and activation of cellular immune responses that are involved in immune defense against invading microorganisms. However, in case triggered by antibodies against self-antigens, they can also play a pivotal role in the induction and perpetuation of autoimmune diseases such as RA. Mouse models have been indispensably important for understanding the role of Fcγ receptors in the development of arthritis. Here we discuss the contribution of autoantibodies to the pathogenesis of arthritis in preclinical animal models, as well as RA, in relation to their interaction with the different (immune inhibitory and activating) Fcγ receptors.
Collapse
Affiliation(s)
- Hanane el Bannoudi
- Department of Rheumatology, Leiden University Medical Center, C1-R, Albinusdreef 2, 2333, Leiden, ZA, The Netherlands
| | | | | |
Collapse
|
6
|
Finnegan A, Ashaye S, Hamel KM. B effector cells in rheumatoid arthritis and experimental arthritis. Autoimmunity 2012; 45:353-63. [PMID: 22432771 DOI: 10.3109/08916934.2012.665526] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rheumatoid arthritis is a chronic autoimmune immune disease affecting approximately 1% of the population. There has been a renewed interest in the role of B cells in rheumatoid arthritis based on the evidence that B cell depletion therapy is effective in the treatment of disease. This review summarizes the current knowledge of the mechanisms by which B cells contribute to autoimmune arthritis including roles as autoantibody producing cells, antigen-presenting cells, cytokine producing cells, and regulatory cells.
Collapse
Affiliation(s)
- Alison Finnegan
- Department of Medicine, Section of Rheumatology, Rush University Medical Center, Chicago, Illinois 60612, USA.
| | | | | |
Collapse
|
7
|
Angyal A, Egelston C, Kobezda T, Olasz K, László A, Glant TT, Mikecz K. Development of proteoglycan-induced arthritis depends on T cell-supported autoantibody production, but does not involve significant influx of T cells into the joints. Arthritis Res Ther 2010; 12:R44. [PMID: 20298547 PMCID: PMC2888192 DOI: 10.1186/ar2954] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 01/27/2010] [Accepted: 03/18/2010] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Inflammatory joint destruction in rheumatoid arthritis (RA) may be triggered by autoantibodies, the production of which is supported by autoreactive T cells. Studies on RA and animal models of the disease suggest that T cells recruited in the joints can locally initiate or propagate arthritis. Herein, we investigated the role of joint-homing versus lymphoid organ-homing T cells in the development of proteoglycan-induced arthritis (PGIA), an autoimmune model of RA. METHODS To identify T cells migrating to the joints before and during development of autoimmune arthritis, we transferred fluorescence-labeled T cells, along with antigen-presenting cells, from BALB/c mice with PGIA to naïve syngeneic severe combined immunodeficient (SCID) mice. We then monitored the recruitment of donor T cells in the ankle joints and joint-draining lymph nodes of the recipients using in vivo two-photon microscopy and ex vivo detection methods. To limit T-cell access to the joints, we selectively depleted T cells in the blood circulation by treatment with FTY720, an inhibitor of lymphocyte egress from lymphoid organs. Reduction of T cell presence in both lymphoid organs and blood was achieved by injection of donor cells from which T cells were removed prior to transfer. T and B cells were quantitated by flow cytometry, and antigen (PG)-specific responses were assessed by cell proliferation and serum antibody assays. RESULTS Despite development of adoptively transferred arthritis in the recipient SCID mice, we found very few donor T cells in their joints after cell transfer. Treatment of recipient mice with FTY720 left the T-cell pool in the lymphoid organs intact, but reduced T cells in both peripheral blood and joints. However, FTY720 treatment failed to inhibit PGIA development. In contrast, arthritis was not seen in recipient mice after transfer of T cell-depleted cells from arthritic donors, and serum autoantibodies to PG were not detected in this group of mice. CONCLUSIONS Our results suggest that antigen-specific T cells, which home to lymphoid organs and provide help to B cells for systemic autoantibody production, play a greater role in the development and progression of autoimmune arthritis than the small population of T cells that migrate to the joints.
Collapse
Affiliation(s)
- Adrienn Angyal
- Section of Molecular Medicine, Department of Orthopedic Surgery, Rush University Medical Center, 1735 West Harrison Street, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Erkan D, Barbhaiya M, George D, Sammaritano L, Lockshin M. Moderate versus high-titer persistently anticardiolipin antibody positive patients: are they clinically different and does high-titer anti-beta 2-glycoprotein-I antibody positivity offer additional predictive information? Lupus 2009; 19:613-9. [PMID: 19934177 DOI: 10.1177/0961203309355300] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The association between antiphospholipid antibodies (aPL) and clinical events is stronger with a positive lupus anticoagulant (LA) test, higher anticardiolipin antibody (aCL) titers, and/or higher anti-beta(2)-glycoprotein-I antibody (abeta( 2)GPI) titers. The objective of this study was to determine the clinical characteristics of persistently high-titer (> or =80 U) aCL-positive patients compared with those with persistent moderate aCL titers (40-79 U). Second, we analyzed whether high-titer abeta(2)GPI test adds predictive information in persistently moderate-to-high titer aCL-positive patients. In this cross-sectional study, the primary analysis compared the clinical and aPL characteristics of 58 patients with at least two moderate-titer aCL results to another 85 patients with at least two high-titer aCL results. In the secondary analysis of patients with at least two abeta(2)GPI test results, we compared 29 patients with 'aCL 40-79 U and abeta( 2)GPI < 80 U' profiles with 8 patients with 'aCL 40-79U and abeta(2)GPI > or = 80 U', and also compared 27 patients with 'aCL > 80 U and abeta(2)GPI < 80 U' with 32 patients with 'aCL > 80 U and abeta(2)GPI > or = 80 U'. Although aPL-related vascular and pregnancy events were similar between the moderate- and high-titer aCL groups, the number of patients with positive LA tests (RR 2.06, CI 1.38-3.08, p < 0.01) and with at least one non-criteria aPL manifestation (RR 1.66, CI 1.20-2.30, p = 0.0005) were significantly higher in the high-titer aCL group. While magnetic resonance imaging (MRI) white matter changes were statistically more common in the high-titer aCL group (RR 2.03, CI 1.04-3.94, p = 0.02), there was a trend towards increased prevalence of livedo reticularis, cardiac valve disease, and cognitive dysfunction occurring in the high-titer aCL group. The secondary analysis showed that MRI white matter changes, cardiac valve disease, and cognitive dysfunction were proportionally more common in the high-titer abeta( 2)GPI groups, suggesting a linear relationship between non-criteria aPL manifestations and aPL titers. Our results suggest that patients with high aCL titers, compared with those with moderate titers, are more likely to have a positive LA test and a higher prevalence of non-criteria aPL manifestations. Furthermore, high-titer abeta(2)GPI positivity may further increase the prevalence of non-criteria aPL manifestations in moderate- or high-titer aCL-positive patients.
Collapse
Affiliation(s)
- D Erkan
- Division of Rheumatology, Hospital for Special Surgery, New York, NY, USA.
| | | | | | | | | |
Collapse
|
9
|
Jakus Z, Simon E, Frommhold D, Sperandio M, Mócsai A. Critical role of phospholipase Cgamma2 in integrin and Fc receptor-mediated neutrophil functions and the effector phase of autoimmune arthritis. ACTA ACUST UNITED AC 2009; 206:577-93. [PMID: 19273622 PMCID: PMC2699137 DOI: 10.1084/jem.20081859] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
β2 integrins and Fcγ receptors are critically involved in neutrophil activation at the site of inflammation. Both receptor types trigger a receptor-proximal tyrosine phosphorylation cascade through Src family kinases and Syk, but further downstream signaling events are poorly understood. We show that phospholipase C (PLC) γ2 is phosphorylated downstream of Src family kinases and Syk during integrin or Fc receptor-mediated activation of neutrophils. PLCγ2−/− neutrophils are completely defective in β2 integrin or Fcγ receptor-mediated functional responses such as respiratory burst, degranulation, or cell spreading in vitro and show reduced adhesion/spreading in inflamed capillary venules in vivo. However, PLCγ2−/− neutrophils respond normally to various other agonists, including chemokines, bacterial formyl peptides, Toll-like receptor ligands, or proinflammatory cytokines, and migrate normally both in vitro and in vivo. To confirm the in vivo relevance of these observations, the effect of the PLCγ2−/− mutation was tested in the K/B×N serum transfer arthritis model, which is known to require β2 integrins, Fcγ receptors, and neutrophils. PLCγ2 deficiency completely protected mice from clinical signs and histological features of arthritis as well as from arthritis-induced loss of articular function. These results identify PLCγ2 as a critical player of integrin and Fc receptor-mediated neutrophil functions and the neutrophil-mediated effector phase of autoimmune arthritis.
Collapse
Affiliation(s)
- Zoltán Jakus
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary
| | | | | | | | | |
Collapse
|
10
|
Hamel K, Doodes P, Cao Y, Wang Y, Martinson J, Dunn R, Kehry MR, Farkas B, Finnegan A. Suppression of proteoglycan-induced arthritis by anti-CD20 B Cell depletion therapy is mediated by reduction in autoantibodies and CD4+ T cell reactivity. THE JOURNAL OF IMMUNOLOGY 2008; 180:4994-5003. [PMID: 18354225 DOI: 10.4049/jimmunol.180.7.4994] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
B cells have been implicated in the pathogenesis of rheumatoid arthritis (RA) since the discovery of RA as an autoimmune disease. There is renewed interest in B cells in RA based on the clinical efficacy of B cell depletion therapy in RA patients. Although, reduced titers of rheumatoid factor and anti-cyclic citrullinated peptide Abs are recorded, the mechanisms that convey clinical improvement are incompletely understood. In the proteoglycan-induced arthritis (PGIA) mouse model of RA, we reported that Ag-specific B cells have two important functions in the development of arthritis. PG-specific B cells are required as autoantibody-producing cells as well as Ag-specific APCs. Herein we report on the effects of anti-CD20 mAb B cell depletion therapy in PGIA. Mice were sensitized to PG and treated with anti-CD20 Ab at a time when PG-specific autoantibodies and T cell activation were evident but before acute arthritis. In mice treated with anti-CD20 mAb, development of arthritis was significantly reduced in comparison to control mAb-treated mice. B cell depletion reduced the PG-specific autoantibody response. Furthermore, there was a significant reduction in the PG-specific CD4(+) T cell recall response as well as significantly fewer PG-specific CD4(+) T cells producing IFN-gamma and IL-17, but not IL-4. The reduction in PG-specific T cells was confirmed by the inability of CD4(+) T cells from B cell-depleted mice to adoptively transfer disease into SCID mice. Overall, B cell depletion during PGIA significantly reduced disease and inhibited both autoreactive B cell and T cell function.
Collapse
Affiliation(s)
- Keith Hamel
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Boross P, van Lent PL, Martin-Ramirez J, van der Kaa J, Mulder MHCM, Claassens JWC, van den Berg WB, Arandhara VL, Verbeek JS. Destructive arthritis in the absence of both FcgammaRI and FcgammaRIII. THE JOURNAL OF IMMUNOLOGY 2008; 180:5083-91. [PMID: 18354234 DOI: 10.4049/jimmunol.180.7.5083] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fc receptors for IgG (FcgammaR) have been implicated in the development of arthritis. However, the precise contribution of the individual FcgammaR to joint pathology is unclear. In this study, the role of the different FcgammaR was assessed both in an active and in a passive mouse model of arthritis by analyzing disease development in double and triple knockout (KO) offspring from crosses of FcgammaRI KO, FcgammaRIII KO, FcgammaRI/III double KO, or FcR gamma-chain KO with the FcgammaRII KO on C57BL6 background, which is susceptible for collagen-induced arthritis (CIA). In the active CIA model, onset was significantly delayed in the absence of FcgammaRIII, whereas incidence and maximum severity were significantly decreased in FcgammaRI/II/III triple KO but not in FcgammaRII/III double KO and FcgammaRI/II double KO mice as compared with FcgammaRII KO animals. Remarkably, fully destructive CIA developed in FcgammaRI/II/III triple KO mice. In contrast, FcR gamma/FcgammaRII double KO mice were resistant to CIA. These findings were confirmed with the passive KRN serum-induced arthritis model. These results indicate that all activating FcgammaR play a role in the development of arthritis, mainly in the downstream effector phase. FcgammaRIII is critically required for early arthritis onset, and FcgammaRI can substantially contribute to arthritis pathology. Importantly, FcgammaRI and FcgammaRIII were together dispensable for the development of destructive arthritis but the FcR gamma-chain was not, suggesting a role for another FcR gamma-chain associated receptor, most likely FcgammaRIV. In addition, FcgammaRII plays a negative regulatory role in both the central and effector phase of arthritis.
Collapse
Affiliation(s)
- Peter Boross
- Department of Human Genetics, Leiden University Medical Center, Leiden
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Jakus Z, Németh T, Verbeek JS, Mócsai A. Critical but overlapping role of FcgammaRIII and FcgammaRIV in activation of murine neutrophils by immobilized immune complexes. THE JOURNAL OF IMMUNOLOGY 2008; 180:618-29. [PMID: 18097064 DOI: 10.4049/jimmunol.180.1.618] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immune complex-induced activation of neutrophils through cell surface FcRs plays a central role in the pathogenesis of autoimmune inflammatory diseases. These diseases are often modeled using genetically modified mice. However, in contrast to the number of studies on human cells, the identity of FcRs involved in immune complex activation of murine neutrophils is at present unknown. Furthermore, little is known about the cellular functions mediated by the recently identified murine FcgammaRIV. In this study, we tested the identity of FcRs involved in the activation of neutrophils by plate-bound immune complexes, using various knockout mouse strains, function-blocking mAbs, or the combination of both approaches. Activation of murine neutrophils by immobilized IgG immune complexes was abrogated in FcR gamma-chain-deficient cells, but not by the single or combined deficiency of the gamma-chain-associated FcgammaRI and FcgammaRIII, or by blocking Abs against either FcgammaRIII or FcgammaRIV alone. However, treatment of FcgammaRIII-deficient neutrophils with FcgammaRIV-blocking Abs or simultaneous blocking of FcgammaRIII and FcgammaRIV in wild-type cells completely inhibited the immune complex-induced cellular responses. In parallel studies, activation of human neutrophils by immobilized immune complexes was abrogated by blocking Abs against either FcgammaRIIA or FcgammaRIIIB alone. Taken together, neutrophil activation by immobilized immune complexes requires the murine FcgammaRIII/FcgammaRIV or the human FcgammaRIIA/FcgammaRIIIB molecules. Although both of the two human receptors are required for this response, the two murine receptors play overlapping, redundant roles. These results promote our understanding of autoimmune diseases and identify an IgG-dependent cellular function of FcgammaRIV.
Collapse
Affiliation(s)
- Zoltán Jakus
- Department of Physiology, School of Medicine, Semmelweis University, Budapest, Hungary
| | | | | | | |
Collapse
|
13
|
Guichelaar T, ten Brink CB, van Kooten PJ, Berlo SE, Broeren CP, van Eden W, Broere F. Autoantigen-Specific IL-10-Transduced T Cells Suppress Chronic Arthritis by Promoting the Endogenous Regulatory IL-10 Response. THE JOURNAL OF IMMUNOLOGY 2008; 180:1373-81. [DOI: 10.4049/jimmunol.180.3.1373] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Bandukwala HS, Clay BS, Tong J, Mody PD, Cannon JL, Shilling RA, Verbeek JS, Weinstock JV, Solway J, Sperling AI. Signaling through Fc gamma RIII is required for optimal T helper type (Th)2 responses and Th2-mediated airway inflammation. ACTA ACUST UNITED AC 2007; 204:1875-89. [PMID: 17664287 PMCID: PMC2118666 DOI: 10.1084/jem.20061134] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Although inhibitory Fc gamma receptors have been demonstrated to promote mucosal tolerance, the role of activating Fc gamma receptors in modulating T helper type (Th)2-dependent inflammatory responses characteristic of asthma and allergies remains unclear. Here, we demonstrate that signaling via activating Fc gamma receptors in conjunction with Toll-like receptor 4 stimulation modulated cytokine production from bone marrow-derived dendritic cells (DCs) and augmented their ability to promote Th2 responses. Ligation of the low affinity receptor Fc gamma RIII was specifically required for the enhanced Th2 responses, as Fc gamma RIII(-/-) DCs failed to augment Th2-mediated airway inflammation in vivo or induce Th2 differentiation in vitro. Further, Fc gamma RIII(-/-) mice had impaired Th2 cytokine production and exhibited reduced airway inflammation, whereas no defect was found in Fc gamma RI(-/-) mice. The augmentation of Th2 immunity was regulated by interleukin 10 production from the DCs but was distinct and independent of the well-established role of Fc gamma RIII in augmenting antigen presentation. Thus, our studies reveal a novel and specific role for Fc gamma RIII signaling in the regulation of Th cell responses and suggest that in addition to immunoglobulin (Ig)E, antigen-specific IgG also contributes to the pathogenesis of Th2-mediated diseases such as asthma and allergies.
Collapse
Affiliation(s)
- Hozefa S Bandukwala
- Committee on Immunology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Taylor RP, Lindorfer MA. Drug Insight: the mechanism of action of rituximab in autoimmune disease—the immune complex decoy hypothesis. ACTA ACUST UNITED AC 2007; 3:86-95. [PMID: 17299446 DOI: 10.1038/ncprheum0424] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 12/06/2006] [Indexed: 02/06/2023]
Abstract
Inflammatory responses to cell-associated or tissue-associated immune complexes are key elements in the pathogenesis of several autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus and immune thrombocytopenic purpura. Effector cells, such as monocytes, macrophages and neutrophils, bind immune complexes in a process mediated by Fcgamma receptors, and these cells then initiate inflammatory reactions that lead to tissue destruction. Rituximab is an anti-CD20 monoclonal antibody that suppresses inflammation effectively in autoimmune diseases. It was initially approved by the FDA for the treatment of B-cell lymphomas and later for rheumatoid arthritis refractory to anti-tumor necrosis factor therapies. Rituximab is hypothesized to suppress disease injury in autoimmune diseases by promoting rapid and long-term elimination of circulating and possibly lymphoid-tissue-associated B cells. We suggest, however, that a different mechanism may underlie much of the therapeutic action of rituximab in autoimmune diseases: binding of tens of thousands of rituximab-IgG molecules to B cells generates decoy sacrificial cellular immune complexes that efficiently attract and bind Fcgamma receptor-expressing effector cells, which diminishes recruitment of these effector cells at sites of immune complex deposition and, therefore, reduces inflammation and tissue damage.
Collapse
Affiliation(s)
- Ronald P Taylor
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
16
|
Boross P, Verbeek JS. The complex role of Fcγ receptors in the pathology of arthritis. ACTA ACUST UNITED AC 2006; 28:339-50. [PMID: 17043867 DOI: 10.1007/s00281-006-0049-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 09/27/2006] [Indexed: 10/24/2022]
Abstract
Autoantibodies of the IgG class and the immune complexes they form are central players in the pathology of rheumatoid arthritis (RA). Receptors for the Fc part of IgG, FcgammaR constitute one of the main effector mechanisms through which IgG immune complexes exert their action. The different members of the FcgammaR family exhibit extensive structural homology leading to redundancy in ligand specificity and signal transduction. Moreover, the initiation of effector mechanisms by IgG immune complexes can also be mediated by the complement system. This strong redundancy and high degree of complexity hampers a direct in vivo analysis of antibody effector pathways. Over the last decade, mice deficient for different combinations of FcgammaR have been generated by gene targeting. These knockout mice provide excellent tools to define the specific contribution of the different FcgammaR to IgG effector pathways in well-established in vivo mouse models for arthritis. This review will discuss the results of the studies that analyze the role of the different members of the FcgammaR family in murine arthritis models and their implications for our understanding of the human disease.
Collapse
Affiliation(s)
- Peter Boross
- Department of Human Genetics, Leiden University Medical Center, Postzone S4-P P.O. Box 9600, 2300 RC, Leiden, The Netherlands,
| | | |
Collapse
|