1
|
Li H, Ju B, Luo J, Zhu L, Zhang J, Hu N, Mo L, Wang Y, Tian J, Li Q, Du X, Liu X, He L. Type I interferon-stimulated genes predict clinical response to belimumab in systemic lupus erythematosus. Eur J Pharmacol 2025; 987:177204. [PMID: 39672224 DOI: 10.1016/j.ejphar.2024.177204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
The type I interferon (IFN-I) response is crucial in systemic lupus erythematosus (SLE). The mRNA level of interferon-stimulated genes (ISGs) is widely used for evaluating the activity of IFN in SLE. However, the character of ISGs in belimumab-treated SLE patients has not be reported. In this study, we enrolled 53 SLE patients undergoing belimumab treatment and assessed their clinical responses at 3, 6, and 12 months. The expression levels of 25 ISGs in Peripheral blood mononuclear cells (PBMCs) were quantified at baseline and at 3 months using quantitative real-time PCR. Using Least absolute shrinkage and selection operator (LASSO)-logistic regression, five genes (CXCL10, EPSTI1, HECR6, IFI27, IFIH1) were identified to predict belimumab efficacy. The IFN signature score, a multivariate logistic regression model based on the change rates of these genes, positively predicted the SLE responder index (SRI) at 12 months, with an area under curve of 0.940 in receiver operating characteristic and favorable outcomes in decision curve analysis. Patients with an IFN signature score ≥0 had higher SRI response rates, better clinical markers (including SLE disease activity index 2000 scores, anti-dsDNA, IgG levels, daily doses of prednisone, and higher complement C3 and C4 levels), and faster B cell decline than those with scores <0. In conclusion, after 3 months of belimumab treatment, the expression levels of IFN-I-inducible genes varied, and the IFN signature score reliably forecasted the SRI response at 6 and 12 months.
Collapse
Affiliation(s)
- Hanchao Li
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Bomiao Ju
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Jing Luo
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Li Zhu
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Jing Zhang
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Nan Hu
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Lingfei Mo
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Yanhua Wang
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Juan Tian
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Qian Li
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xinru Du
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xinyi Liu
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Lan He
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China.
| |
Collapse
|
2
|
Zhang Z, Zhang Y, Chen Z, Xia L. Emerging roles of SLAMF7 in immune cells and related diseases. Innate Immun 2025; 31:17534259251326700. [PMID: 40091370 PMCID: PMC11912174 DOI: 10.1177/17534259251326700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/21/2024] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Immune cells are heterogeneous and perform different functions in different microenvironment, thus playing different roles in different stages of diseases. Studies have shown that immune cells are involved in the pathogenesis of many diseases, and there is a causal association of immune cells with disease states. Signaling Lymphocyte Activation Molecule family (SLAMF) members are a newly appreciated group of specific receptors that are mainly expressed in immune cells and whose role is to regulate the function of immune cells. SLAMF7, also known as CD319, has been widely reported in multiple myeloma, and in recent years, more and more studies have shown that SLAMF7 is widely involved in the function of immune cells and the progression of breast cancer, acquired immune deficiency syndrome, systemic lupus erythematosus and other immune cells-related diseases. However, the mechanisms underlying the regulatory role of SLAMF7 on immune cells, and the impact on the progression of immune cells-related diseases remain poorly elucidated. In this review, we summarize current knowledge about the role of SLAMF7 in immune cells and related diseases such as cancer, infectious disease, autoimmune disease and atherosclerosis, and the therapeutic strategy targeting SLAMF7 is also described. By better understanding the role and regulation of SLAMF7, we hope to provide new insights and directions for improving the diagnosis and treatment of inflammation.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zeyu Chen
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Institute of Hematological Disease, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Lu K, Li X, Wu J. Sirtuin 3 is required for the dexmedetomidine-mediated alleviation of inflammation and oxidative stress in nephritis. Immun Inflamm Dis 2024; 12:e1135. [PMID: 38270316 PMCID: PMC10777884 DOI: 10.1002/iid3.1135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/23/2023] [Accepted: 12/17/2023] [Indexed: 01/26/2024] Open
Abstract
INTRODUCTION Although sirtuin 3 (SIRT3) is known to be involved in dexmedetomidine (DEX)-mediated alleviation of renal ischemia and reperfusion injury, the influence of the association between DEX and SIRT3 on nephritis development remains unclear. In this study, the role of SIRT3 in DEX-mediated amelioration of inflammation and oxidative stress in nephritis as well as the possible underlying mechanism were explored in vivo and in vitro. METHODS An animal model of glomerulonephritis was generated by injecting mice with interferon-alpha (IFNα)-expressing adenoviruses, and periodic acid-Schiff staining was then used to reveal pathogenicity-related changes in the renal tissue. Additionally, human embryonic kidney cells (HEK293) and renal mesangial cells (RMCs) were treated with IFNα to establish cell models of inflammation in vitro. RESULTS DEX administration alleviated glomerulonephritis in the animal model and upregulated SIRT3 expression in the renal tissue. SIRT3 knockdown inhibited the renoprotective effects of DEX against nephritis. IFNα induced inflammation, oxidative stress, and apoptosis in the RMCs and HEK293 cells and reduced their growth, as evidenced by the evaluation of cytokine levels (enzyme-linked immunosorbent assay), reactive oxygen species generation, catalase and superoxide dismutase activities, nuclear factor-erythroid factor 2-related factor 2/heme oxygenase-1 signal transduction, apoptotic cell proportion, and cell viability. In addition to promoting SIRT3 expression, DEX inhibited IFNα-induced inflammation, oxidative stress, and apoptosis in these cells and promoted their viability. SIRT3 knockdown partially reversed the beneficial effects of DEX on RMCs and HEK293 cells. CONCLUSIONS Our results suggest that DEX exhibits renoprotective activity during nephritis progression, protecting renal cells against inflammatory injury by promoting SIRT3 expression.
Collapse
Affiliation(s)
- Kai Lu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Xinlong Li
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Jie Wu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
4
|
Crawford JD, Wang H, Trejo-Zambrano D, Cimbro R, Talbot CC, Thomas MA, Curran AM, Girgis AA, Schroeder JT, Fava A, Goldman DW, Petri M, Rosen A, Antiochos B, Darrah E. The XIST lncRNA is a sex-specific reservoir of TLR7 ligands in SLE. JCI Insight 2023; 8:e169344. [PMID: 37733447 PMCID: PMC10634230 DOI: 10.1172/jci.insight.169344] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease with a dramatic sex bias, affecting 9 times more women than men. Activation of Toll-like receptor 7 (TLR7) by self-RNA is a central pathogenic process leading to aberrant production of type I interferon (IFN) in SLE, but the specific RNA molecules that serve as TLR7 ligands have not been defined. By leveraging gene expression data and the known sequence specificity of TLR7, we identified the female-specific X-inactive specific transcript (XIST) long noncoding RNA as a uniquely rich source of TLR7 ligands in SLE. XIST RNA stimulated IFN-α production by plasmacytoid DCs in a TLR7-dependent manner, and deletion of XIST diminished the ability of whole cellular RNA to activate TLR7. XIST levels were elevated in blood leukocytes from women with SLE compared with controls, correlated positively with disease activity and the IFN signature, and were enriched in extracellular vesicles released from dying cells in vitro. Importantly, XIST was not IFN inducible, suggesting that XIST is a driver, rather than a consequence, of IFN in SLE. Overall, our work elucidated a role for XIST RNA as a female sex-specific danger signal underlying the sex bias in SLE.
Collapse
Affiliation(s)
| | - Hong Wang
- Division of Rheumatology, Department of Medicine
| | | | | | - C. Conover Talbot
- The Single Cell and Transcriptomics Core, Institute for Basic Biomedical Sciences; and
| | | | | | | | - John T. Schroeder
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrea Fava
- Division of Rheumatology, Department of Medicine
| | | | | | - Antony Rosen
- Division of Rheumatology, Department of Medicine
| | | | - Erika Darrah
- Division of Rheumatology, Department of Medicine
| |
Collapse
|
5
|
Guo X, He C, Xin S, Gao H, Wang B, Liu X, Zhang S, Gong F, Yu X, Pan L, Sun F, Xu J. Current perspective on biological properties of plasmacytoid dendritic cells and dysfunction in gut. Immun Inflamm Dis 2023; 11:e1005. [PMID: 37773693 PMCID: PMC10510335 DOI: 10.1002/iid3.1005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs), a subtype of DC, possess unique developmental, morphological, and functional traits that have sparked much debate over the years whether they should be categorized as DCs. The digestive system has the greatest mucosal tissue overall, and the pDC therein is responsible for shaping the adaptive and innate immunity of the gastrointestinal tract, resisting pathogen invasion through generating type I interferons, presenting antigens, and participating in immunological responses. Therefore, its alleged importance in the gut has received a lot of attention in recent years, and a fresh functional overview is still required. Here, we summarize the current understanding of mouse and human pDCs, ranging from their formation and different qualities compared with related cell types to their functional characteristics in intestinal disorders, including colon cancer, infections, autoimmune diseases, and intestinal graft-versus-host disease. The purpose of this review is to convey our insights, demonstrate the limits of existing research, and lay a theoretical foundation for the rational development and use of pDCs in future clinical practice.
Collapse
Affiliation(s)
- Xueran Guo
- Department of Clinical Medicine, Beijing An Zhen HospitalCapital Medical UniversityBeijingChina
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Department of Clinical Laboratory, Aerospace Center HospitalPeking UniversityBeijingChina
| | - Boya Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijingChina
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Fengrong Gong
- Department of Clinical Medicine, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Xinyi Yu
- Department of Clinical Medicine, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Luming Pan
- Department of Clinical Medicine, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Fangling Sun
- Department of Laboratory Animal Research, Xuan Wu HospitalCapital Medical UniversityBeijingChina
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| |
Collapse
|
6
|
Brzezicka KA, Paulson JC. Impact of Siglecs on autoimmune diseases. Mol Aspects Med 2023; 90:101140. [PMID: 36055802 PMCID: PMC9905255 DOI: 10.1016/j.mam.2022.101140] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 02/08/2023]
Abstract
Autoimmune diseases affect tens of millions of people just in the United States alone. Most of the available treatment options are aimed at reducing symptoms but do not lead to cures. Individuals affected with autoimmune diseases suffer from the imbalance between tolerogenic and immunogenic functions of their immune system. Often pathogenesis is mediated by autoreactive B and T cells that escape central tolerance and react against self-antigens attacking healthy tissues in the body. In recent years Siglecs, sialic-acid-binding immunoglobulin (Ig)-like lectins, have gained attention as immune checkpoints for therapeutic interventions to dampen excessive immune responses and to restore immune tolerance in autoimmune diseases. Many Siglecs function as inhibitory receptors suppressing activation signals in various immune cells through binding to sialic acid ligands as signatures of self. In this review, we highlight potential of Siglecs in suppressing immune responses causing autoimmune diseases. In particular, we cover the roles of CD22 and Siglec-G/Siglec-10 in regulating autoreactive B cell responses. We discuss several functions of Siglec-10 in the immune modulation of other immune cells, and the potential of therapeutic strategies for restoring immune tolerance by targeting Siglecs and expanding regulatory T cells. Finally, we briefly review efforts evaluating Siglec-based biomarkers to monitor autoimmune diseases.
Collapse
Affiliation(s)
- Katarzyna Alicja Brzezicka
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
7
|
Wang L, Yang Z, Yu H, Lin W, Wu R, Yang H, Yang K. Predicting diagnostic gene expression profiles associated with immune infiltration in patients with lupus nephritis. Front Immunol 2022; 13:839197. [PMID: 36532018 PMCID: PMC9755505 DOI: 10.3389/fimmu.2022.839197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
Objective To identify potential diagnostic markers of lupus nephritis (LN) based on bioinformatics and machine learning and to explore the significance of immune cell infiltration in this pathology. Methods Seven LN gene expression datasets were downloaded from the GEO database, and the larger sample size was used as the training group to obtain differential genes (DEGs) between LN and healthy controls, and to perform gene function, disease ontology (DO), and gene set enrichment analyses (GSEA). Two machine learning algorithms, least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE), were applied to identify candidate biomarkers. The diagnostic value of LN diagnostic gene biomarkers was further evaluated in the area under the ROC curve observed in the validation dataset. CIBERSORT was used to analyze 22 immune cell fractions from LN patients and to analyze their correlation with diagnostic markers. Results Thirty and twenty-one DEGs were screened in kidney tissue and peripheral blood, respectively. Both of which covered macrophages and interferons. The disease enrichment analysis of DEGs in kidney tissues showed that they were mainly involved in immune and renal diseases, and in peripheral blood it was mainly enriched in cardiovascular system, bone marrow, and oral cavity. The machine learning algorithm combined with external dataset validation revealed that C1QA(AUC = 0.741), C1QB(AUC = 0.758), MX1(AUC = 0.865), RORC(AUC = 0.911), CD177(AUC = 0.855), DEFA4(AUC= 0.843)and HERC5(AUC = 0.880) had high diagnostic value and could be used as diagnostic biomarkers of LN. Compared to controls, pathways such as cell adhesion molecule cam, and systemic lupus erythematosus were activated in kidney tissues; cell cycle, cytoplasmic DNA sensing pathways, NOD-like receptor signaling pathways, proteasome, and RIG-1-like receptors were activated in peripheral blood. Immune cell infiltration analysis showed that diagnostic markers in kidney tissue were associated with T cells CD8 and Dendritic cells resting, and in blood were associated with T cells CD4 memory resting, suggesting that CD4 T cells, CD8 T cells and dendritic cells are closely related to the development and progression of LN. Conclusion C1QA, C1QB, MX1, RORC, CD177, DEFA4 and HERC5 could be used as new candidate molecular markers for LN. It may provide new insights into the diagnosis and molecular treatment of LN in the future.
Collapse
Affiliation(s)
- Lin Wang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihua Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hangxing Yu
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Lin
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruoxi Wu
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongtao Yang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kang Yang
- Nephrology Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| |
Collapse
|
8
|
Dodd KC, Menon M. Sex bias in lymphocytes: Implications for autoimmune diseases. Front Immunol 2022; 13:945762. [PMID: 36505451 PMCID: PMC9730535 DOI: 10.3389/fimmu.2022.945762] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Autoimmune diseases are characterized by a significant sex dimorphism, with women showing increased susceptibility to disease. This is, at least in part, due to sex-dependent differences in the immune system that are influenced by the complex interplay between sex hormones and sex chromosomes, with contribution from sociological factors, diet and gut microbiota. Sex differences are evident in the number and function of lymphocyte populations. Women mount a stronger pro-inflammatory response than males, with increased lymphocyte proliferation, activation and pro-inflammatory cytokine production, whereas men display expanded regulatory cell subsets. Ageing alters the immune landscape of men and women in differing ways, resulting in changes in autoimmune disease susceptibility. Here we review the current literature on sex differences in lymphocyte function, the factors that influence this, and the implications for autoimmune disease. We propose that improved understanding of sex bias in lymphocyte function can provide sex-specific tailoring of treatment strategies for better management of autoimmune diseases.
Collapse
Affiliation(s)
- Katherine C. Dodd
- Lydia Becker Institute of Immunology and Inflammation, Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom,Manchester Centre for Clinical Neurosciences, Salford Royal Hospital, Salford, United Kingdom
| | - Madhvi Menon
- Lydia Becker Institute of Immunology and Inflammation, Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom,*Correspondence: Madhvi Menon,
| |
Collapse
|
9
|
Stergioti EM, Manolakou T, Boumpas DT, Banos A. Antiviral Innate Immune Responses in Autoimmunity: Receptors, Pathways, and Therapeutic Targeting. Biomedicines 2022; 10:2820. [PMID: 36359340 PMCID: PMC9687478 DOI: 10.3390/biomedicines10112820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 09/28/2023] Open
Abstract
Innate immune receptors sense nucleic acids derived from viral pathogens or self-constituents and initiate an immune response, which involves, among other things, the secretion of cytokines including interferon (IFN) and the activation of IFN-stimulated genes (ISGs). This robust and well-coordinated immune response is mediated by the innate immune cells and is critical to preserving and restoring homeostasis. Like an antiviral response, during an autoimmune disease, aberrations of immune tolerance promote inflammatory responses to self-components, such as nucleic acids and immune complexes (ICs), leading to the secretion of cytokines, inflammation, and tissue damage. The aberrant immune response within the inflammatory milieu of the autoimmune diseases may lead to defective viral responses, predispose to autoimmunity, or precipitate a flare of an existing autoimmune disease. Herein, we review the literature on the crosstalk between innate antiviral immune responses and autoimmune responses and discuss the pitfalls and challenges regarding the therapeutic targeting of the mechanisms involved.
Collapse
Affiliation(s)
- Eirini Maria Stergioti
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Theodora Manolakou
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Dimitrios T. Boumpas
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, 124 62 Athens, Greece
| | - Aggelos Banos
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
| |
Collapse
|
10
|
Wang Y, Guga S, Wu K, Khaw Z, Tzoumkas K, Tombleson P, Comeau ME, Langefeld CD, Cunninghame Graham DS, Morris DL, Vyse TJ. COVID-19 and systemic lupus erythematosus genetics: A balance between autoimmune disease risk and protection against infection. PLoS Genet 2022; 18:e1010253. [PMID: 36327221 PMCID: PMC9632821 DOI: 10.1371/journal.pgen.1010253] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/18/2022] [Indexed: 11/06/2022] Open
Abstract
Genome wide association studies show there is a genetic component to severe COVID-19. We find evidence that the genome-wide genetic association signal with severe COVID-19 is correlated with that of systemic lupus erythematosus (SLE), having formally tested this using genetic correlation analysis by LD score regression. To identify the shared associated loci and gain insight into the shared genetic effects, using summary level data we performed meta-analyses, a local genetic correlation analysis and fine-mapping using stepwise regression and functional annotation. This identified multiple loci shared between the two traits, some of which exert opposing effects. The locus with most evidence of shared association is TYK2, a gene critical to the type I interferon pathway, where the local genetic correlation is negative. Another shared locus is CLEC1A, where the direction of effects is aligned, that encodes a lectin involved in cell signaling, and the anti-fungal immune response. Our analyses suggest that several loci with reciprocal effects between the two traits have a role in the defense response pathway, adding to the evidence that SLE risk alleles are protective against infection. We observed a correlation between the genetic associations with severe COVID-19 and those with systemic lupus erythematosus (SLE, Lupus), and aimed to discover which genetic loci were shared by these diseases and what biological processes were involved. This resulted in the discovery of several genetic loci, some of which had alleles that were risk for both diseases and some of which were risk for severe COVID-19 yet protective for SLE. The locus with most evidence of shared association (TYK2) is involved in interferon production, a process that is important in response to viral infection and known to be dysregulated in SLE patients. Other shared associated loci contained genes also involved in the defense response and the immune system signaling. These results add to the growing evidence that there are alleles in the human genome that provide protection against viral infection yet are risk for autoimmune disease.
Collapse
Affiliation(s)
- Yuxuan Wang
- Department of Medical & Molecular Genetics, King’s College London, London, United Kingdom
| | - Suri Guga
- Department of Medical & Molecular Genetics, King’s College London, London, United Kingdom
| | - Kejia Wu
- Department of Medical & Molecular Genetics, King’s College London, London, United Kingdom
| | - Zoe Khaw
- Department of Medical & Molecular Genetics, King’s College London, London, United Kingdom
| | - Konstantinos Tzoumkas
- Department of Medical & Molecular Genetics, King’s College London, London, United Kingdom
| | - Phil Tombleson
- NIHR GSTFT/KCL Biomedical Research Centre, London, United Kingdom
| | - Mary E. Comeau
- Department of Biostatistics and Data Science and Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Carl D. Langefeld
- Department of Biostatistics and Data Science and Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | | | - David L. Morris
- Department of Medical & Molecular Genetics, King’s College London, London, United Kingdom
- * E-mail:
| | - Timothy J. Vyse
- Department of Medical & Molecular Genetics, King’s College London, London, United Kingdom
| |
Collapse
|
11
|
Kobayashi S, Wannakul T, Sekino K, Takahashi Y, Kagawa Y, Miyazaki H, Umaru BA, Yang S, Yamamoto Y, Owada Y. Fatty acid-binding protein 5 limits the generation of Foxp3 + regulatory T cells through regulating plasmacytoid dendritic cell function in the tumor microenvironment. Int J Cancer 2022; 150:152-163. [PMID: 34449874 DOI: 10.1002/ijc.33777] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 01/28/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) promote viral elimination by producing large amounts of Type I interferon. Recent studies have shown that pDCs regulate the pathogenesis of diverse inflammatory diseases, such as cancer. Fatty acid-binding protein 5 (FABP5) is a cellular chaperone of long-chain fatty acids that induce biological responses. Although the effects of FABP-mediated lipid metabolism are well studied in various immune cells, its role in pDCs remains unclear. This study, which compares wild-type and Fabp5-/- mice, provides the first evidence that FABP5-mediated lipid metabolism regulates the commitment of pDCs to inflammatory vs tolerogenic gene expression patterns in the tumor microenvironment and in response to toll-like receptor stimulation. Additionally, we demonstrated that FABP5 deficiency in pDCs affects the surrounding cellular environment, and that FABP5 expression in pDCs supports the appropriate generation of regulatory T cells (Tregs). Collectively, our findings reveal that pDC FABP5 acts as an important regulator of tumor immunity by controlling lipid metabolism.
Collapse
Affiliation(s)
- Shuhei Kobayashi
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tunyanat Wannakul
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kaname Sekino
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yu Takahashi
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshiteru Kagawa
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hirofumi Miyazaki
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Shuhan Yang
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yui Yamamoto
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
12
|
Immunogenetics of Lupus Erythematosus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:213-257. [DOI: 10.1007/978-3-030-92616-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Ghabeshi S, Najafi A, Zamani B, Soltani M, Arero AG, Izadi S, Piroozmand A. Evaluation of molecular apoptosis signaling pathways and its correlation with EBV viral load in SLE patients using systems biology approach. Hum Antibodies 2021; 30:37-46. [PMID: 34864653 DOI: 10.3233/hab-211505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Considerable evidence supports that SLE could be related to apoptotic cells and EBV infection. OBJECTIVE The aim of this study was to identify the transcriptional signature of EBV infection in SLE patients for survey of the molecular apoptosis signaling pathways. METHODS The PBMCs gene expression profiles of healthy control and SLE patients were obtained from GEO. Functional annotation and signaling pathway enrichment were carried out using DAVID, KEGG. To validate bioinformatics analysis the changes in genes expression of some of obtained genes, Real time PCR was performed on PBMCs from 28 SLE patients and 18 controls. RESULTS We found that mean viral load was 6013 ± 390.1 copy/μg DNA from PBMCs in all patients. QRT-PCR results showed that the expression of the DUSP1 and LAMP3 genes which had most changes in the logFC among 4 candidate genes, increased significantly in comparison with control. The consistent expression of LMP2 as viral latency gene involve in apoptosis signaling pathways was detected in SLE patients with EBV viral load and some controls. CONCLUSIONS The study indicated that some cellular genes may have an important role in pathogenesis of SLE through apoptosis signaling pathways. Beside, EBV infection as an environmental risk factor for SLE may affect the dysfunction of apoptosis.
Collapse
Affiliation(s)
- Soad Ghabeshi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Najafi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Batol Zamani
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mozhdeh Soltani
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amanuel Godana Arero
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran.,Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shima Izadi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Piroozmand
- Department of Microbiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
14
|
Gallucci S, Meka S, Gamero AM. Abnormalities of the type I interferon signaling pathway in lupus autoimmunity. Cytokine 2021; 146:155633. [PMID: 34340046 PMCID: PMC8475157 DOI: 10.1016/j.cyto.2021.155633] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022]
Abstract
Type I interferons (IFNs), mostly IFNα and IFNβ, and the type I IFN Signature are important in the pathogenesis of Systemic Lupus Erythematosus (SLE), an autoimmune chronic condition linked to inflammation. Both IFNα and IFNβ trigger a signaling cascade that, through the activation of JAK1, TYK2, STAT1 and STAT2, initiates gene transcription of IFN stimulated genes (ISGs). Noteworthy, other STAT family members and IFN Responsive Factors (IRFs) can also contribute to the activation of the IFN response. Aberrant type I IFN signaling, therefore, can exacerbate SLE by deregulated homeostasis leading to unnecessary persistence of the biological effects of type I IFNs. The etiopathogenesis of SLE is partially known and considered multifactorial. Family-based and genome wide association studies (GWAS) have identified genetic and transcriptional abnormalities in key molecules directly involved in the type I IFN signaling pathway, namely TYK2, STAT1 and STAT4, and IRF5. Gain-of-function mutations that heighten IFNα/β production, which in turn maintains type I IFN signaling, are found in other pathologies like the interferonopathies. However, the distinctive characteristics have yet to be determined. Signaling molecules activated in response to type I IFNs are upregulated in immune cell subsets and affected tissues of SLE patients. Moreover, Type I IFNs induce chromatin remodeling leading to a state permissive to transcription, and SLE patients have increased global and gene-specific epigenetic modifications, such as hypomethylation of DNA and histone acetylation. Epigenome wide association studies (EWAS) highlight important differences between SLE patients and healthy controls in Interferon Stimulated Genes (ISGs). The combination of environmental and genetic factors may stimulate type I IFN signaling transiently and produce long-lasting detrimental effects through epigenetic alterations. Substantial evidence for the pathogenic role of type I IFNs in SLE advocates the clinical use of neutralizing anti-type I IFN receptor antibodies as a therapeutic strategy, with clinical studies already showing promising results. Current and future clinical trials will determine whether drugs targeting molecules of the type I IFN signaling pathway, like non-selective JAK inhibitors or specific TYK2 inhibitors, may benefit people living with lupus.
Collapse
Affiliation(s)
- Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.
| | - Sowmya Meka
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ana M Gamero
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States; Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
15
|
Guo PW, Huang HT, Ma J, Zuo Y, Huang D, He LL, Wan ZM, Chen C, Yang FF, You YW. Circular RNA-0007059 protects cell viability and reduces inflammation in a nephritis cell model by inhibiting microRNA-1278/SHP-1/STAT3 signaling. Mol Med 2021; 27:113. [PMID: 34535085 PMCID: PMC8447523 DOI: 10.1186/s10020-021-00372-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022] Open
Abstract
Background Increasing evidence has indicated that circular RNAs (circRNAs) play a role in various diseases. However, the influence of circRNAs in nephritis remains unknown. Methods Microarray analysis and RT-qPCR were used to detect the expression of circRNA. Type I IFN were administrated to RMC and HEK293 cells to establish a nephritis cell model. CCK-8, MTT assay, and flow cytometry were used to assess cell proliferation, viability, and apoptosis of cells. Bioinformatics analysis and dual luciferase reporter assay detect the interaction of circ_0007059, miRNA-1278, and SHP-1. Glomerulonephritis was performed in a mouse model by administration of IFNα-expressing adenovirus. IHC staining showed the pathogenic changes. Results In the present study, the expression of circ_0007059 in type I interferon (IFN)-treated renal mesangial cells (RMCs), lupus nephritis (LN) specimens, and HEK293 cells was downregulated compared with that in normal healthy samples and untreated cells. Circ_0007059 overexpression resulted in increased cell proliferation, cell viability, apoptosis, and inflammation-associated factors (CXCL10, IFIT1, ISG15, and MX1) in RMCs and HEK293 cells. In addition, circ_0007059 overexpression significantly restored cell proliferation and viability and inhibited IFN-induced apoptosis. Further, the increased expression resulted in reduced inflammation and the downregulation of CXCL10, IFIT1, ISG15, and MX1 in RMCs and HEK293 cells. Circ_0007059 serves as a sponge for miR-1278 so that the latter can target the 3′-untranslated region of SHP-1. Overexpressed circ_0007059 inhibited miR-1278 expression and elevated SHP-1 expression, subsequently reducing STAT3 phosphorylation. Meanwhile, miR-1278 was upregulated and SHP-1 was downregulated in LN samples and IFN-treated cells. The restoration of miR-1278 counteracted the effect of circ_0007059 on viability, apoptosis, and inflammation as well as on SHP-1/STAT3 signaling in RMCs and HEK293 cells. We also investigated the role of SHP-1 overexpression in IFN-treated RMCs and HEK293 cells; SHP-1 overexpression resulted in a similar phenotype as that observed with circ_0007059 expression. Conclusions The study indicates that circ_0007059 protects RMCs against apoptosis and inflammation during nephritis by attenuating miR-1278/SHP-1/STAT3 signaling. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00372-6.
Collapse
Affiliation(s)
- Peng-Wei Guo
- First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Hai-Ting Huang
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan Road II, Baise, 533000, Guangxi Zhuang Autonomous Region, China
| | - Jing Ma
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan Road II, Baise, 533000, Guangxi Zhuang Autonomous Region, China
| | - Yao Zuo
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan Road II, Baise, 533000, Guangxi Zhuang Autonomous Region, China
| | - Dan Huang
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan Road II, Baise, 533000, Guangxi Zhuang Autonomous Region, China
| | - Lin-Lin He
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan Road II, Baise, 533000, Guangxi Zhuang Autonomous Region, China
| | - Zi-Ming Wan
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Youyi Road 1, Chongqing, 400042, China
| | - Cheng Chen
- Department of Nephrology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Fa-Fen Yang
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan Road II, Baise, 533000, Guangxi Zhuang Autonomous Region, China.
| | - Yan-Wu You
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan Road II, Baise, 533000, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
16
|
Izati AF, Mohd Shukri ND, Wan Ghazali WS, Che Hussin CM, Wong KK. Increased IL-23R + Th Cells Population Exhibits Higher SLEDAI-2K Scores in Systemic Lupus Erythematosus Patients. Front Immunol 2021; 12:690908. [PMID: 34484186 PMCID: PMC8416093 DOI: 10.3389/fimmu.2021.690908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/27/2021] [Indexed: 01/14/2023] Open
Abstract
The IL-23/IL-17 axis plays causative roles in the development and progression of systemic lupus erythematosus (SLE). However, it remains unclear if the IL-17RA+ and IL-23R+ T helper (Th) cells populations are associated with the serum IL-17 and IL-23 levels, or with the immunological parameters and disease activities in SLE patients. Herein, we examined the proportion of IL-17RA+ and IL-23R+ Th cells and serum levels of IL-17 and IL-23 in established SLE patients (n = 50) compared with healthy controls (n = 50). The associations of these interleukins and their receptors with immunological parameters [anti-nuclear antibody (ANA), anti-dsDNA antibody, and C-reactive protein (CRP)] and SLE disease activity (SLEDAI-2K scores) in SLE patients were assessed. CD3+CD4+ Th cells of SLE patients demonstrated significantly elevated IL-17RA+ (p = 1.12 x 10-4) or IL-23R+ (p = 1.98 x 10-29) populations compared with the healthy controls. Serum IL-17 levels were significantly lower in SLE patients compared with the healthy controls (p = 8.32 x 10-5), while no significant difference was observed for the IL-23 serum levels between both groups. IL-23R+ Th cells population was significantly associated with higher SLEDAI-2K scores (p = 0.017). In multivariate analysis, the proportion of IL-23R+ Th cells remained significantly associated with higher SLEDAI-2K scores independent of prednisolone intake (p = 0.027). No associations were observed between the interleukin parameters (i.e., IL-17, IL-23, IL-17RA+ Th cells, and IL-23R+ Th cells) with ANA, anti-dsDNA, and CRP status, suggesting that the IL-17/IL-23 axis acts independently of these immunological parameters. In conclusion, our results support that therapeutic inhibition of the IL-23/IL-17 axis receptors on Th cells, particularly IL-23R, is potentially relevant in SLE patients.
Collapse
Affiliation(s)
- Aziz Farah Izati
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Nur Diyana Mohd Shukri
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Wan Syamimee Wan Ghazali
- Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Che Maraina Che Hussin
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
17
|
Greenan-Barrett J, Doolan G, Shah D, Virdee S, Robinson GA, Choida V, Gak N, de Gruijter N, Rosser E, Al-Obaidi M, Leandro M, Zandi MS, Pepper RJ, Salama A, Jury EC, Ciurtin C. Biomarkers Associated with Organ-Specific Involvement in Juvenile Systemic Lupus Erythematosus. Int J Mol Sci 2021; 22:7619. [PMID: 34299237 PMCID: PMC8306911 DOI: 10.3390/ijms22147619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/16/2022] Open
Abstract
Juvenile systemic lupus erythematosus (JSLE) is characterised by onset before 18 years of age and more severe disease phenotype, increased morbidity and mortality compared to adult-onset SLE. Management strategies in JSLE rely heavily on evidence derived from adult-onset SLE studies; therefore, identifying biomarkers associated with the disease pathogenesis and reflecting particularities of JSLE clinical phenotype holds promise for better patient management and improved outcomes. This narrative review summarises the evidence related to various traditional and novel biomarkers that have shown a promising role in identifying and predicting specific organ involvement in JSLE and appraises the evidence regarding their clinical utility, focusing in particular on renal biomarkers, while also emphasising the research into cardiovascular, haematological, neurological, skin and joint disease-related JSLE biomarkers, as well as genetic biomarkers with potential clinical applications.
Collapse
Affiliation(s)
- James Greenan-Barrett
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London WC1E 6DH, UK; (J.G.-B.); (G.D.); (D.S.); (G.A.R.); (V.C.); (N.d.G.); (E.R.)
| | - Georgia Doolan
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London WC1E 6DH, UK; (J.G.-B.); (G.D.); (D.S.); (G.A.R.); (V.C.); (N.d.G.); (E.R.)
| | - Devina Shah
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London WC1E 6DH, UK; (J.G.-B.); (G.D.); (D.S.); (G.A.R.); (V.C.); (N.d.G.); (E.R.)
| | - Simrun Virdee
- Department of Ophthalmology, Royal Free Hospital, London NW3 2QG, UK;
| | - George A. Robinson
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London WC1E 6DH, UK; (J.G.-B.); (G.D.); (D.S.); (G.A.R.); (V.C.); (N.d.G.); (E.R.)
| | - Varvara Choida
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London WC1E 6DH, UK; (J.G.-B.); (G.D.); (D.S.); (G.A.R.); (V.C.); (N.d.G.); (E.R.)
| | - Nataliya Gak
- Department of Rheumatology, University College London Hospital NHS Foundation Trust, London NW1 2BU, UK; (N.G.); (M.L.)
| | - Nina de Gruijter
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London WC1E 6DH, UK; (J.G.-B.); (G.D.); (D.S.); (G.A.R.); (V.C.); (N.d.G.); (E.R.)
| | - Elizabeth Rosser
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London WC1E 6DH, UK; (J.G.-B.); (G.D.); (D.S.); (G.A.R.); (V.C.); (N.d.G.); (E.R.)
| | - Muthana Al-Obaidi
- Department of Paediatric Rheumatology, Great Ormond Street Hospital, London WC1N 3JH, UK;
- NIHR Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Maria Leandro
- Department of Rheumatology, University College London Hospital NHS Foundation Trust, London NW1 2BU, UK; (N.G.); (M.L.)
- Centre for Rheumatology, Division of Medicine, University College London, London WC1E 6DH, UK;
| | - Michael S. Zandi
- Department of Neurology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London NW1 2BU, UK;
| | - Ruth J. Pepper
- Department of Renal Medicine, Royal Free Hospital, University College London, London NW3 2QG, UK; (R.J.P.); (A.S.)
| | - Alan Salama
- Department of Renal Medicine, Royal Free Hospital, University College London, London NW3 2QG, UK; (R.J.P.); (A.S.)
| | - Elizabeth C. Jury
- Centre for Rheumatology, Division of Medicine, University College London, London WC1E 6DH, UK;
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London WC1E 6DH, UK; (J.G.-B.); (G.D.); (D.S.); (G.A.R.); (V.C.); (N.d.G.); (E.R.)
- Department of Rheumatology, University College London Hospital NHS Foundation Trust, London NW1 2BU, UK; (N.G.); (M.L.)
| |
Collapse
|
18
|
Arakawa H, Tanese K, Tanaka R, Murakami K, Sujino K, Miyamoto J, Amagai M, Tanikawa A. Efficacy of hydroxychloroquine for treating annular erythema associated with Sjögren's syndrome. J Dermatol 2021; 48:1526-1532. [PMID: 34254339 DOI: 10.1111/1346-8138.16045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/06/2021] [Indexed: 11/27/2022]
Abstract
Annular erythema is one of the cutaneous manifestations of Sjögren's syndrome (SS). Topical corticosteroids and tacrolimus, and oral corticosteroids, have been used as treatments for this condition. However, the safety and efficacy of these treatments remains unsatisfactory, and further development of therapies are desired. In this study, we performed a retrospective analysis of 16 annular erythema associated with SS (AESS) patients treated with hydroxychloroquine (HCQ). Disease activity was assessed using a modified version of the Cutaneous Lupus Erythematosus Disease Area and Severity Index (CLASI), which we termed the modified CLASI (m-CLASI). HCQ treatment improved AESS lesions in all 16 patients. The mean m-CLASI score was reduced by 85.6% at the 12-week follow-up relative to baseline (p < 0.01). Notably, 60% (6/10 cases) of patients with AESS lesions limited to the facial area achieved complete remission within 4 weeks. In the analysis of six patients who had taken oral prednisolone before starting HCQ, all were able to reduce the dose within 52 weeks without relapse. Particularly, 75% (3/4 cases) of patients with prednisolone dose of more than 5 mg/day could reduce their dose to less than 5 mg/day in combination with HCQ. For the safety concerns, two patients experienced grade 1 diarrhea during the 52-week observation period. However, neither serious adverse events nor adverse events requiring discontinuation of treatment occurred. The results of the present study suggest that HCQ may not only be highly effective as a single agent, but may also be useful as a steroid-sparing agent in refractory case requiring long-term steroid administration, making it a good treatment option for AESS.
Collapse
Affiliation(s)
- Hiroki Arakawa
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Keiji Tanese
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Ryo Tanaka
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Kaori Murakami
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuyo Sujino
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Julia Miyamoto
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Akiko Tanikawa
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
19
|
Ukadike KC, Mustelin T. Implications of Endogenous Retroelements in the Etiopathogenesis of Systemic Lupus Erythematosus. J Clin Med 2021; 10:856. [PMID: 33669709 PMCID: PMC7922054 DOI: 10.3390/jcm10040856] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease. While its etiology remains elusive, current understanding suggests a multifactorial process with contributions by genetic, immunologic, hormonal, and environmental factors. A hypothesis that combines several of these factors proposes that genomic elements, the L1 retrotransposons, are instrumental in SLE pathogenesis. L1 retroelements are transcriptionally activated in SLE and produce two proteins, ORF1p and ORF2p, which are immunogenic and can drive type I interferon (IFN) production by producing DNA species that activate cytosolic DNA sensors. In addition, these two proteins reside in RNA-rich macromolecular assemblies that also contain well-known SLE autoantigens like Ro60. We surmise that cells expressing L1 will exhibit all the hallmarks of cells infected by a virus, resulting in a cellular and humoral immune response similar to those in chronic viral infections. However, unlike exogenous viruses, L1 retroelements cannot be eliminated from the host genome. Hence, dysregulated L1 will cause a chronic, but perhaps episodic, challenge for the immune system. The clinical and immunological features of SLE can be at least partly explained by this model. Here we review the support for, and the gaps in, this hypothesis of SLE and its potential for new diagnostic, prognostic, and therapeutic options in SLE.
Collapse
Affiliation(s)
| | - Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington School of Medicine, 750 Republican Street, Seattle, WA 98109, USA;
| |
Collapse
|
20
|
Song S, De S, Nelson V, Chopra S, LaPan M, Kampta K, Sun S, He M, Thompson CD, Li D, Shih T, Tan N, Al-Abed Y, Capitle E, Aranow C, Mackay M, Clapp WL, Barnes BJ. Inhibition of IRF5 hyperactivation protects from lupus onset and severity. J Clin Invest 2021; 130:6700-6717. [PMID: 32897883 PMCID: PMC7685739 DOI: 10.1172/jci120288] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
The transcription factor IFN regulatory factor 5 (IRF5) is a central mediator of innate and adaptive immunity. Genetic variations within IRF5 are associated with a risk of systemic lupus erythematosus (SLE), and mice lacking Irf5 are protected from lupus onset and severity, but how IRF5 functions in the context of SLE disease progression remains unclear. Using the NZB/W F1 model of murine lupus, we show that murine IRF5 becomes hyperactivated before clinical onset. In patients with SLE, IRF5 hyperactivation correlated with dsDNA titers. To test whether IRF5 hyperactivation is a targetable function, we developed inhibitors that are cell permeable, nontoxic, and selectively bind to the inactive IRF5 monomer. Preclinical treatment of NZB/W F1 mice with an inhibitor attenuated lupus pathology by reducing serum antinuclear autoantibodies, dsDNA titers, and the number of circulating plasma cells, which alleviated kidney pathology and improved survival. Clinical treatment of MRL/lpr and pristane-induced lupus mice with an inhibitor led to significant reductions in dsDNA levels and improved survival. In ex vivo human studies, the inhibitor blocked SLE serum-induced IRF5 activation and reversed basal IRF5 hyperactivation in SLE immune cells. We believe this study provides the first in vivo clinical support for treating patients with SLE with an IRF5 inhibitor.
Collapse
Affiliation(s)
- Su Song
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Saurav De
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Rutgers Graduate School of Biomedical Sciences, Newark, New Jersey, USA
| | - Victoria Nelson
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Samin Chopra
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Margaret LaPan
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Kyle Kampta
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Shan Sun
- Center for Molecular Innovation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Mingzhu He
- Center for Molecular Innovation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Cherrie D Thompson
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Dan Li
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Tiffany Shih
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Natalie Tan
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Yousef Al-Abed
- Center for Molecular Innovation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Eugenio Capitle
- Division of Allergy, Immunology and Rheumatology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Cynthia Aranow
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Meggan Mackay
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - William L Clapp
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
21
|
Peng Y, Chen B, Sheng X, Qian Y. Polymorphisms in IRF5 and TYK2 Genes Are Associated with Rheumatoid Arthritis in a Chinese Han Population. Med Sci Monit 2021; 27:e928455. [PMID: 33583939 PMCID: PMC7893827 DOI: 10.12659/msm.928455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/30/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The IRF5 and TYK2 gene polymorphisms are associated with autoimmune diseases. However, the relationship between the IRF5 and TYK2 gene polymorphisms and RA risk in the Chinese Han population was inconsistent. MATERIAL AND METHODS A total of 578 RA patients (case group) and 578 healthy controls (control group) were assessed in a case-control study. Genotyping of IRF5 (Exon 6 insertion/deletion (in/de), rs2004640, rs2070197, rs10954213) and TYK2 (rs280500, rs280519, rs280521, rs8108236, rs12720253) was performed by direct sequencing method. Data analysis was performed by SHEsis. RESULTS The rs2004640T allele (P=0.0003) and the dominant (P=0.001) and recessive (P=0.01) models of rs2004640 were associated with RA risk after stringent Bonferroni correction (0.05/4). The IRF5 exon 6 (in), rs2070197 and rs10954213 were not associated with RA (P>0.05). Two haplotypes of IRF5 (DTAT and DTGG) were associated with RA susceptibility (P<0.05). In addition, the frequencies of TYK2 rs280500A, rs280521A, and rs8108236A were significantly higher in the RA group compared with the control group (P<0.05). TYK2 rs280500, rs280521, and rs8108236 were associated with RA susceptibility in the dominant model, but the same was not observed for rs280519 and rs12720253 (P<0.05). Furthermore, 3 risk haplotypes (AAAGT, AGGAT, and GAAAT) and a protective haplotype (GAGGT) of TYK2 gene were associated with RA susceptibility (P<0.05). CONCLUSIONS Our results suggest that IRF5 rs2004640, TYK2 rs280500, rs280521, rs8108236, and haplotypes IRF5 (DTAT and DTGG) and TYK2 (AAAGT, AGGAT, GAAAT, and GAGGT) are susceptible factors for RA in a Chinese Han population.
Collapse
|
22
|
Mustelin T, Ukadike KC. How Retroviruses and Retrotransposons in Our Genome May Contribute to Autoimmunity in Rheumatological Conditions. Front Immunol 2020; 11:593891. [PMID: 33281822 PMCID: PMC7691656 DOI: 10.3389/fimmu.2020.593891] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
More than 200 human disorders include various manifestations of autoimmunity. The molecular events that lead to these diseases are still incompletely understood and their causes remain largely unknown. Numerous potential triggers of autoimmunity have been proposed over the years, but very few of them have been conclusively confirmed or firmly refuted. Viruses have topped the lists of suspects for decades, and it seems that many viruses, including those of the Herpesviridae family, indeed can influence disease initiation and/or promote exacerbations by a number of mechanisms that include prolonged anti-viral immunity, immune subverting factors, and mechanisms, and perhaps “molecular mimicry”. However, no specific virus has yet been established as being truly causative. Here, we discuss a different, but perhaps mechanistically related possibility, namely that retrotransposons or retroviruses that infected us in the past and left a lasting copy of themselves in our genome still can provoke an escalating immune response that leads to autoimmune disease. Many of these loci still encode for retroviral proteins that have retained some, or all, of their original functions. Importantly, these endogenous proviruses cannot be eliminated by the immune system the way it can eliminate exogenous viruses. Hence, if not properly controlled, they may drive a frustrated and escalating chronic, or episodic, immune response to the point of a frank autoimmune disorder. Here, we discuss the evidence and the proposed mechanisms, and assess the therapeutic options that emerge from the current understanding of this field.
Collapse
Affiliation(s)
- Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Kennedy C Ukadike
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
23
|
Harden OC, Hammad SM. Sphingolipids and Diagnosis, Prognosis, and Organ Damage in Systemic Lupus Erythematosus. Front Immunol 2020; 11:586737. [PMID: 33101319 PMCID: PMC7546393 DOI: 10.3389/fimmu.2020.586737] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that involves multiple organs and disproportionality affects females, especially African Americans from 15 to 44 years of age. SLE can lead to end organ damage including kidneys, lungs, cardiovascular and neuropsychiatric systems, with cardiovascular complications being the primary cause of death. Usually, SLE is diagnosed and its activity is assessed using the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI), Systemic Lupus International Collaborating Clinics Damage Index (SLICC/ACR), and British Isles Lupus Assessment Group (BILAG) Scales, which unfortunately often occurs after a certain degree of systemic involvements, disease activity or organ damage already exists. There is certainly a need for the identification of early biomarkers to diagnose and assess disease activity as well as to evaluate disease prognosis and response to treatment earlier in the course of the disease. Here we review advancements made in the area of sphingolipidomics as a diagnostic/prognostic tool for SLE and its co-morbidities. We also discuss recent reports on differential sphingolipid metabolism and blood sphingolipid profiles in SLE-prone animal models as well as in diverse cohorts of SLE patients. In addition, we address targeting sphingolipids and their metabolism as a method of treating SLE and some of its complications. Although such treatments have already shown promise in preventing organ-specific pathology caused by SLE, further investigational studies and clinical trials are warranted.
Collapse
Affiliation(s)
- Olivia C Harden
- College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Samar M Hammad
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
24
|
Morand EF, Furie R, Tanaka Y, Bruce IN, Askanase AD, Richez C, Bae SC, Brohawn PZ, Pineda L, Berglind A, Tummala R. Trial of Anifrolumab in Active Systemic Lupus Erythematosus. N Engl J Med 2020; 382:211-221. [PMID: 31851795 DOI: 10.1056/nejmoa1912196] [Citation(s) in RCA: 759] [Impact Index Per Article: 151.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Anifrolumab, a human monoclonal antibody to type I interferon receptor subunit 1 investigated for the treatment of systemic lupus erythematosus (SLE), did not have a significant effect on the primary end point in a previous phase 3 trial. The current phase 3 trial used a secondary end point from that trial as the primary end point. METHODS We randomly assigned patients in a 1:1 ratio to receive intravenous anifrolumab (300 mg) or placebo every 4 weeks for 48 weeks. The primary end point of this trial was a response at week 52 defined with the use of the British Isles Lupus Assessment Group (BILAG)-based Composite Lupus Assessment (BICLA). A BICLA response requires reduction in any moderate-to-severe baseline disease activity and no worsening in any of nine organ systems in the BILAG index, no worsening on the Systemic Lupus Erythematosus Disease Activity Index, no increase of 0.3 points or more in the score on the Physician Global Assessment of disease activity (on a scale from 0 [no disease activity] to 3 [severe disease]), no discontinuation of the trial intervention, and no use of medications restricted by the protocol. Secondary end points included a BICLA response in patients with a high interferon gene signature at baseline; reductions in the glucocorticoid dose, in the severity of skin disease, and in counts of swollen and tender joints; and the annualized flare rate. RESULTS A total of 362 patients received the randomized intervention: 180 received anifrolumab and 182 received placebo. The percentage of patients who had a BICLA response was 47.8% in the anifrolumab group and 31.5% in the placebo group (difference, 16.3 percentage points; 95% confidence interval, 6.3 to 26.3; P = 0.001). Among patients with a high interferon gene signature, the percentage with a response was 48.0% in the anifrolumab group and 30.7% in the placebo group; among patients with a low interferon gene signature, the percentage was 46.7% and 35.5%, respectively. Secondary end points with respect to the glucocorticoid dose and the severity of skin disease, but not counts of swollen and tender joints and the annualized flare rate, also showed a significant benefit with anifrolumab. Herpes zoster and bronchitis occurred in 7.2% and 12.2% of the patients, respectively, who received anifrolumab. There was one death from pneumonia in the anifrolumab group. CONCLUSIONS Monthly administration of anifrolumab resulted in a higher percentage of patients with a response (as defined by a composite end point) at week 52 than did placebo, in contrast to the findings of a similar phase 3 trial involving patients with SLE that had a different primary end point. The frequency of herpes zoster was higher with anifrolumab than with placebo. (Funded by AstraZeneca; ClinicalTrials.gov number, NCT02446899.).
Collapse
Affiliation(s)
- Eric F Morand
- From the Centre for Inflammatory Disease, Monash University, Melbourne, VIC, Australia (E.F.M.); the Division of Rheumatology, Zucker School of Medicine at Hofstra-Northwell, Great Neck (R.F.), and the Department of Medicine, Division of Rheumatology, Columbia University College of Physicians and Surgeons, New York (A.D.A.) - both in New York; the First Department of Internal Medicine and Graduate School of Medical Science, University of Occupational and Environmental Health Japan, Kitakyushu (Y.T.); the Arthritis Research UK Centre for Epidemiology, Faculty of Biology, Medicine, and Health, University of Manchester and National Institute for Health Research Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom (I.N.B.); the Rheumatology Department, Centre Hospitalier Universitaire de Bordeaux-Groupe Hospitalier Pellegrin, and Unité Mixte de Recherche-Centre National de la Recherche Scientifique 5164, Bordeaux University, Bordeaux, France (C.R.); the Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea (S.-C.B.); AstraZeneca, Gaithersburg, MD (P.Z.B., L.P., R.T.); and AstraZeneca, Gothenburg, Sweden (A.B.)
| | - Richard Furie
- From the Centre for Inflammatory Disease, Monash University, Melbourne, VIC, Australia (E.F.M.); the Division of Rheumatology, Zucker School of Medicine at Hofstra-Northwell, Great Neck (R.F.), and the Department of Medicine, Division of Rheumatology, Columbia University College of Physicians and Surgeons, New York (A.D.A.) - both in New York; the First Department of Internal Medicine and Graduate School of Medical Science, University of Occupational and Environmental Health Japan, Kitakyushu (Y.T.); the Arthritis Research UK Centre for Epidemiology, Faculty of Biology, Medicine, and Health, University of Manchester and National Institute for Health Research Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom (I.N.B.); the Rheumatology Department, Centre Hospitalier Universitaire de Bordeaux-Groupe Hospitalier Pellegrin, and Unité Mixte de Recherche-Centre National de la Recherche Scientifique 5164, Bordeaux University, Bordeaux, France (C.R.); the Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea (S.-C.B.); AstraZeneca, Gaithersburg, MD (P.Z.B., L.P., R.T.); and AstraZeneca, Gothenburg, Sweden (A.B.)
| | - Yoshiya Tanaka
- From the Centre for Inflammatory Disease, Monash University, Melbourne, VIC, Australia (E.F.M.); the Division of Rheumatology, Zucker School of Medicine at Hofstra-Northwell, Great Neck (R.F.), and the Department of Medicine, Division of Rheumatology, Columbia University College of Physicians and Surgeons, New York (A.D.A.) - both in New York; the First Department of Internal Medicine and Graduate School of Medical Science, University of Occupational and Environmental Health Japan, Kitakyushu (Y.T.); the Arthritis Research UK Centre for Epidemiology, Faculty of Biology, Medicine, and Health, University of Manchester and National Institute for Health Research Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom (I.N.B.); the Rheumatology Department, Centre Hospitalier Universitaire de Bordeaux-Groupe Hospitalier Pellegrin, and Unité Mixte de Recherche-Centre National de la Recherche Scientifique 5164, Bordeaux University, Bordeaux, France (C.R.); the Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea (S.-C.B.); AstraZeneca, Gaithersburg, MD (P.Z.B., L.P., R.T.); and AstraZeneca, Gothenburg, Sweden (A.B.)
| | - Ian N Bruce
- From the Centre for Inflammatory Disease, Monash University, Melbourne, VIC, Australia (E.F.M.); the Division of Rheumatology, Zucker School of Medicine at Hofstra-Northwell, Great Neck (R.F.), and the Department of Medicine, Division of Rheumatology, Columbia University College of Physicians and Surgeons, New York (A.D.A.) - both in New York; the First Department of Internal Medicine and Graduate School of Medical Science, University of Occupational and Environmental Health Japan, Kitakyushu (Y.T.); the Arthritis Research UK Centre for Epidemiology, Faculty of Biology, Medicine, and Health, University of Manchester and National Institute for Health Research Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom (I.N.B.); the Rheumatology Department, Centre Hospitalier Universitaire de Bordeaux-Groupe Hospitalier Pellegrin, and Unité Mixte de Recherche-Centre National de la Recherche Scientifique 5164, Bordeaux University, Bordeaux, France (C.R.); the Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea (S.-C.B.); AstraZeneca, Gaithersburg, MD (P.Z.B., L.P., R.T.); and AstraZeneca, Gothenburg, Sweden (A.B.)
| | - Anca D Askanase
- From the Centre for Inflammatory Disease, Monash University, Melbourne, VIC, Australia (E.F.M.); the Division of Rheumatology, Zucker School of Medicine at Hofstra-Northwell, Great Neck (R.F.), and the Department of Medicine, Division of Rheumatology, Columbia University College of Physicians and Surgeons, New York (A.D.A.) - both in New York; the First Department of Internal Medicine and Graduate School of Medical Science, University of Occupational and Environmental Health Japan, Kitakyushu (Y.T.); the Arthritis Research UK Centre for Epidemiology, Faculty of Biology, Medicine, and Health, University of Manchester and National Institute for Health Research Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom (I.N.B.); the Rheumatology Department, Centre Hospitalier Universitaire de Bordeaux-Groupe Hospitalier Pellegrin, and Unité Mixte de Recherche-Centre National de la Recherche Scientifique 5164, Bordeaux University, Bordeaux, France (C.R.); the Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea (S.-C.B.); AstraZeneca, Gaithersburg, MD (P.Z.B., L.P., R.T.); and AstraZeneca, Gothenburg, Sweden (A.B.)
| | - Christophe Richez
- From the Centre for Inflammatory Disease, Monash University, Melbourne, VIC, Australia (E.F.M.); the Division of Rheumatology, Zucker School of Medicine at Hofstra-Northwell, Great Neck (R.F.), and the Department of Medicine, Division of Rheumatology, Columbia University College of Physicians and Surgeons, New York (A.D.A.) - both in New York; the First Department of Internal Medicine and Graduate School of Medical Science, University of Occupational and Environmental Health Japan, Kitakyushu (Y.T.); the Arthritis Research UK Centre for Epidemiology, Faculty of Biology, Medicine, and Health, University of Manchester and National Institute for Health Research Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom (I.N.B.); the Rheumatology Department, Centre Hospitalier Universitaire de Bordeaux-Groupe Hospitalier Pellegrin, and Unité Mixte de Recherche-Centre National de la Recherche Scientifique 5164, Bordeaux University, Bordeaux, France (C.R.); the Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea (S.-C.B.); AstraZeneca, Gaithersburg, MD (P.Z.B., L.P., R.T.); and AstraZeneca, Gothenburg, Sweden (A.B.)
| | - Sang-Cheol Bae
- From the Centre for Inflammatory Disease, Monash University, Melbourne, VIC, Australia (E.F.M.); the Division of Rheumatology, Zucker School of Medicine at Hofstra-Northwell, Great Neck (R.F.), and the Department of Medicine, Division of Rheumatology, Columbia University College of Physicians and Surgeons, New York (A.D.A.) - both in New York; the First Department of Internal Medicine and Graduate School of Medical Science, University of Occupational and Environmental Health Japan, Kitakyushu (Y.T.); the Arthritis Research UK Centre for Epidemiology, Faculty of Biology, Medicine, and Health, University of Manchester and National Institute for Health Research Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom (I.N.B.); the Rheumatology Department, Centre Hospitalier Universitaire de Bordeaux-Groupe Hospitalier Pellegrin, and Unité Mixte de Recherche-Centre National de la Recherche Scientifique 5164, Bordeaux University, Bordeaux, France (C.R.); the Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea (S.-C.B.); AstraZeneca, Gaithersburg, MD (P.Z.B., L.P., R.T.); and AstraZeneca, Gothenburg, Sweden (A.B.)
| | - Philip Z Brohawn
- From the Centre for Inflammatory Disease, Monash University, Melbourne, VIC, Australia (E.F.M.); the Division of Rheumatology, Zucker School of Medicine at Hofstra-Northwell, Great Neck (R.F.), and the Department of Medicine, Division of Rheumatology, Columbia University College of Physicians and Surgeons, New York (A.D.A.) - both in New York; the First Department of Internal Medicine and Graduate School of Medical Science, University of Occupational and Environmental Health Japan, Kitakyushu (Y.T.); the Arthritis Research UK Centre for Epidemiology, Faculty of Biology, Medicine, and Health, University of Manchester and National Institute for Health Research Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom (I.N.B.); the Rheumatology Department, Centre Hospitalier Universitaire de Bordeaux-Groupe Hospitalier Pellegrin, and Unité Mixte de Recherche-Centre National de la Recherche Scientifique 5164, Bordeaux University, Bordeaux, France (C.R.); the Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea (S.-C.B.); AstraZeneca, Gaithersburg, MD (P.Z.B., L.P., R.T.); and AstraZeneca, Gothenburg, Sweden (A.B.)
| | - Lilia Pineda
- From the Centre for Inflammatory Disease, Monash University, Melbourne, VIC, Australia (E.F.M.); the Division of Rheumatology, Zucker School of Medicine at Hofstra-Northwell, Great Neck (R.F.), and the Department of Medicine, Division of Rheumatology, Columbia University College of Physicians and Surgeons, New York (A.D.A.) - both in New York; the First Department of Internal Medicine and Graduate School of Medical Science, University of Occupational and Environmental Health Japan, Kitakyushu (Y.T.); the Arthritis Research UK Centre for Epidemiology, Faculty of Biology, Medicine, and Health, University of Manchester and National Institute for Health Research Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom (I.N.B.); the Rheumatology Department, Centre Hospitalier Universitaire de Bordeaux-Groupe Hospitalier Pellegrin, and Unité Mixte de Recherche-Centre National de la Recherche Scientifique 5164, Bordeaux University, Bordeaux, France (C.R.); the Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea (S.-C.B.); AstraZeneca, Gaithersburg, MD (P.Z.B., L.P., R.T.); and AstraZeneca, Gothenburg, Sweden (A.B.)
| | - Anna Berglind
- From the Centre for Inflammatory Disease, Monash University, Melbourne, VIC, Australia (E.F.M.); the Division of Rheumatology, Zucker School of Medicine at Hofstra-Northwell, Great Neck (R.F.), and the Department of Medicine, Division of Rheumatology, Columbia University College of Physicians and Surgeons, New York (A.D.A.) - both in New York; the First Department of Internal Medicine and Graduate School of Medical Science, University of Occupational and Environmental Health Japan, Kitakyushu (Y.T.); the Arthritis Research UK Centre for Epidemiology, Faculty of Biology, Medicine, and Health, University of Manchester and National Institute for Health Research Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom (I.N.B.); the Rheumatology Department, Centre Hospitalier Universitaire de Bordeaux-Groupe Hospitalier Pellegrin, and Unité Mixte de Recherche-Centre National de la Recherche Scientifique 5164, Bordeaux University, Bordeaux, France (C.R.); the Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea (S.-C.B.); AstraZeneca, Gaithersburg, MD (P.Z.B., L.P., R.T.); and AstraZeneca, Gothenburg, Sweden (A.B.)
| | - Raj Tummala
- From the Centre for Inflammatory Disease, Monash University, Melbourne, VIC, Australia (E.F.M.); the Division of Rheumatology, Zucker School of Medicine at Hofstra-Northwell, Great Neck (R.F.), and the Department of Medicine, Division of Rheumatology, Columbia University College of Physicians and Surgeons, New York (A.D.A.) - both in New York; the First Department of Internal Medicine and Graduate School of Medical Science, University of Occupational and Environmental Health Japan, Kitakyushu (Y.T.); the Arthritis Research UK Centre for Epidemiology, Faculty of Biology, Medicine, and Health, University of Manchester and National Institute for Health Research Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom (I.N.B.); the Rheumatology Department, Centre Hospitalier Universitaire de Bordeaux-Groupe Hospitalier Pellegrin, and Unité Mixte de Recherche-Centre National de la Recherche Scientifique 5164, Bordeaux University, Bordeaux, France (C.R.); the Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea (S.-C.B.); AstraZeneca, Gaithersburg, MD (P.Z.B., L.P., R.T.); and AstraZeneca, Gothenburg, Sweden (A.B.)
| |
Collapse
|
25
|
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease which is facing the difficulties in treatment. Genetics play an important role in SLE. Several studies have shown that genetic factors not only affect the development of SLE, but also affect its clinical progress. In this review article, we focus on exploring the influence of genetics on different aspects of SLE pathogenesis, clinical course, and treatment and will provide some references in further precision medicine for SLE patients. The coming era of precision medicine, SLE patients will be stratified by genetic profiling. This will enable us to make more effective and precise choices of treatment plan.
Collapse
Affiliation(s)
- Ru Yang
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yaqi Hu
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Lin Bo
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
26
|
Rezaei A, Harsini S, Sadr M, Ziaee V, Rezaei N. Interleukin-23 receptor gene polymorphisms in Iranian patients with juvenile systemic lupus erythematosus. Allergol Immunopathol (Madr) 2020; 48:62-66. [PMID: 31477400 DOI: 10.1016/j.aller.2019.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 11/29/2022]
Abstract
INTRODUCTION AND OBJECTIVES Considering the possible roles of interleukin-23 receptor (IL-23R) gene in the pathogenesis of juvenile systemic lupus erythematosus (JSLE), the objective of this study was to elucidate whether polymorphisms of the IL23R are associated with susceptibility to JSLE in an Iranian population. MATERIALS AND METHODS A case-control study on 62 patients with JSLE and 78 healthy controls was performed to investigate the associations of four single nucleotide polymorphisms (SNPs) in IL-23R gene, namely, rs7517847, rs10489629, rs11209026, and rs1343151, with susceptibility to JSLE, using real-time polymerase chain reaction Taqman genotyping technique. RESULTS Analysis of allele and genotype frequency of four selected SNPs revealed statistically significant positive association between homozygous variant of rs7517847 (TT) (P, 0.02) and T allele at the same position (P, 0.01) with JSLE vulnerability. There was no significant association between other evaluated SNPs and JSLE susceptibility. CONCLUSION These findings suggest that particular IL-23R gene variants could affect individual susceptibility to JSLE.
Collapse
Affiliation(s)
- A Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - S Harsini
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - M Sadr
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - V Ziaee
- Division of Pediatric Rheumatology, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - N Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Abstract
Sexual dimorphisms account for differences in clinical manifestations or incidence of infectious or autoimmune diseases and malignancy between females and males. Females develop enhanced innate and adaptive immune responses than males and are less susceptible to many infections of bacterial, viral, parasitic, and fungal origin and malignancies but in contrast, they are more prone to develop autoimmune diseases. The higher susceptibility to infections in males is observed from birth to adulthood, suggesting that sex chromosomes and not sex hormones have a major role in sexual dimorphism in innate immunity. Sex-based regulation of immune responses ultimately contributes to age-related disease development and life expectancy. Differences between males and females have been described in the expression of pattern recognition receptors of the innate immune response and in the functional responses of phagocytes and antigen presenting cells. Different factors have been shown to account for the sex-based disparity in immune responses, including genetic factors and hormonal mediators, which contribute independently to dimorphism in the innate immune response. For instance, several genes encoding for innate immune molecules are located on the X chromosome. In addition, estrogen and/or testosterone have been reported to modulate the differentiation, maturation, lifespan, and effector functions of innate immune cells, including neutrophils, macrophages, natural killer cells, and dendritic cells. In this review, we will focus on differences between males and females in innate immunity, which represents the first line of defense against pathogens and plays a fundamental role in the activation, regulation, and orientation of the adaptive immune response.
Collapse
Affiliation(s)
- Sébastien Jaillon
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini, 20090, Pieve Emanuele, Milan, Italy. .,Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| | - Kevin Berthenet
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Cecilia Garlanda
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini, 20090, Pieve Emanuele, Milan, Italy. .,Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| |
Collapse
|
28
|
Ruacho G, Kvarnström M, Zickert A, Oke V, Rönnelid J, Eketjäll S, Elvin K, Gunnarsson I, Svenungsson E. Sjögren Syndrome in Systemic Lupus Erythematosus: A Subset Characterized by a Systemic Inflammatory State. J Rheumatol 2019; 47:865-875. [PMID: 31523050 DOI: 10.3899/jrheum.190250] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE An often-neglected subset of patients with systemic lupus erythematosus (SLE) is those with secondary Sjögren syndrome (SLE-sSS). Further, primary SS overlaps and can be difficult to delineate from SLE. To shed light on the SLE-sSS subset, we investigated a large and well-characterized SLE cohort, comparing patients with SLE-sSS and SLE patients without SS (SLE-nonsSS) and controls. METHODS We included 504 consecutive patients with SLE, fulfilling the 1982 revised American College of Rheumatology criteria, and 319 controls from the general population, matched for age and sex to the first 319 patients. SLE-sSS was defined according to the American-European Consensus Criteria (AECC). A thorough clinical examination, including subjective and objective quantifications of sicca symptoms, was performed in all participants. Autoantibodies and 20 selected cytokines were measured by luminex and multiplex analysis, respectively. RESULTS SLE-sSS, as defined by AECC, occurred in 23% of the patients with SLE. In comparison to SLE-nonsSS, the SLE-sSS group was older and more frequently female. Leukopenia and peripheral neuropathy were more frequent and nephritis less frequent. Circulating levels of 6/20 investigated proinflammatory cytokines [tumor necrosis factor-α, interleukin (IL) 6, monocyte chemoattractant protein 4, macrophage inflammatory protein 1β, IL-12/IL-23p40, and interferon γ-induced protein 10], total IgG, anti-SSA/Ro52, anti-SSA/Ro60, anti-SSB/La antibodies, and rheumatoid factor (IgM and IgA) were higher in the SLE-sSS group (p < 0.05 for all comparisons). CONCLUSION The frequency of SLE-sSS increased with age and affected roughly one-quarter of all patients with SLE. Despite less internal organ involvement, a systemic inflammatory state with high levels of proinflammatory cytokines is present in the SLE-sSS subgroup. This is a novel observation that may affect future understanding and treatment of the SLE-sSS subset.
Collapse
Affiliation(s)
- Guillermo Ruacho
- From the Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, Stockholm; Karolinska University Hospital, Stockholm; Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI-AZ ICMC), Stockholm; Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm; Center for Clinical Research, Uppsala University, Sörmland; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala; Cardiovascular, Renal and Metabolism, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Huddinge, Sweden.,G. Ruacho, DMD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Center for Clinical Research, Uppsala University; M. Kvarnström, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; A. Zickert, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; V. Oke, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; J. Rönnelid, MD, PhD, Department of Immunology, Genetics and Pathology, Uppsala University; S. Eketjäll, PhD, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, and KI-AZ ICMC; K. Elvin, MD, PhD, Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital; I. Gunnarsson, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; E. Svenungsson, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital
| | - Marika Kvarnström
- From the Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, Stockholm; Karolinska University Hospital, Stockholm; Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI-AZ ICMC), Stockholm; Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm; Center for Clinical Research, Uppsala University, Sörmland; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala; Cardiovascular, Renal and Metabolism, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Huddinge, Sweden.,G. Ruacho, DMD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Center for Clinical Research, Uppsala University; M. Kvarnström, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; A. Zickert, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; V. Oke, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; J. Rönnelid, MD, PhD, Department of Immunology, Genetics and Pathology, Uppsala University; S. Eketjäll, PhD, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, and KI-AZ ICMC; K. Elvin, MD, PhD, Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital; I. Gunnarsson, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; E. Svenungsson, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital
| | - Agneta Zickert
- From the Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, Stockholm; Karolinska University Hospital, Stockholm; Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI-AZ ICMC), Stockholm; Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm; Center for Clinical Research, Uppsala University, Sörmland; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala; Cardiovascular, Renal and Metabolism, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Huddinge, Sweden.,G. Ruacho, DMD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Center for Clinical Research, Uppsala University; M. Kvarnström, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; A. Zickert, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; V. Oke, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; J. Rönnelid, MD, PhD, Department of Immunology, Genetics and Pathology, Uppsala University; S. Eketjäll, PhD, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, and KI-AZ ICMC; K. Elvin, MD, PhD, Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital; I. Gunnarsson, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; E. Svenungsson, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital
| | - Vilija Oke
- From the Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, Stockholm; Karolinska University Hospital, Stockholm; Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI-AZ ICMC), Stockholm; Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm; Center for Clinical Research, Uppsala University, Sörmland; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala; Cardiovascular, Renal and Metabolism, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Huddinge, Sweden.,G. Ruacho, DMD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Center for Clinical Research, Uppsala University; M. Kvarnström, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; A. Zickert, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; V. Oke, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; J. Rönnelid, MD, PhD, Department of Immunology, Genetics and Pathology, Uppsala University; S. Eketjäll, PhD, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, and KI-AZ ICMC; K. Elvin, MD, PhD, Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital; I. Gunnarsson, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; E. Svenungsson, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital
| | - Johan Rönnelid
- From the Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, Stockholm; Karolinska University Hospital, Stockholm; Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI-AZ ICMC), Stockholm; Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm; Center for Clinical Research, Uppsala University, Sörmland; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala; Cardiovascular, Renal and Metabolism, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Huddinge, Sweden.,G. Ruacho, DMD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Center for Clinical Research, Uppsala University; M. Kvarnström, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; A. Zickert, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; V. Oke, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; J. Rönnelid, MD, PhD, Department of Immunology, Genetics and Pathology, Uppsala University; S. Eketjäll, PhD, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, and KI-AZ ICMC; K. Elvin, MD, PhD, Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital; I. Gunnarsson, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; E. Svenungsson, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital
| | - Susanna Eketjäll
- From the Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, Stockholm; Karolinska University Hospital, Stockholm; Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI-AZ ICMC), Stockholm; Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm; Center for Clinical Research, Uppsala University, Sörmland; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala; Cardiovascular, Renal and Metabolism, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Huddinge, Sweden.,G. Ruacho, DMD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Center for Clinical Research, Uppsala University; M. Kvarnström, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; A. Zickert, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; V. Oke, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; J. Rönnelid, MD, PhD, Department of Immunology, Genetics and Pathology, Uppsala University; S. Eketjäll, PhD, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, and KI-AZ ICMC; K. Elvin, MD, PhD, Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital; I. Gunnarsson, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; E. Svenungsson, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital
| | - Kerstin Elvin
- From the Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, Stockholm; Karolinska University Hospital, Stockholm; Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI-AZ ICMC), Stockholm; Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm; Center for Clinical Research, Uppsala University, Sörmland; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala; Cardiovascular, Renal and Metabolism, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Huddinge, Sweden.,G. Ruacho, DMD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Center for Clinical Research, Uppsala University; M. Kvarnström, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; A. Zickert, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; V. Oke, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; J. Rönnelid, MD, PhD, Department of Immunology, Genetics and Pathology, Uppsala University; S. Eketjäll, PhD, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, and KI-AZ ICMC; K. Elvin, MD, PhD, Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital; I. Gunnarsson, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; E. Svenungsson, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital
| | - Iva Gunnarsson
- From the Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, Stockholm; Karolinska University Hospital, Stockholm; Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI-AZ ICMC), Stockholm; Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm; Center for Clinical Research, Uppsala University, Sörmland; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala; Cardiovascular, Renal and Metabolism, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Huddinge, Sweden.,G. Ruacho, DMD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Center for Clinical Research, Uppsala University; M. Kvarnström, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; A. Zickert, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; V. Oke, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; J. Rönnelid, MD, PhD, Department of Immunology, Genetics and Pathology, Uppsala University; S. Eketjäll, PhD, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, and KI-AZ ICMC; K. Elvin, MD, PhD, Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital; I. Gunnarsson, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; E. Svenungsson, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital
| | - Elisabet Svenungsson
- From the Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, Stockholm; Karolinska University Hospital, Stockholm; Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI-AZ ICMC), Stockholm; Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm; Center for Clinical Research, Uppsala University, Sörmland; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala; Cardiovascular, Renal and Metabolism, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Huddinge, Sweden. .,G. Ruacho, DMD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Center for Clinical Research, Uppsala University; M. Kvarnström, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; A. Zickert, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; V. Oke, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; J. Rönnelid, MD, PhD, Department of Immunology, Genetics and Pathology, Uppsala University; S. Eketjäll, PhD, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, and KI-AZ ICMC; K. Elvin, MD, PhD, Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital; I. Gunnarsson, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital; E. Svenungsson, MD, PhD, Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, and Karolinska University Hospital.
| |
Collapse
|
29
|
Pabón-Porras MA, Molina-Ríos S, Flórez-Suárez JB, Coral-Alvarado PX, Méndez-Patarroyo P, Quintana-López G. Rheumatoid arthritis and systemic lupus erythematosus: Pathophysiological mechanisms related to innate immune system. SAGE Open Med 2019; 7:2050312119876146. [PMID: 35154753 PMCID: PMC8826259 DOI: 10.1177/2050312119876146] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis and systemic lupus erythematosus are two highly prevalent autoimmune diseases that generate disability and low quality of life. The innate immune system, a long-forgotten issue in autoimmune diseases, is becoming increasingly important and represents a new focus for the treatment of these entities. This review highlights the role that innate immune system plays in the pathophysiology of rheumatoid arthritis and systemic lupus erythematosus. The role of the innate immune system in rheumatoid arthritis and systemic lupus erythematosus pathophysiology is not only important in early stages but is essential to maintain the immune response and to allow disease progression. In rheumatoid arthritis, genetic and environmental factors are involved in the initial stimulation of the innate immune response in which macrophages are the main participants, as well as fibroblast-like synoviocytes. In systemic lupus erythematosus, all the cells contribute to the inflammatory response, but the complement system is the major effector of the inflammatory process. Detecting alterations in the normal function of these cells, besides its contribution to the understanding of the pathophysiology of autoimmune diseases, could help to establish new treatment strategies for these diseases.
Collapse
Affiliation(s)
| | | | - Jorge Bruce Flórez-Suárez
- Reumavance Group, Rheumatology Section, Fundación Santa Fe de Bogotá University Hospital, Bogotá, Colombia
| | - Paola Ximena Coral-Alvarado
- Reumavance Group, Rheumatology Section, Fundación Santa Fe de Bogotá University Hospital, Bogotá, Colombia.,School of Medicine, Universidad de Los Andes, Bogotá, Colombia
| | - Paul Méndez-Patarroyo
- Reumavance Group, Rheumatology Section, Fundación Santa Fe de Bogotá University Hospital, Bogotá, Colombia.,School of Medicine, Universidad de Los Andes, Bogotá, Colombia
| | - Gerardo Quintana-López
- School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia.,Reumavance Group, Rheumatology Section, Fundación Santa Fe de Bogotá University Hospital, Bogotá, Colombia.,School of Medicine, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
30
|
Rönnblom L, Leonard D. Interferon pathway in SLE: one key to unlocking the mystery of the disease. Lupus Sci Med 2019; 6:e000270. [PMID: 31497305 PMCID: PMC6703304 DOI: 10.1136/lupus-2018-000270] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 12/11/2022]
Abstract
SLE is characterised by an activation of the interferon (IFN) system, which leads to an increased expression of IFN-regulated genes. The reasons behind the IFN signature in SLE are (1) the existence of endogenous IFN inducers, (2) activation of several IFN-producing cell types, (3) production of many different IFNs, (4) a genetic setup promoting IFN production and (5) deficient negative feedback mechanisms. The consequences for the immune system is a continuous stimulation to an immune response, and for the patient a number of different organ manifestations leading to typical symptoms for SLE. In the current review, we will present the existing knowledge of the IFN system and pathway activation in SLE. We will also discuss how this information can contribute to our understanding of both the aetiopathogenesis and some organ manifestations of the disease. We will put forward some issues that are unresolved and should be clarified in order to make a proper stratification of patients with SLE, which seems important when selecting a therapy aiming to downregulate the IFN system.
Collapse
Affiliation(s)
- Lars Rönnblom
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Dag Leonard
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
31
|
Biologics in the Treatment of Lupus Erythematosus: A Critical Literature Review. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8142368. [PMID: 31396534 PMCID: PMC6668536 DOI: 10.1155/2019/8142368] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/18/2019] [Indexed: 01/07/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disease affecting multiple organ systems that runs an unpredictable course and may present with a wide variety of clinical manifestations. Advances in treatment over the last decades, such as use of corticosteroids and conventional immunosuppressive drugs, have improved life expectancy of SLE sufferers. Unfortunately, in many cases effective management of SLE is still related to severe drug-induced toxicity and contributes to organ function deterioration and infective complications, particularly among patients with refractory disease and/or lupus nephritis. Consequently, there is an unmet need for drugs with a better efficacy and safety profile. A range of different biologic agents have been proposed and subjected to clinical trials, particularly dedicated to this subset of patients whose disease is inadequately controlled by conventional treatment regimes. Unfortunately, most of these trials have given unsatisfactory results, with belimumab being the only targeted therapy approved for the treatment of SLE so far. Despite these pitfalls, several novel biologic agents targeting B cells, T cells, or cytokines are constantly being evaluated in clinical trials. It seems that they may enhance the therapeutic efficacy when combined with standard therapies. These efforts raise the hope that novel drugs for patients with refractory SLE may be available in the near future. This article reviews the current biological therapies being tested in the treatment of SLE.
Collapse
|
32
|
Pan Q, Chen X, Liao S, Chen X, Zhao C, Xu YZ, Liu HF. Updated advances of linking psychosocial factors and sex hormones with systemic lupus erythematosus susceptibility and development. PeerJ 2019; 7:e7179. [PMID: 31275761 PMCID: PMC6598654 DOI: 10.7717/peerj.7179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/22/2019] [Indexed: 12/17/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that primarily affects women, especially those of reproductive age. Genetics, environment, and gene-environment interactions play key roles in the development of SLE. Despite the numerous susceptibility genes of SLE identified to date, gene therapy is far from a clinical reality. Thus, more attention should be paid to the risk factors and underlying mechanisms of SLE. Currently, it is reported that psychosocial factors and sex hormones play vital roles in patients with SLE, which still need further investigated. The purpose of this review is to update the roles and mechanisms of psychosocial factors and sex hormones in the susceptibility and development of SLE. Based on review articles and reports in reputable peer-reviewed journals and government websites, this paper summarized psychosocial factors (e.g., alexithymia, depression, anxiety, negative emotions, and perceived stress) and sex hormones (e.g., estrogens, progesterone, androgens, and prolactin) involved in SLE. We further explore the mechanisms linking these factors with SLE susceptibility and development, which can guide the establishment of practical measures to benefit SLE patients and offer new ideas for therapeutic strategies.
Collapse
Affiliation(s)
- Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Division of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaoqun Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Division of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuzhen Liao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Division of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaocui Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Division of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chunfei Zhao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Division of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yong-Zhi Xu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Division of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Division of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
33
|
Mustelin T, Lood C, Giltiay NV. Sources of Pathogenic Nucleic Acids in Systemic Lupus Erythematosus. Front Immunol 2019; 10:1028. [PMID: 31139185 PMCID: PMC6519310 DOI: 10.3389/fimmu.2019.01028] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/23/2019] [Indexed: 12/19/2022] Open
Abstract
A hallmark of systemic lupus erythematosus (SLE), and several related autoimmune diseases, is the presence of autoantibodies against nucleic acids and nucleic acid-binding proteins, as well as elevated type I interferons (IFNs), which appear to be instrumental in disease pathogenesis. Here we discuss the sources and proposed mechanisms by which a range of cellular RNA and DNA species can become pathogenic and trigger the nucleic acid sensors that drive type I interferon production. Potentially SLE-promoting DNA may originate from pieces of chromatin, from mitochondria, or from reverse-transcribed cellular RNA, while pathogenic RNA may arise from mis-localized, mis-processed, ancient retroviral, or transposable element-derived transcripts. These nucleic acids may leak out from dying cells to be internalized and reacted to by immune cells or they may be generated and remain to be sensed intracellularly in immune or non-immune cells. The presence of aberrant DNA or RNA is normally counteracted by effective counter-mechanisms, the loss of which result in a serious type I IFN-driven disease called Aicardi-Goutières Syndrome. However, in SLE it remains unclear which mechanisms are most critical in precipitating disease: aberrant RNA or DNA, overly sensitive sensor mechanisms, or faulty counter-acting defenses. We propose that the clinical heterogeneity of SLE may be reflected, in part, by heterogeneity in which pathogenic nucleic acid molecules are present and which sensors and pathways they trigger in individual patients. Elucidation of these events may result in the recognition of distinct "endotypes" of SLE, each with its distinct therapeutic choices.
Collapse
Affiliation(s)
- Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | | | | |
Collapse
|
34
|
Liao Z, Ye Z, Xue Z, Wu L, Ouyang Y, Yao C, Cui C, Xu N, Ma J, Hou G, Wang J, Meng Y, Yin Z, Liu Y, Qian J, Zhang C, Ding H, Guo Q, Qu B, Shen N. Identification of Renal Long Non-coding RNA RP11-2B6.2 as a Positive Regulator of Type I Interferon Signaling Pathway in Lupus Nephritis. Front Immunol 2019; 10:975. [PMID: 31130957 PMCID: PMC6509587 DOI: 10.3389/fimmu.2019.00975] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/16/2019] [Indexed: 12/16/2022] Open
Abstract
Objective: Lupus nephritis (LN) is one of the most serious complications of systemic lupus erythematosus (SLE). Type I interferon (IFN-I) is associated with the pathogenesis of LN. Long non-coding RNAs (lncRNAs) have been implicated in the pathogenesis of SLE, however, the roles of lncRNAs in LN are still poorly understood. Here, we identified and investigated the function of LN-associated lncRNA RP11-2B6.2 in regulating IFN-I signaling pathway. Methods: RNA sequencing was used to analyze the expression of lncRNAs in kidney biopsies from LN patients and controls. Antisense oligonucleotides and CRISPRi system or overexpression plasmids and CRISPRa system were used to perform loss or gain of function experiments. In situ hybridization, imaging flow cytometry, dual-luciferase reporter assay, and ATAC sequencing were used to study the functions of lncRNA RP11-2B6.2. RT-qPCR, ELISA, and western blotting were done to detect RNA and protein levels of specific genes. Results: Elevated lncRNA RP11-2B6.2 was observed in kidney biopsies from LN patients and positively correlated with disease activity and IFN scores. Knockdown of lncRNA RP11-2B6.2 in renal cells inhibited the expression of IFN stimulated genes (ISGs), while overexpression of lncRNA RP11-2B6.2 enhanced ISG expression. Knockdown of LncRNA RP11-2B6.2 inhibited the phosphorylation of JAK1, TYK2, and STAT1 in IFN-I pathway, while promoted the chromatin accessibility and the transcription of SOCS1. Conclusion: The expression of lncRNAs is abnormal in the kidney of LN. LncRNA RP11-2B6.2 is a novel positive regulator of IFN-I pathway through epigenetic inhibition of SOCS1, which provides a new therapeutic target to alleviate over-activated IFN-I signaling in LN.
Collapse
Affiliation(s)
- Zhuojun Liao
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhizhong Ye
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhixin Xue
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lingling Wu
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ye Ouyang
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Yao
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chaojie Cui
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ning Xu
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianyang Ma
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guojun Hou
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiehua Wang
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Meng
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihua Yin
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Ya Liu
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Qian
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunyan Zhang
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huihua Ding
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Guo
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Qu
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai, China.,Collaborative Innovation Centre for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
35
|
Altered Peripheral Blood Leucocyte Phenotype and Responses in Healthy Individuals with Homozygous Deletion of FHR1 and FHR3 Genes. J Clin Immunol 2019; 39:336-345. [DOI: 10.1007/s10875-019-00619-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/26/2019] [Indexed: 01/10/2023]
|
36
|
Mohammed S, Vineetha NS, James S, Aparna JS, Lankadasari MB, Allegood JC, Li QZ, Spiegel S, Harikumar KB. Examination of the role of sphingosine kinase 2 in a murine model of systemic lupus erythematosus. FASEB J 2019; 33:7061-7071. [PMID: 30840833 DOI: 10.1096/fj.201802535r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Systemic lupus erythematosus is an autoimmune disease characterized by overproduction of type 1 IFN that causes multiple organ dysfunctions. Plasmacytoid dendritic cells (pDCs) that secrete large amounts of IFN have recently been implicated in the initiation of the disease in preclinical mouse models. Sphingosine-1-phosphate, a bioactive sphingolipid metabolite, is produced by 2 highly conserved isoenzymes, sphingosine kinase (SphK) 1 and SphK2, and regulates diverse processes important for immune responses and autoimmunity. However, not much is known about the role of SphK2 in autoimmune disorders. In this work, we examined the role of SphK2 in pDC development and activation and in the pristane-induced lupus model in mice that mimics the hallmarks of the human disease. Increases in pDC-specific markers were observed in peripheral blood of SphK2 knockout mice. In agreement, the absence of SphK2 increased the differentiation of FMS-like tyrosine kinase 3 ligand dendritic cells as well as expression of endosomal TLRs, TLR7 and TLR9, that modulate production of IFN. Surprisingly, however, SphK2 deficiency did not affect the initiation or progression of pristane-induced lupus. Moreover, although absence of SphK2 increased pDC frequency in pristane-induced lupus, there were no major changes in their activation status. Additionally, SphK2 expression was unaltered in lupus patients. Taken together, our results suggest that SphK2 may play a role in dendritic cell development. Yet, because its deletion had no effect on the clinical lupus parameters in this preclinical model, inhibitors of SphK2 might not be useful for treatment of this devastating disease.-Mohammed, S., Vineetha, N. S., James, S., Aparna, J. S., Lankadasari, M. B., Allegood, J. C., Li, Q.-Z., Spiegel, S., Harikumar, K. B. Examination of the role of sphingosine kinase 2 in a murine model of systemic lupus erythematosus.
Collapse
Affiliation(s)
- Sabira Mohammed
- Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Nalanda S Vineetha
- Department of Nephrology, Government Medical College, Thiruvananthapuram, India
| | - Shirley James
- Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | | | - Manendra Babu Lankadasari
- Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Jeremy C Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA; and
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA; and
| | | |
Collapse
|
37
|
STAT4, TRAF3IP2, IL10, and HCP5 Polymorphisms in Sjögren's Syndrome: Association with Disease Susceptibility and Clinical Aspects. J Immunol Res 2019; 2019:7682827. [PMID: 30882006 PMCID: PMC6387711 DOI: 10.1155/2019/7682827] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/21/2018] [Accepted: 12/11/2018] [Indexed: 12/14/2022] Open
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune condition characterized by autoantibody production, sicca syndrome, and periepithelial lymphocytic lesions in target tissues. A predisposing genetic background is likely, and, to date, several polymorphisms in non-HLA genes have been explored with interesting results. We investigated the association between the STAT4, TRAF3IP2, HCP5, and IL10 polymorphisms and SS susceptibility and their possible role in the modulation of clinical and laboratory features. 195 consecutive patients with SS were enrolled and clinical and laboratory data were collected. 248 age- and sex-matched healthy subjects were used as controls. Genotyping was performed by allelic discrimination assays. A case-control association study and a phenotype-genotype correlation analysis were performed. A genetic risk profile was developed considering the risk alleles. Both the variant alleles of rs7574865 in the STAT4 gene and rs3099844 in the HCP5 gene were significantly more prevalent in patients than in controls (OR = 1.91 and OR = 2.44, respectively). The variant allele of rs3024505 of IL10 resulted to be a susceptibility allele (OR = 1.52), while the variant allele of rs1800872 seemed to confer a protective effect for the development of the disease (OR = 0.65). A risk genetic profile showed a higher probability to develop the disease in subjects with at least three risk alleles; subjects with 4 risk alleles were not observed in the controls. HCP5 rs3099844 was associated with anti-SSA (P = 0.006, OR = 3.07) and anti-SSB (P = 0.005, OR = 2.66) antibodies, severity of focus score (P = 0.03, OR = 12), and lymphoma development (P = 0.002, OR = 7.23). Patients carrying the STAT4 rs7574965 variant allele had a higher risk of monoclonal component and leukopenia (P = 0.002, OR = 7.6; P = 0.048, OR = 2.01, respectively). We confirmed the association of SS with the STAT4 and IL10 genes and we describe a novel association with HCP5. In particular, we describe an association of this specific SNP of HCP5 not only with disease development but also with autoantibody production and focus score suggesting a potential contribution of this variant to a more severe phenotype.
Collapse
|
38
|
Exploring the etiopathogenesis of systemic lupus erythematosus: a genetic perspective. Immunogenetics 2019; 71:283-297. [DOI: 10.1007/s00251-019-01103-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/07/2019] [Indexed: 12/27/2022]
|
39
|
Xue Z, Cui C, Liao Z, Xia S, Zhang P, Qin J, Guo Q, Chen S, Fu Q, Yin Z, Ye Z, Tang Y, Shen N. Identification of LncRNA Linc00513 Containing Lupus-Associated Genetic Variants as a Novel Regulator of Interferon Signaling Pathway. Front Immunol 2018; 9:2967. [PMID: 30619325 PMCID: PMC6305415 DOI: 10.3389/fimmu.2018.02967] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by augmented type I interferon signaling. High-throughput technologies have identified plenty of SLE susceptibility single-nucleotide polymorphisms (SNPs) yet the exact roles of most of them are still unknown. Functional studies are principally focused on SNPs in the coding regions, with limited attention paid to the SNPs in non-coding regions. Long non-coding RNAs (lncRNAs) are important players in shaping the immune response and show relationship to autoimmune diseases. In order to reveal the role of SNPs located near SLE related lncRNAs, we performed a transcriptome profiling of SLE patients and identified linc00513 as a significantly over expressed lncRNA containing functional SLE susceptibility loci in the promoter region. The risk-associated G allele of rs205764 and A allele of rs547311 enhanced linc00513 promoter activity and related to increased expression of linc00513 in SLE. We also identified linc00513 to be a novel positive regulator of type I interferon pathway by promoting the phosphorylation of STAT1 and STAT2. Elevated linc00513 expression positively correlated with IFN score in SLE patients. Linc00513 expression was higher in active disease patients than those inactive ones. In conclusion, our data identify two functional promoter variants of linc00513 that contribute to increased level of linc00513 and confer susceptibility on SLE. The study provides new insights into the genetics of SLE and extends the role of lncRNAs in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Zhixin Xue
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Chaojie Cui
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhuojun Liao
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shiwei Xia
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Pingjing Zhang
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jialin Qin
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiang Guo
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Sheng Chen
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiong Fu
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhihua Yin
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhizhong Ye
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Yuanjia Tang
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
40
|
mTOR inhibitor INK128 attenuates systemic lupus erythematosus by regulating inflammation-induced CD11b +Gr1 + cells. Biochim Biophys Acta Mol Basis Dis 2018; 1865:1-13. [PMID: 30292636 DOI: 10.1016/j.bbadis.2018.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/02/2018] [Indexed: 12/30/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease, characterized by systemic chronic inflammation that can affect multiple major organ systems. Although the etiology of SLE is known to involve a variety of factors such as the environment, random factors and genetic susceptibility, the exact role of CD11b+Gr1+ myeloid cells in lupus progression is not fully understood. Myeloid-derived CD11b+Gr1+ cells are thought to be a heterogeneous group of immature myeloid cells with immune function. Some studies have reported that CD11b+Gr1+ cells and the activation of mTOR pathway are involved in the pathogenesis of systemic lupus erythematosus (SLE). However, it is still not clarified about the mechanism of influence of lupus microenvironment and mTOR signaling on CD11b+Gr1+ cells. In the present study, we found that the percentage of CD11b+Gr1+ cells increased prior to the abnormal changes of Th17, Treg, T and B cells during lupus development. TLR7 and IFN-α signaling synergized to promote CD11b+Gr1+ cell accumulation in an mTOR-dependent manner. Moreover, compared to a traditional mTOR inhibitor, INK128 inhibited more effectively the disease activity via regulating CD11b+Gr1+ cell expansion and functions. Furthermore, TLR7/IFN-α-modified CD11b+Gr1+ cells promoted unbalance of Th17/Tregs and were inclined to differentiate into macrophages via the mTOR pathway. In conclusion, CD11b+Gr1+ cells increased in the early stages of the lupus progression and mTOR pathway was critical for CD11b+Gr1+ cells in lupus development, suggesting the changes of inflammation-induced CD11b+Gr1+ cells initate lupus development. We also provide evidence for the first time that INK128, a second generation mTOR inhibitor, has a good therapeutic action on lupus development by regulating CD11b+Gr1+ cells.
Collapse
|
41
|
Andersson U, Yang H, Harris H. High-mobility group box 1 protein (HMGB1) operates as an alarmin outside as well as inside cells. Semin Immunol 2018. [DOI: 10.1016/j.smim.2018.02.011] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Virgin olive oil and its phenol fraction modulate monocyte/macrophage functionality: a potential therapeutic strategy in the treatment of systemic lupus erythematosus. Br J Nutr 2018; 120:681-692. [DOI: 10.1017/s0007114518001976] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractMonocytes and macrophages are critical effectors and regulators of inflammation and innate immune response, which appear altered in different autoimmune diseases such as systemic lupus erythematosus (SLE). Recent studies suggested that virgin olive oil (VOO) and particularly its phenol compounds might possess preventive effects on different immune-inflammatory diseases, including SLE. Here, we evaluated the effects of VOO (and sunflower oil) on lipopolysaccharide (LPS)-activated peritoneal macrophages from a model of pristane-induced SLE in BALB/c mice, as well as those of the phenol fraction (PF) from VOO on the immune-inflammatory activity and plasticity in monocytes and monocyte-derived macrophages from healthy volunteers. The release of nitrite and inflammatory cytokines was lower in LPS-treated peritoneal macrophages from pristane-SLE mice fed the VOO diet when compared with the sunflower oil diet. PF from VOO similarly decreased the secretion of nitrite and inflammatory cytokines and expression of inducible nitric oxide, PPARγ and Toll-like receptor 4 in LPS-treated human monocytes. PF from VOO also prevented the deregulation of human monocyte subset distribution by LPS and blocked the genetic signature of M1 macrophages while favouring the phenotype of M2 macrophages upon canonical polarisation of naïve human macrophages. For the first time, our study provides several lines of in vivo and in vitro evidence that VOO and PF from VOO target and counteract inflammatory pathways in the monocyte–macrophage lineage of mice with pristane-induced SLE and of healthy subjects, which is a meaningful foundation for further development and application in preclinical and clinical use of PF from VOO in patients with SLE.
Collapse
|
43
|
Seliga A, Lee MH, Fernandes NC, Zuluaga-Ramirez V, Didukh M, Persidsky Y, Potula R, Gallucci S, Sriram U. Kallikrein-Kinin System Suppresses Type I Interferon Responses: A Novel Pathway of Interferon Regulation. Front Immunol 2018; 9:156. [PMID: 29456540 PMCID: PMC5801412 DOI: 10.3389/fimmu.2018.00156] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/17/2018] [Indexed: 01/13/2023] Open
Abstract
The Kallikrein–Kinin System (KKS), comprised of kallikreins (klks), bradykinins (BKs) angiotensin-converting enzyme (ACE), and many other molecules, regulates a number of physiological processes, including inflammation, coagulation, angiogenesis, and control of blood pressure. In this report, we show that KKS regulates Type I IFN responses, thought to be important in lupus pathogenesis. We used CpG (TLR9 ligand), R848 (TLR7 ligand), or recombinant IFN-α to induce interferon-stimulated genes (ISGs) and proteins, and observed that this response was markedly diminished by BKs, klk1 (tissue kallikrein), or captopril (an ACE inhibitor). BKs significantly decreased the ISGs induced by TLRs in vitro and in vivo (in normal and lupus-prone mice), and in human PBMCs, especially the induction of Irf7 gene (p < 0.05), the master regulator of Type I IFNs. ISGs induced by IFN-α were also suppressed by the KKS. MHC Class I upregulation, a classic response to Type I IFNs, was reduced by BKs in murine dendritic cells (DCs). BKs decreased phosphorylation of STAT2 molecules that mediate IFN signaling. Among the secreted pro-inflammatory cytokines/chemokines analyzed (IL-6, IL12p70, and CXCL10), the strongest suppressive effect was on CXCL10, a highly Type I IFN-dependent cytokine, upon CpG stimulation, both in normal and lupus-prone DCs. klks that break down into BKs, also suppressed CpG-induced ISGs in murine DCs. Captopril, a drug that inhibits ACE and increases BK, suppressed ISGs, both in mouse DCs and human PBMCs. The effects of BK were reversed with indomethacin (compound that inhibits production of PGE2), suggesting that BK suppression of IFN responses may be mediated via prostaglandins. These results highlight a novel regulatory mechanism in which members of the KKS control the Type I IFN response and suggest a role for modulators of IFNs in the pathogenesis of lupus and interferonopathies.
Collapse
Affiliation(s)
- Alecia Seliga
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Michael Hweemoon Lee
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Nicole C Fernandes
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Viviana Zuluaga-Ramirez
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Marta Didukh
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Raghava Potula
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Uma Sriram
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
44
|
Genome-Wide DNA Methylation Analysis in Systemic Sclerosis Reveals Hypomethylation of IFN-Associated Genes in CD4 + and CD8 + T Cells. J Invest Dermatol 2017; 138:1069-1077. [PMID: 29248544 DOI: 10.1016/j.jid.2017.12.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 01/03/2023]
Abstract
Epigenetic modifications, including DNA methylation, play an important role in the pathogenesis of autoimmune diseases. In this study, we characterized the DNA methylome in primary T cells of patients with systemic sclerosis. Genome-wide DNA methylation assays of CD4+ and CD8+ T cells from 24 systemic sclerosis patients and 24 matched controls were conducted and differentially methylated regions were validated. In the discovery stage, we found that hypomethylation of genes involved in the type I IFN signaling pathway was significantly enriched in both CD4+ (P = 7.59 × 10-6) and CD8+ (P = 2.10 × 10-8) differentially methylated regions. In the validation stage, we confirmed these changes for five type I IFN-associated genes. In addition, protein levels of both type I IFN-α (P < 0.0001) and β (P = 0.002) were significantly elevated in the sera of systemic sclerosis patients. Moreover, significant associations between type I IFN-α/β protein levels with the DNA methylation status as well as the expression profiles of these IFN-associated genes were confirmed. In conclusion, the type I IFN pathway is dysfunctional at the epigenetic level in systemic sclerosis patients, indicating that hypomethylation and upregulation of type I IFN-associated genes might be critical in systemic sclerosis pathogenesis.
Collapse
|
45
|
Li S, Wu J, Zhu S, Liu YJ, Chen J. Disease-Associated Plasmacytoid Dendritic Cells. Front Immunol 2017; 8:1268. [PMID: 29085361 PMCID: PMC5649186 DOI: 10.3389/fimmu.2017.01268] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 09/22/2017] [Indexed: 12/20/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs), also called natural interferon (IFN)-producing cells, represent a specialized cell type within the innate immune system. pDCs are specialized in sensing viral RNA and DNA by toll-like receptor-7 and -9 and have the ability to rapidly produce massive amounts of type 1 IFNs upon viral encounter. After producing type 1 IFNs, pDCs differentiate into professional antigen-presenting cells, which are capable of stimulating T cells of the adaptive immune system. Chronic activation of human pDCs by self-DNA or mitochondrial DNA contributes to the pathogenesis of systemic lupus erythematosis and IFN-related autoimmune diseases. Under steady-state conditions, pDCs play an important role in immune tolerance. In many types of human cancers, recruitment of pDCs to the tumor microenvironment contributes to the induction of immune tolerance. Here, we provide a systemic review of recent progress in studies on the role of pDCs in human diseases, including cancers and autoimmune/inflammatory diseases.
Collapse
Affiliation(s)
- Shuang Li
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Jing Wu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Shan Zhu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Yong-Jun Liu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China.,Sanofi Research and Development, Cambridge, MA, United States
| | - Jingtao Chen
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
46
|
Taher TE, Bystrom J, Ong VH, Isenberg DA, Renaudineau Y, Abraham DJ, Mageed RA. Intracellular B Lymphocyte Signalling and the Regulation of Humoral Immunity and Autoimmunity. Clin Rev Allergy Immunol 2017; 53:237-264. [PMID: 28456914 PMCID: PMC5597704 DOI: 10.1007/s12016-017-8609-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
B lymphocytes are critical for effective immunity; they produce antibodies and cytokines, present antigens to T lymphocytes and regulate immune responses. However, because of the inherent randomness in the process of generating their vast repertoire of antigen-specific receptors, B cells can also cause diseases through recognizing and reacting to self. Therefore, B lymphocyte selection and responses require tight regulation at multiple levels and at all stages of their development and activation to avoid diseases. Indeed, newly generated B lymphocytes undergo rigorous tolerance mechanisms in the bone marrow and, subsequently, in the periphery after their migration. Furthermore, activation of mature B cells is regulated through controlled expression of co-stimulatory receptors and intracellular signalling thresholds. All these regulatory events determine whether and how B lymphocytes respond to antigens, by undergoing apoptosis or proliferation. However, defects that alter regulated co-stimulatory receptor expression or intracellular signalling thresholds can lead to diseases. For example, autoimmune diseases can result from altered regulation of B cell responses leading to the emergence of high-affinity autoreactive B cells, autoantibody production and tissue damage. The exact cause(s) of defective B cell responses in autoimmune diseases remains unknown. However, there is evidence that defects or mutations in genes that encode individual intracellular signalling proteins lead to autoimmune diseases, thus confirming that defects in intracellular pathways mediate autoimmune diseases. This review provides a synopsis of current knowledge of signalling proteins and pathways that regulate B lymphocyte responses and how defects in these could promote autoimmune diseases. Most of the evidence comes from studies of mouse models of disease and from genetically engineered mice. Some, however, also come from studying B lymphocytes from patients and from genome-wide association studies. Defining proteins and signalling pathways that underpin atypical B cell response in diseases will help in understanding disease mechanisms and provide new therapeutic avenues for precision therapy.
Collapse
Affiliation(s)
- Taher E Taher
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jonas Bystrom
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Voon H Ong
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, University College London, London, UK
| | | | - Yves Renaudineau
- Immunology Laboratory, University of Brest Medical School, Brest, France
| | - David J Abraham
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, University College London, London, UK
| | - Rizgar A Mageed
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Recent discoveries relay commensal gut microbiota as a relevant factor in the maintenance of intestinal homeostasis. RECENT FINDINGS Alterations in the composition of the intestinal microbiota have been reported in patients with systemic lupus erythematosus and many other inflammatory and autoimmune conditions. However, the mechanisms by which the intestinal microbiota can influence systemic immunity in these situations remain to be elucidated. The inappropriate immune responses of patients with systemic lupus erythematosus could originate a breakdown of tolerance towards the microbiota, leading to the expansion and/or contraction of specific bacterial groups that may culminate in a dysbiotic state. Conversely, an altered composition of the intestinal microbiome in genetically predisposed individuals could influence systemic immunity by several mechanisms, leading to a breakdown of tolerance to self-antigens. Moreover, humoral immune responses can be affected by specific bacterial groups in these individuals. SUMMARY Recent findings support an important role for the crosstalk between bacteria and immune cells to maintain an intestinal homeostasis crucial to sustain tolerance toward self-antigens and intestinal microbiota.
Collapse
|
48
|
Leiss H, Salzberger W, Jacobs B, Gessl I, Kozakowski N, Blüml S, Puchner A, Kiss A, Podesser BK, Smolen JS, Stummvoll GH. MicroRNA 155-deficiency leads to decreased autoantibody levels and reduced severity of nephritis and pneumonitis in pristane-induced lupus. PLoS One 2017; 12:e0181015. [PMID: 28719617 PMCID: PMC5515414 DOI: 10.1371/journal.pone.0181015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/23/2017] [Indexed: 01/13/2023] Open
Abstract
Objective We herein examine the role of endogenous miR155 in the development of systemic manifestations in pristane induced lupus. Materials and methods Systemic lupus in miR155-deficient and wild type mice was induced upon injection of pristane and analyzed after 8 months, PBS-injected mice served as controls. Glomerulonephritis and pneumonitis were quantified using the kidney biopsy score and a newly adapted histomorphometric image analysis system; lung tissue was further analyzed by tissue cytometry. Serum levels of anti-dsDNA, anti-histone and anti-chromatin antibodies were measured by ELISA. Frequencies of B cells, activated and regulatory CD4+ T cells as well as Th1, Th2, Th17 cells were measured by flow cytometry. RT-qPCR was used to measure expression levels of interferon-signature and T-cell subset related as well as miR155-associated genes. Results After induction of lupus, miR155-deficient mice had significant less pulmonary involvement (perivascular inflammatory area in mm2/mm2 lung area 0.00092±0.00015 vs. 0.0027±0.00075, p = 0.0347) and renal disease (glomerular activity score 1.95±0.19 vs 3±0.26, p = 0.0029) compared to wild types. MiR155-deficient mice had significantly lower serum levels of disease-associated auto-antibodies and decreased frequencies of activated CD4+CD25+ (Foxp3-) cells. Upon restimulation, CD4+ cells showed a less pronounced Th2 and Th17 and a slightly decreased Th1 response in mir155-deficient mice. Pristane-treated wild types showed significantly up-regulated expression of genes related to the INF-signature (MX1, IP10, IRF7, ISG15). Conclusions MiR155-deficient mice had less severe organ involvement, lower serum auto-antibody levels, a less prominent T cell response and lower expressions of genes jointly responsible for disease development. Thus, antagonizing miR155 might be a future approach in treating SLE.
Collapse
Affiliation(s)
- Harald Leiss
- Department of Rheumatology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| | - Wilhelm Salzberger
- Department of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Barbara Jacobs
- Department of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Irina Gessl
- Department of Rheumatology, Medical University of Vienna, Vienna, Austria
| | | | - Stephan Blüml
- Department of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Antonia Puchner
- Department of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Attila Kiss
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Bruno K. Podesser
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Josef S. Smolen
- Department of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Georg H. Stummvoll
- Department of Rheumatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
49
|
Mok CC. Biological and targeted therapies of systemic lupus erythematosus: evidence and the state of the art. Expert Rev Clin Immunol 2017; 13:677-692. [PMID: 28443384 DOI: 10.1080/1744666x.2017.1323635] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chi Chiu Mok
- Department of Medicine, Tuen Mun Hospital, Hong Kong SAR, China
| |
Collapse
|
50
|
Castañeda-Delgado JE, Bastián-Hernandez Y, Macias-Segura N, Santiago-Algarra D, Castillo-Ortiz JD, Alemán-Navarro AL, Martínez-Tejada P, Enciso-Moreno L, Garcia-De Lira Y, Olguín-Calderón D, Trouw LA, Ramos-Remus C, Enciso-Moreno JA. Type I Interferon Gene Response Is Increased in Early and Established Rheumatoid Arthritis and Correlates with Autoantibody Production. Front Immunol 2017; 8:285. [PMID: 28373872 PMCID: PMC5357778 DOI: 10.3389/fimmu.2017.00285] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 02/28/2017] [Indexed: 12/21/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is an inflammatory debilitating disease that affects the joints in the early and productive phases of an individual’s life. Several cytokines have been linked to the disease pathogenesis and are known to contribute to the inflammatory state characteristic of RA. The participation of type I interferon (IFN) in the pathogenesis of the disease has been already described as well as the identity of the genes that are regulated by this molecule, which are collectively known as the type I IFN signature. These genes have several functions associated with apoptosis, transcriptional regulation, protein degradation, Th2 cell induction, B cell proliferation, etc. This article evaluated the expression of several genes of the IFN signature in different stages of disease and their correlation with the levels of anticitrullinated protein antibodies (ACPA) anticarbamylated protein (Anti-CarP) antibodies. Methods Samples from individuals with early and established RA, high-risk individuals (ACPA+ and ACPA−), and healthy controls were recruited at “Unidad de Artritis y Rheumatismo” (Rheumatism and Arthritis Unit) in Guadalajara Jalisco Mexico. Determinations of ACPA were made with Eurodiagnostica ACPA plus kit. Anti-CarP determinations were made according to previously described protocols. RNA was isolated, and purity and integrity were determined according to RNA integrity number >6. Gene expression analysis was made by RT-qPCR using specific primers for mRNAs of the type I IFN signature. Relative gene expression was calculated according to Livak and Schmitgen. Results Significant differences in gene expression were identified when comparing the different groups for MXA and MXB (P < 0.05), also when comparing established RA and ACPA− in both IFIT 1 and G15. An increased expression of ISG15 was identified (P < 0.05), and a clear tendency toward increase was identified for HERC5. EPSTRI1, IFI6, and IFI35 were found to be elevated in the chronic/established RA and early RA (P < 0.05). Significant correlations were identified for the IFN signature genes with the levels of ACPA and anti-CarP (P < 0.05). Conclusion Our data confirm previous observations in the role of IFN signature and the pathogenesis of RA. Also, we provide evidence of an association between several genes of the IFN signature (that regulate Th2 cells and B cell proliferation) with the levels of anti-CarP antibodies and ACPA.
Collapse
Affiliation(s)
- Julio E Castañeda-Delgado
- Medical research Unit of Zacatecas, Mexican Institute of Social Security, UIMZ-IMSS, Zacatecas, Mexico; National Council of Science and Technology, CONACYT, Catedras-CONACYT, Zacatecas, Mexico
| | - Yadira Bastián-Hernandez
- Medical research Unit of Zacatecas, Mexican Institute of Social Security, UIMZ-IMSS, Zacatecas, Mexico; National Council of Science and Technology, CONACYT, Catedras-CONACYT, Zacatecas, Mexico
| | - Noe Macias-Segura
- Medical research Unit of Zacatecas, Mexican Institute of Social Security, UIMZ-IMSS, Zacatecas, Mexico; Departamento de fisiología y farmacología, centro de ciencias básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Aguascalientes, Mexico
| | - David Santiago-Algarra
- Medical research Unit of Zacatecas, Mexican Institute of Social Security, UIMZ-IMSS , Zacatecas , Mexico
| | - Jose D Castillo-Ortiz
- Unidad de Investigación en Enfermedades Crónico-Degenerativas , Guadalajara, Jalisco , México
| | - Ana L Alemán-Navarro
- Medical research Unit of Zacatecas, Mexican Institute of Social Security, UIMZ-IMSS , Zacatecas , Mexico
| | - Pedro Martínez-Tejada
- General Hospital: "Emilio Varela Lujan", Mexican Institute of Social Security, IMSS , Zacatecas , Mexico
| | - Leonor Enciso-Moreno
- Medical research Unit of Zacatecas, Mexican Institute of Social Security, UIMZ-IMSS , Zacatecas , Mexico
| | - Yolanda Garcia-De Lira
- Medical research Unit of Zacatecas, Mexican Institute of Social Security, UIMZ-IMSS , Zacatecas , Mexico
| | - Diana Olguín-Calderón
- Medical research Unit of Zacatecas, Mexican Institute of Social Security, UIMZ-IMSS , Zacatecas , Mexico
| | - Leendert A Trouw
- Department of Rheumatology, Leiden University Medical Center , Leiden , Netherlands
| | | | - Jose A Enciso-Moreno
- Medical research Unit of Zacatecas, Mexican Institute of Social Security, UIMZ-IMSS , Zacatecas , Mexico
| |
Collapse
|