1
|
DeJulius CR, Walton BL, Colazo JM, d'Arcy R, Francini N, Brunger JM, Duvall CL. Engineering approaches for RNA-based and cell-based osteoarthritis therapies. Nat Rev Rheumatol 2024; 20:81-100. [PMID: 38253889 PMCID: PMC11129836 DOI: 10.1038/s41584-023-01067-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 01/24/2024]
Abstract
Osteoarthritis (OA) is a chronic, debilitating disease that substantially impairs the quality of life of affected individuals. The underlying mechanisms of OA are diverse and are becoming increasingly understood at the systemic, tissue, cellular and gene levels. However, the pharmacological therapies available remain limited, owing to drug delivery barriers, and consist mainly of broadly immunosuppressive regimens, such as corticosteroids, that provide only short-term palliative benefits and do not alter disease progression. Engineered RNA-based and cell-based therapies developed with synthetic chemistry and biology tools provide promise for future OA treatments with durable, efficacious mechanisms of action that can specifically target the underlying drivers of pathology. This Review highlights emerging classes of RNA-based technologies that hold potential for OA therapies, including small interfering RNA for gene silencing, microRNA and anti-microRNA for multi-gene regulation, mRNA for gene supplementation, and RNA-guided gene-editing platforms such as CRISPR-Cas9. Various cell-engineering strategies are also examined that potentiate disease-dependent, spatiotemporally regulated production of therapeutic molecules, and a conceptual framework is presented for their application as OA treatments. In summary, this Review highlights modern genetic medicines that have been clinically approved for other diseases, in addition to emerging genome and cellular engineering approaches, with the goal of emphasizing their potential as transformative OA treatments.
Collapse
Affiliation(s)
- Carlisle R DeJulius
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Bonnie L Walton
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Juan M Colazo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Richard d'Arcy
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Nora Francini
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jonathan M Brunger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
2
|
van Helvoort E, van der Heijden E, van Roon J, Eijkelkamp N, Mastbergen S. The Role of Interleukin-4 and Interleukin-10 in Osteoarthritic Joint Disease: A Systematic Narrative Review. Cartilage 2022; 13:19476035221098167. [PMID: 35549461 PMCID: PMC9251827 DOI: 10.1177/19476035221098167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE A fusion protein of interleukin-4 and interleukin-10 (IL4-10 FP) was developed as a disease-modifying osteoarthritis drug (DMOAD), and chondroprotection, anti-inflammation, and analgesia have been suggested. To better understand the mechanisms behind its potential as DMOAD, this systematic narrative review aims to assess the potential of IL-4, IL-10 and the combination of IL-4 and IL-10 for the treatment of osteoarthritis. It describes the chondroprotective, anti-inflammatory, and analgesic effects of IL-4, IL-10, and IL4-10 FP. DESIGN PubMed and Embase were searched for publications that were published from 1990 until May 21, 2021 (moment of search). Key search terms were: Osteoarthritis, Interleukin-4, and Interleukin-10. This yielded 2,479 hits, of which 43 were included in this review. RESULTS IL-4 and IL-10 showed mainly protective effects on osteoarthritic cartilage in vitro and in vivo, as did IL4-10 FP. Both cytokines showed anti-inflammatory effects, but also proinflammatory effects. Only in vitro IL4-10 FP showed purely anti-inflammatory effects, indicating that proinflammatory effects of one cytokine can be counteracted by the other when given as a combination. Only a few studies investigated the analgesic effects of IL-4, IL-10 or IL4-10 FP. In vitro, IL-4 and IL4-10 FP were able to decrease pain mediators. In vivo, IL-4, IL-10, and IL4-10 FP were able to reduce pain. CONCLUSIONS In conclusion, this review describes overlapping, but also different modes of action for the DMOAD effects of IL-4 and IL-10, giving an explanation for the synergistic effects found when applied as combination, as is the case for IL4-10 FP.
Collapse
Affiliation(s)
- E.M. van Helvoort
- Department of Rheumatology &
Clinical Immunology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands,E.M. van Helvoort, Department of
Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht University, Postbus
85500, Internal Mail No. G02.232, 3508 GA Utrecht, The Netherlands.
| | - E. van der Heijden
- Department of Rheumatology &
Clinical Immunology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - J.A.G. van Roon
- Department of Rheumatology &
Clinical Immunology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands,Center of Translational Immunology, UMC
Utrecht, Utrecht University, Utrecht, The Netherlands
| | - N. Eijkelkamp
- Center of Translational Immunology, UMC
Utrecht, Utrecht University, Utrecht, The Netherlands
| | - S.C. Mastbergen
- Department of Rheumatology &
Clinical Immunology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
3
|
Pferdehirt L, Ross AK, Brunger JM, Guilak F. A Synthetic Gene Circuit for Self-Regulating Delivery of Biologic Drugs in Engineered Tissues. Tissue Eng Part A 2019; 25:809-820. [PMID: 30968743 DOI: 10.1089/ten.tea.2019.0027] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
IMPACT STATEMENT We engineered a synthetic transcription system based on nuclear factor kappa-light-chain-enhancer of activated B cells signaling that can attenuate the effects of the inflammatory cytokine interleukin (IL)-1α in a self-regulating manner. This system responds in a time- and dose-dependent manner to rapidly produce therapeutic levels of IL-1 receptor antagonist (IL-1Ra). The use of lentiviral gene therapy allows this system to be utilized through different transduction methods and in different cell types for a variety of applications. Broadly, this approach may be applicable in developing autoregulated biologic systems for tissue engineering and drug delivery in a range of disease applications.
Collapse
Affiliation(s)
- Lara Pferdehirt
- 1 Department of Orthopedic Surgery, Washington University in Saint Louis, Saint Louis, Missouri.,2 Shriners Hospitals for Children-St. Louis, St. Louis, Missouri.,3 Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, Missouri.,4 Center of Regenerative Medicine, Washington University in Saint Louis, Saint Louis, Missouri
| | - Alison K Ross
- 1 Department of Orthopedic Surgery, Washington University in Saint Louis, Saint Louis, Missouri.,2 Shriners Hospitals for Children-St. Louis, St. Louis, Missouri.,3 Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, Missouri.,4 Center of Regenerative Medicine, Washington University in Saint Louis, Saint Louis, Missouri
| | - Jonathan M Brunger
- 5 Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | - Farshid Guilak
- 1 Department of Orthopedic Surgery, Washington University in Saint Louis, Saint Louis, Missouri.,2 Shriners Hospitals for Children-St. Louis, St. Louis, Missouri.,3 Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, Missouri.,4 Center of Regenerative Medicine, Washington University in Saint Louis, Saint Louis, Missouri
| |
Collapse
|
4
|
Guilak F, Pferdehirt L, Ross AK, Choi YR, Collins KH, Nims RJ, Katz DB, Klimak M, Tabbaa S, Pham CT. Designer Stem Cells: Genome Engineering and the Next Generation of Cell-Based Therapies. J Orthop Res 2019; 37:1287-1293. [PMID: 30977548 PMCID: PMC6546536 DOI: 10.1002/jor.24304] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 02/04/2023]
Abstract
Stem cells provide tremendous promise for the development of new therapeutic approaches for musculoskeletal conditions. In addition to their multipotency, certain types of stem cells exhibit immunomodulatory effects that can mitigate inflammation and enhance tissue repair. However, the translation of stem cell therapies to clinical practice has proven difficult due to challenges in intradonor and interdonor variability, engraftment, variability in recipient microenvironment and patient indications, and limited therapeutic biological activity. In this regard, the success of stem cell-based therapies may benefit from cellular engineering approaches to enhance factors such as purification, homing and cell survival, trophic effects, or immunomodulatory signaling. By combining recent advances in gene editing, synthetic biology, and tissue engineering, the potential exists to create new classes of "designer" cells that have prescribed cell-surface molecules and receptors as well as synthetic gene circuits that provide for autoregulated drug delivery or enhanced tissue repair. Published by Wiley Periodicals, Inc. J Orthop Res 37:1287-1293, 2019.
Collapse
Affiliation(s)
- Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis, MO 63110,Department of Biomedical Engineering, Washington University, St. Louis, MO 63110,Correspondence: Farshid Guilak, Ph.D. Center of Regenerative Medicine, Washington University, St. Louis, Campus Box 8233, McKinley Research Bldg, Room 3121, St. Louis, MO 63110-1624.
| | - Lara Pferdehirt
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis, MO 63110,Department of Biomedical Engineering, Washington University, St. Louis, MO 63110
| | - Alison K. Ross
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis, MO 63110,Department of Biomedical Engineering, Washington University, St. Louis, MO 63110
| | - Yun-Rak Choi
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis, MO 63110,Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Kelsey H. Collins
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis, MO 63110
| | - Robert J. Nims
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis, MO 63110
| | - Dakota B. Katz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis, MO 63110,Department of Biomedical Engineering, Washington University, St. Louis, MO 63110
| | - Molly Klimak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis, MO 63110,Department of Biomedical Engineering, Washington University, St. Louis, MO 63110
| | | | - Christine T.N. Pham
- Division of Rheumatology, Department of Medicine, Washington University in St. Louis, MO, 63110
| |
Collapse
|
5
|
Graceffa V, Vinatier C, Guicheux J, Evans CH, Stoddart M, Alini M, Zeugolis DI. State of art and limitations in genetic engineering to induce stable chondrogenic phenotype. Biotechnol Adv 2018; 36:1855-1869. [DOI: 10.1016/j.biotechadv.2018.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/16/2018] [Accepted: 07/12/2018] [Indexed: 12/18/2022]
|
6
|
Rai MF, Pham CT. Intra-articular drug delivery systems for joint diseases. Curr Opin Pharmacol 2018; 40:67-73. [PMID: 29625332 DOI: 10.1016/j.coph.2018.03.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/24/2018] [Indexed: 12/20/2022]
Abstract
Intra-articular (IA) injections directly deliver high concentrations of therapeutics to the joint space and are routinely used in various musculoskeletal conditions such as osteoarthritis (OA) and rheumatoid arthritis (RA). However, current IA-injected drugs are rapidly cleared and do not significantly affect the course of joint disease. In this review, we highlight recent developments in IA therapy, with a special emphasis on current and emerging therapeutic carriers and their potential to deliver disease-modifying treatment modalities for arthritis. Recent IA approaches concentrate on platforms that are safe with efficient tissue penetration, and readily translatable for controlled and sustained delivery of therapeutic agents. Gene therapy delivered by viral or non-viral vectors and cell-based therapy for cartilage preservation and regeneration are being intensively explored.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, 660 South Euclid Avenue, Box 8233, Saint Louis, MO 63110, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8233, Saint Louis, MO 63110, USA.
| | - Christine Tn Pham
- Department of Medicine, Division of Rheumatology, 660 South Euclid Avenue, Box 8045, Saint Louis, MO 63110, USA.
| |
Collapse
|
7
|
Gabner S, Hlavaty J, Velde K, Renner M, Jenner F, Egerbacher M. Inflammation-induced transgene expression in genetically engineered equine mesenchymal stem cells. J Gene Med 2018; 18:154-64. [PMID: 27272202 DOI: 10.1002/jgm.2888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 05/31/2016] [Accepted: 05/31/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Osteoarthritis, a chronic and progressive degenerative joint disorder, ranks amongst the top five causes of disability. Given the high incidence, associated socioeconomic costs and the absence of effective disease-modifying therapies of osteoarthritis, cell-based treatments offer a promising new approach. Owing to their paracrine, differentiation and self-renewal abilities, mesenchymal stem cells (MSCs) have great potential for regenerative medicine, which might be further enhanced by targeted gene therapy. Hence, the development of systems allowing transgene expression, particularly when regulated by natural disease-dependent occuring substances, is of high interest. METHODS Bone marrow-isolated equine MSCs were stably transduced with an HIV-1 based lentiviral vector expressing the luciferase gene under control of an inducible nuclear factor κB (NFκB)-responsive promoter. Marker gene expression was analysed by determining luciferase activity in transduced cells stimulated with different concentrations of interleukin (IL)-1β or tumour necrosis factor (TNF)α. RESULTS A dose-dependent increase in luciferase expression was observed in transduced MSCs upon cytokine stimulation. The induction effect was more potent in cells treated with TNFα compared to those treated with IL-1β. Maximum transgene expression was obtained after 48 h of stimulation and the same time was necessary to return to baseline luciferase expression levels after withdrawal of the stimulus. Repeated cycles of induction allowed on-off modulation of transgene expression without becoming refractory to induction. The NFκB-responsive promoter retained its inducibility also in chondrogenically differentiated MSC/Luc cells. CONCLUSIONS The results of the present study demonstrate that on demand transgene expression from the NFκB-responsive promoter using naturally occurring inflammatory cytokines can be induced in undifferentiated and chondrogenically differentiated equine MSCs. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Simone Gabner
- Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Juraj Hlavaty
- Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karsten Velde
- Equine University Hospital, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Matthias Renner
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Florien Jenner
- Equine University Hospital, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Monika Egerbacher
- Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
8
|
Adkar SS, Brunger JM, Willard VP, Wu CL, Gersbach CA, Guilak F. Genome Engineering for Personalized Arthritis Therapeutics. Trends Mol Med 2017; 23:917-931. [PMID: 28887050 PMCID: PMC5657581 DOI: 10.1016/j.molmed.2017.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/06/2017] [Accepted: 08/08/2017] [Indexed: 02/06/2023]
Abstract
Arthritis represents a family of complex joint pathologies responsible for the majority of musculoskeletal conditions. Nearly all diseases within this family, including osteoarthritis, rheumatoid arthritis, and juvenile idiopathic arthritis, are chronic conditions with few or no disease-modifying therapeutics available. Advances in genome engineering technology, most recently with CRISPR-Cas9, have revolutionized our ability to interrogate and validate genetic and epigenetic elements associated with chronic diseases such as arthritis. These technologies, together with cell reprogramming methods, including the use of induced pluripotent stem cells, provide a platform for human disease modeling. We summarize new evidence from genome-wide association studies and genomics that substantiates a genetic basis for arthritis pathogenesis. We also review the potential contributions of genome engineering in the development of new arthritis therapeutics.
Collapse
Affiliation(s)
- Shaunak S Adkar
- Department of Orthopedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jonathan M Brunger
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | - Chia-Lung Wu
- Department of Orthopedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Cytex Therapeutics, Inc., Durham, NC 27705, USA.
| |
Collapse
|
9
|
Jeon J, Kang LJ, Lee KM, Cho C, Song EK, Kim W, Park TJ, Yang S. 3'-Sialyllactose protects against osteoarthritic development by facilitating cartilage homeostasis. J Cell Mol Med 2017; 22:57-66. [PMID: 28782172 PMCID: PMC5742729 DOI: 10.1111/jcmm.13292] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/31/2017] [Indexed: 12/31/2022] Open
Abstract
3′‐Sialyllactose has specific physiological functions in a variety of tissues; however, its effects on osteoarthritic development remain unknown. Here, we demonstrated the function of 3′‐sialyllactose on osteoarthritic cartilage destruction. In vitro and ex vivo, biochemical and histological analysis demonstrated that 3′‐sialyllactose was sufficient to restore the synthesis of Col2a1 and accumulation of sulphated proteoglycan, a critical factor for cartilage regeneration in osteoarthritic development, and blocked the expression of Mmp3, Mmp13 and Cox2 induced by IL‐1β, IL‐6, IL‐17 and TNF‐α, which mediates cartilage degradation. Further, reporter gene assays revealed that the activity of Sox9 as a transcription factor for Col2a1 expression was accelerated by 3′‐sialyllactose, whereas the direct binding of NF‐κB to the Mmp3, Mmp13 and Cox2 promoters was reduced by 3′‐sialyllactose in IL‐1β‐treated chondrocytes. Additionally, IL‐1β induction of Erk phosphorylation and IκB degradation, representing a critical signal pathway for osteoarthritic development, was totally blocked by 3′‐sialyllactose in a dose‐dependent manner. In vivo, 3′‐sialyllactose protected against osteoarthritic cartilage destruction in an osteoarthritis mouse model induced by destabilization of the medial meniscus, as demonstrated by histopathological analysis. Our results strongly suggest that 3′‐sialyllactose may ameliorate osteoarthritic cartilage destruction by cartilage regeneration via promoting Col2a1 production and may inhibit cartilage degradation and inflammation by suppressing Mmp3, Mmp13 and Cox2 expression. The effects of 3′‐sialyllactose could be attributed in part to its regulation of Sox9 or NF‐κB and inhibition of Erk phosphorylation and IκB degradation. Taken together, these effects indicate that 3′‐sialyllactose merits consideration as a natural therapeutic agent for protecting against osteoarthritis.
Collapse
Affiliation(s)
- Jimin Jeon
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
| | - Li-Jung Kang
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
| | - Kwang Min Lee
- Korea Food Research Institute, Seongnam-si, Gyeonggi-do, Korea
| | - Chanmi Cho
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
| | - Eun Kyung Song
- School of Life Science, Ulsan National Institute of Science and Technology, Ulsan, Korea.,Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Wook Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Tae Joo Park
- School of Life Science, Ulsan National Institute of Science and Technology, Ulsan, Korea.,Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Siyoung Yang
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
10
|
Brunger JM, Zutshi A, Willard VP, Gersbach CA, Guilak F. Genome Engineering of Stem Cells for Autonomously Regulated, Closed-Loop Delivery of Biologic Drugs. Stem Cell Reports 2017; 8:1202-1213. [PMID: 28457885 PMCID: PMC5425682 DOI: 10.1016/j.stemcr.2017.03.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 01/06/2023] Open
Abstract
Chronic inflammatory diseases such as arthritis are characterized by dysregulated responses to pro-inflammatory cytokines such as interleukin-1 (IL-1) and tumor necrosis factor α (TNF-α). Pharmacologic anti-cytokine therapies are often effective at diminishing this inflammatory response but have significant side effects and are used at high, constant doses that do not reflect the dynamic nature of disease activity. Using the CRISPR/Cas9 genome-engineering system, we created stem cells that antagonize IL-1- or TNF-α-mediated inflammation in an autoregulated, feedback-controlled manner. Our results show that genome engineering can be used successfully to rewire endogenous cell circuits to allow for prescribed input/output relationships between inflammatory mediators and their antagonists, providing a foundation for cell-based drug delivery or cell-based vaccines via a rapidly responsive, autoregulated system. The customization of intrinsic cellular signaling pathways in stem cells, as demonstrated here, opens innovative possibilities for safer and more effective therapeutic approaches for a wide variety of diseases.
Collapse
Affiliation(s)
- Jonathan M Brunger
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Ananya Zutshi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Farshid Guilak
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Cytex Therapeutics, Inc., Durham, NC 27705, USA; Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
11
|
Pagani S, Borsari V, Veronesi F, Ferrari A, Cepollaro S, Torricelli P, Filardo G, Fini M. Increased Chondrogenic Potential of Mesenchymal Cells From Adipose Tissue Versus Bone Marrow-Derived Cells in Osteoarthritic In Vitro Models. J Cell Physiol 2016; 232:1478-1488. [PMID: 27739057 DOI: 10.1002/jcp.25651] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/11/2016] [Indexed: 01/06/2023]
Abstract
Primarily, to compare the behavior of human mesenchymal stem cells (MSCs) derived from bone marrow (hBMSCs) and adipose tissue (hADSCs) in an osteoarthritic (OA) microenvironment; secondly, to investigate the reaction of these cell types in two alternative in vitro culture systems, obtained by using TNFα and/or IL1β as inflammation mediators, or by using synovial fluid harvested by OA patients (OSF) to simulate the complex inflamed knee microenvironment. 3D micromass cultures of hBMSCs or hADSCs were grown in chondrogenic medium (CTR), in the presence of TNFα and/or IL1β, or synovial fluid from OA patients. After 1 month of culture, the chondrogenic differentiation of micromasses was evaluated by gene expression, matrix composition, and organization. Both hMSCs types formed mature micromasses in CTR, but a better response of hADSCs to the inflammatory environment was documented by micromass area and Bern score evaluations. The addition of OSF elicited a milder reaction than with TNFα and/or IL1β by both cell types, probably due to the presence of both catabolic and protective factors. In particular, SOX9 and ACAN gene expression and GAG synthesis were more abundant in hADSCs than hBMSCs when cultured in OSF. The expression of MMP1 was increased for both hMSCs in inflammatory conditions, but in particular by hBMSCs. hADSCs showed an increased chondrogenic potential in inflammatory culture systems, suggesting a better response of hADSCs in the OA environment, thus underlining the importance of appropriate in vitro models to study MSCs and potential advantages of using these cells for future clinical applications. J. Cell. Physiol. 232: 1478-1488, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stefania Pagani
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Veronica Borsari
- Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, Department RIT Rizzoli-Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Francesca Veronesi
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Andrea Ferrari
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Simona Cepollaro
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Paola Torricelli
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Giuseppe Filardo
- Biomechnaics Lab-II Clinic, Rizzoli Orthopaedic Institute, Bologna University, Italy
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| |
Collapse
|
12
|
|
13
|
Lang A, Neuhaus J, Pfeiffenberger M, Schröder E, Ponomarev I, Weber Y, Gaber T, Schmidt MFG. Optimization of a nonviral transfection system to evaluate Cox-2 controlled interleukin-4 expression for osteoarthritis gene therapy in vitro. J Gene Med 2015; 16:352-63. [PMID: 25382123 DOI: 10.1002/jgm.2812] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 06/15/2014] [Accepted: 11/03/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Gene therapy appears to have the potential for achieving a long-term remedy for osteoarthritis (OA). However, there is a risk of adverse reactions, especially when using cytomegalovirus-controlled expression. To provide a safe application, we focused on the expression of therapeutic cytokines [e.g. interleukin (IL)-4] in a disease-responsive manner by use of the previously cloned Cox-2 promoter as 'genetic switch'. In the present study, we report the functionality of a controlled gene therapeutic system in an equine osteoarthritic cell model. METHODS Different nonviral transfection reagents were tested for their efficiency on equine chondrocytes stimulated with equine IL-1β or lipopolysaccharide to create an inflammatory environment. To optimize the transfection, we successfully redesigned the vector by excluding the internal ribosomal entry site (IRES). The functionality of our Cox-2 promoter construct with respect to expressing IL-4 was proven at the mRNA and protein levels and the anti-inflammatory potential of IL-4 was confirmed by analyzing the expression of IL-1β, IL-6, IL-8, matrix metalloproteinase (MMP)-1, MMP-3 and tumor necrosis factor (TNF)-α using a quantitative polymerase chain reaction. RESULTS Nonviral transfection reagents yielded transfection rates from 21% to 44% with control vectors with and without IRES, respectively. Stimulation of equine chondrocytes resulted in a 20-fold increase of mRNA expression of IL-1β. Such exogenous stimulation of chondrocytes transfected with pNCox2-IL4 led to an increase of IL-4 mRNA expression, whereas expression of inflammatory mediators decreased. The timely link between these events confirms the anti-inflammatory potential of synthesized IL-4. CONCLUSIONS We consider that this approach has significant potential for translation into a useful anti-inflammation therapy. Molecular tools such as the described therapeutic plasmid pave the way for a local-controlled, self-limiting gene therapy.
Collapse
Affiliation(s)
- Annemarie Lang
- Institute of Immunology, Department of Veterinary Medicine, Freie Universität Berlin, Germany; Department of Rheumatology and Clinical Immunology, Charité University Hospital, Berlin, Germany; German Rheumatism Research Center, Berlin, Germany; Berlin-Brandenburg School of Regenerative Therapies, Charité University Hospital, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Safra N, Hayward LJ, Aguilar M, Sacks BN, Westropp JL, Mohr FC, Mellersh CS, Bannasch DL. DNA Sequence Variants in the Five Prime Untranslated Region of the Cyclooxygenase-2 Gene Are Commonly Found in Healthy Dogs and Gray Wolves. PLoS One 2015; 10:e0133127. [PMID: 26244515 PMCID: PMC4526539 DOI: 10.1371/journal.pone.0133127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/24/2015] [Indexed: 01/19/2023] Open
Abstract
The aim of this study was to investigate the frequency of regional DNA variants upstream to the translation initiation site of the canine Cyclooxygenase-2 (Cox-2) gene in healthy dogs. Cox-2 plays a role in various disease conditions such as acute and chronic inflammation, osteoarthritis and malignancy. A role for Cox-2 DNA variants in genetic predisposition to canine renal dysplasia has been proposed and dog breeders have been encouraged to select against these DNA variants. We sequenced 272–422 bases in 152 dogs unaffected by renal dysplasia and found 19 different haplotypes including 11 genetic variants which had not been described previously. We genotyped 7 gray wolves to ascertain the wildtype variant and found that the wolves we analyzed had predominantly the second most common DNA variant found in dogs. Our results demonstrate an elevated level of regional polymorphism that appears to be a feature of healthy domesticated dogs.
Collapse
Affiliation(s)
- Noa Safra
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
- * E-mail:
| | | | - Miriam Aguilar
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Benjamin N. Sacks
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California Davis, Davis, California United States of America
| | - Jodi L. Westropp
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - F. Charles Mohr
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | | | - Danika L. Bannasch
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| |
Collapse
|
15
|
Abstract
Injuries to the musculoskeletal system are common, debilitating and expensive. In many cases, healing is imperfect, which leads to chronic impairment. Gene transfer might improve repair and regeneration at sites of injury by enabling the local, sustained and potentially regulated expression of therapeutic gene products; such products include morphogens, growth factors and anti-inflammatory agents. Proteins produced endogenously as a result of gene transfer are nascent molecules that have undergone post-translational modification. In addition, gene transfer offers particular advantages for the delivery of products with an intracellular site of action, such as transcription factors and noncoding RNAs, and proteins that need to be inserted into a cell compartment, such as a membrane. Transgenes can be delivered by viral or nonviral vectors via in vivo or ex vivo protocols using progenitor or differentiated cells. The first gene transfer clinical trials for osteoarthritis and cartilage repair have already been completed. Various bone-healing protocols are at an advanced stage of development, including studies with large animals that could lead to human trials. Other applications in the repair and regeneration of skeletal muscle, intervertebral disc, meniscus, ligament and tendon are in preclinical development. In addition to scientific, medical and safety considerations, clinical translation is constrained by social, financial and logistical issues.
Collapse
|
16
|
Rai MF, Graeve T, Twardziok S, Schmidt MFG. Evidence for regulated interleukin-4 expression in chondrocyte-scaffolds under in vitro inflammatory conditions. PLoS One 2011; 6:e25749. [PMID: 21991344 PMCID: PMC3185011 DOI: 10.1371/journal.pone.0025749] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 09/11/2011] [Indexed: 12/31/2022] Open
Abstract
Objective To elucidate the anti-inflammatory and anabolic effects of regulated expression of IL-4 in chondrocyte-scaffolds under in vitro inflammatory conditions. Methods Mature articular chondrocytes from dogs (n = 3) were conditioned through transient transfection using pcDNA3.1.cIL-4 (constitutive) or pCOX-2.cIL-4 (cytokine-responsive) plasmids. Conditioned cells were seeded in alginate microspheres and rat-tail collagen type I matrix (CaReS®) to generate two types of tissue-engineered 3-dimensional scaffolds. Inflammatory arthritis was simulated in the packed chondrocytes through exogenous addition of recombinant canine (rc) IL-1β (100 ng/ml) plus rcTNFα (50 ng/ml) in culture media for 96 hours. Harvested cells and culture media were analyzed by various assays to monitor the anti-inflammatory and regenerative (anabolic) properties of cIL-4. Results cIL-4 was expressed from COX-2 promoter exclusively on the addition of rcIL-1β and rcTNFα while its expression from CMV promoter was constitutive. The expressed cIL-4 downregulated the mRNA expression of IL-1β, TNFα, IL-6, iNOS and COX-2 in the cells and inhibited the production of NO and PGE2 in culture media. At the same time, it up-regulated the expression of IGF-1, IL-1ra, COL2a1 and aggrecan in conditioned chondrocytes in both scaffolds along with a diminished release of total collagen and sGAG into the culture media. An increased amount of cIL-4 protein was detected both in chondrocyte cell lysate and in concentrated culture media. Neutralizing anti-cIL-4 antibody assay confirmed that the anti-inflammatory and regenerative effects seen are exclusively driven by cIL-4. There was a restricted expression of IL-4 under COX-2 promoter possibly due to negative feedback loop while it was over-expressed under CMV promoter (undesirable). Furthermore, the anti-inflammatory /anabolic outcomes from both scaffolds were reproducible and the therapeutic effects of cIL-4 were both scaffold- and promoter-independent. Conclusions Regulated expression of therapeutic candidate gene(s) coupled with suitable scaffold(s) could potentially serve as a useful tissue-engineering tool to devise future treatment strategies for osteoarthritis.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Institute of Immunology and Molecular Biology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Thomas Graeve
- Institute of Immunology and Molecular Biology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Sven Twardziok
- Institute of Molecular Biology and Bioinformatics, Charite University of Medicine, Benjamin Franklin Campus, Berlin, Germany
| | - Michael F. G. Schmidt
- Institute of Immunology and Molecular Biology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
17
|
Coleman CM, Curtin C, Barry FP, O'Flatharta C, Murphy JM. Mesenchymal stem cells and osteoarthritis: remedy or accomplice? Hum Gene Ther 2011; 21:1239-50. [PMID: 20649459 DOI: 10.1089/hum.2010.138] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multipotent mesenchymal stromal or stem cells (MSCs) are likely to be agents of connective tissue homeostasis and repair. Because the hallmark of osteoarthritis (OA) is degeneration and failure to repair connective tissues it is compelling to think that these cells have a role to play in OA. Indeed, MSCs have been implicated in the pathogenesis of OA and, in turn, progression of the disease has been shown to be therapeutically modulated by MSCs. This review discusses current knowledge on the potential of both marrow- and local joint-derived MSCs in OA, the mode of action of the cells, and possible effects of the osteoarthritic niche on the function of MSCs. The use of stem cells for repair of isolated cartilage lesions and strategies for modulation of OA using local cell delivery are discussed as well as therapeutic options for the future to recruit and appropriately activate endogenous progenitors and/or locally systemically administered MSCs in the early stages of the disease. The use of gene therapy protocols, particularly as they pertain to modulation of inflammation associated with the osteoarthritic niche, offer an additional option in the treatment of this chronic disease. In summary, elucidation of the etiology of OA and development of technologies to detect early disease, allied to an increased understanding of the role MSCs in aging and OA, should lead to more targeted and efficacious treatments for this debilitating chronic disease in the future.
Collapse
Affiliation(s)
- Cynthia M Coleman
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | | | | | | | | |
Collapse
|
18
|
Yang T, Duan R, Cao H, Lee BH, Xia C, Chang Z, Keith Tanswell A, Hu J. Development of an inflammation-inducible gene expression system using helper-dependent adenoviral vectors. J Gene Med 2011; 12:832-9. [PMID: 20848669 DOI: 10.1002/jgm.1501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Clinical studies have shown that gene therapy is a promising approach for treating such genetic diseases as the eye disease, Leber's congenital amaurosis. Development of gene therapy approaches for treating chronic inflammatory diseases is, however, more challenging because it requires the production of anti-inflammatory molecules at the diseased tissues only when they are needed. METHODS We designed such a system by modifying the human interleukin (IL)-6 gene promoter to direct transgene expression and delivered the system into cultured cells as well as mouse lungs using a helper-dependent adenoviral vector. RESULTS We have demonstrated both in vitro and in vivo that the reporter LacZ or human IL-10 gene can be induced by inflammatory stimuli. CONCLUSIONS The results obtained indicate that the inflammation inducible gene expression system based on the modified human IL-6 gene promoter has the potential to be used for developing gene therapy for treating inflammatory diseases.
Collapse
Affiliation(s)
- Tianyao Yang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang D, Taboas JM, Tuan RS. PTHrP overexpression partially inhibits a mechanical strain-induced arthritic phenotype in chondrocytes. Osteoarthritis Cartilage 2011; 19:213-21. [PMID: 21087676 PMCID: PMC3031753 DOI: 10.1016/j.joca.2010.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/03/2010] [Accepted: 11/06/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Cell-based tissue engineering strategies are currently in clinical use and continue to be developed at a rapid pace for the repair of cartilage defects. Regardless of the repair methodology, chondrocytes within newly regenerated cartilage remain susceptible to the abnormal inflammatory and mechanical environments that underlie osteoarthritic disease, likely compromising the implant's integration, function, and longevity. The present study investigates the use of parathyroid hormone-related peptide (PTHrP) overexpression for chondroprotection. DESIGN Bovine articular chondrocytes were transfected with human PTHrP (hPTHrP) constructs (1-141 or 1-173) and subjected to injurious cyclic tensile strain (CTS; 0.5 Hz and 16% elongation) for 48 h. mRNA expression of matrix remodeling, inflammatory signaling, hypertrophic, and apoptotic genes were examined with real-time reverse transcription polymerase chain reaction. Nitric oxide (NO) and prostaglandin E₂ (PGE₂) production were measured using the Griess assay and enzyme immunoassay (EIA), respectively. RESULTS CTS-induced an arthritic phenotype in articular chondrocytes as indicated by increased gene expression of collagenases and aggrecanases and increased production of NO and PGE₂. Additionally, CTS increased collagen type X (Col10a1) mRNA expression, whereas overexpression of either hPTHrP isoform inhibited CTS-induced Col10a1 gene expression. However, hPTHrP 1-141 augmented CTS-induced NO and PGE₂ production, and neither hPTHrP isoform had any significant effect on apoptotic genes. CONCLUSIONS Our results suggest that chondrocytes overexpressing PTHrP resist mechanical strain-induced hypertrophic-like changes. Therapeutic PTHrP gene transfer may be considered for chondroprotection applications in newly regenerated cartilage.
Collapse
Affiliation(s)
- Dean Wang
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, Howard Hughes Medical Institute–National Institutes of Health Research Scholars Program, Bethesda, MD 20814
| | - Juan M. Taboas
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
| | - Rocky S. Tuan
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219,Correspondence: Dr. Rocky S. Tuan, Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 221, Pittsburgh, PA 15219, Tel: 412-648-2603, Fax: 412-624-5544,
| |
Collapse
|
20
|
Leung PSC, Dhirapong A, Wu PY, Tao MH. Gene therapy in autoimmune diseases: challenges and opportunities. Autoimmun Rev 2009; 9:170-4. [PMID: 19854300 DOI: 10.1016/j.autrev.2009.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 10/14/2009] [Indexed: 12/20/2022]
Abstract
Clinical treatment of autoimmune disorders presents a special challenge. For decades, most clinical regimens in autoimmunity has been largely symptomatic and non-disease specific. Although data from vigorous research has lead to accumulating knowledge on the pathogenic and immunological mechanisms of many autoimmune diseases, their direct clinical applications have been sparse. Advances in biotechnology have laid the groundwork for potent and specific molecular targeting therapies by gene therapy, and have just begun to be investigated in the treatment of autoimmune disorders. Such work has been largely based on the availability of well-established animal models of common autoimmune disorders, and the efficacy of strategic approaches initially investigated and validated in these models. Although these preclinical animal model studies have provided the proof-of-concept for multiple potential applications, human clinical trials on gene therapy in autoimmunity are still at its infancy. The recent success of Phase I/II clinical trials of gene therapy in rheumatoid arthritis and multiple sclerosis, development of cutting edge technology in target identification, as well as gene delivery systems have now set the stage for a more thorough and vigorous pace in the near future to advance this exciting field.
Collapse
Affiliation(s)
- Patrick S C Leung
- Division of Rheumatology/Allergy and Clinical Immunology, School of Medicine, University of California, Davis, CA 95616, United States.
| | | | | | | |
Collapse
|
21
|
Yun K, So JS, Jash A, Im SH. Lymphoid Enhancer Binding Factor 1 Regulates Transcription through Gene Looping. THE JOURNAL OF IMMUNOLOGY 2009; 183:5129-37. [DOI: 10.4049/jimmunol.0802744] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Evans CH, Ghivizzani SC, Robbins PD. Progress and Prospects: genetic treatments for disorders of bones and joints. Gene Ther 2009; 16:944-52. [DOI: 10.1038/gt.2009.73] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Rachakonda PS, Rai MF, Manning K, Schmidt MF. Expression of canine interleukin-4 in canine chondrocytes inhibits inflammatory cascade through STAT6. Cytokine 2008; 44:179-84. [DOI: 10.1016/j.cyto.2008.07.470] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 06/17/2008] [Accepted: 07/30/2008] [Indexed: 12/28/2022]
|